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Abstract

Compression of optical field data is of interest due to the many applications where this kind of
information processing is necessary. In particular, holographic recording has significant
requirements in a high volume of both phase and amplitude data. We analyze and present a
comparison between the performances of two lossy compression methods applied over optical
field data: the optical scaling compression technique based on a virtual optical system that
performs a scaling of the optical field data, and the JPEG format. In particular, we study the
compression of optical fields data extracted from off-axis digital holograms. Our results show
that optical scaling is better suited for the compression of the highly random phase information
found in the optical field data of 3D diffuse objects. Data loss and volume reduction for each

method are measured and compared.
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1. Introduction

Digital holography is a powerful technique that allows optical
processing by computational means. This technique has given
rise to the development of sophisticated opto-digital methods
that profit from both the properties of optical systems and the
flexibility of digital data processing algorithms. Among the
applications of digital holography, we find metrology,
microscopy, medical imaging, and optical security [1-10], to
name a few. Specifically, digital holography allows for
recording information from 2D and 3D objects [11, 12],
providing additional degrees of freedom for optical proces-
sing [13-15], and consequently making possible the recon-
struction of scenes with depth [16].

Digital holography requires the record of an intensity
pattern containing eitherphase and amplitude information,
implying the recording of interference fringes [17] or multiple
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phase-shifted images [18]. As a result, a large volume of data
needs to be processed and stored digitally. Techniques to
reduce the challenges imposed by this volume of data have
been proposed, dealing mainly with quantization techniques
[18-20], filtering [21], and both lossless and lossy data
compression algorithms [22, 23].

One of the most used image compression algorithm is the
Joint Photography Expert Group (JPEG) lossy compression
format [24]. JPEG format works by subdividing the input
image into 8 x 8 pixel blocks. A discrete cosine transform
(DCT) is then applied to each block, and a quantization of the
components of the resulting transform is performed. This
quantization is the lossy part of JPEG format. The data is
further compressed by application of the lossless Huffman
coding [25]. The loss and degree of compression achievable
by JPEG format can be controlled by a user defined quality
factor (QF) that can take values between 1 and 100. This
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Figure 1. Scheme of the off-axis Fourier holographic setup. (CS:
collimation system, BS: beam splitter, M: mirror, L: lens).

factor determines the coarseness of the quantization steps of
the DCT.

JPEG compression has been applied to digital holograms
[26], but it has been shown to have decreased compression
performance with inputs exhibiting random noise [27]. A first
approach would be a reductionby filtering the noise from the
input. However, in data extracted from a hologram of a dif-
fuse object, the near random oscillations of the phase carry
information required for an adequate reconstruction. In this
sense, noise cannot be removed, since it contains the infor-
mation we must compress.

A different compression approach, whose performance is
not dependent on the input, might be better suited to deal with
the optical field data. In this sense, we have a technique based
on using a virtual optical system to perform a scaling of the
optical field data [28]. The proposal presented in [28] is based
on the processing of the joint power spectrum (JPS) captured
by using a CCD camera in a JTC cryptosystem. As usual, the
input plane of the encryption system contains the information
of the object to be encrypted attached to a random-phase
mask and another random-phasemask that acts as the
encrypting key. The JPS, which contains the encrypted object
information, is captured by a CCD camera. The FT of the
captured JPS allows obtaining a filtered region less than the
total JPS region. In order to increase the volume reduction, an
optical scaling operation is implemented. The scaling tech-
nique uses an optical operation, namely, image formation
with magnification less than one by means of a positive lens.
It should be mentionedthat the main cause of loss of the
optical scaling is precisely the finite size of the scaling lens.
This size sets a limit to the high frequency of the compressed
object. The input placed in the object plane of the lens is the
optical field data, obtained after filtering the relevant infor-
mation from the hologram. Operating directly over the optical
field data instead over the hologram, ensures that the scaling
does not result in the subsampling of holographic micro-
fringes. After filtering and scaling, a compression of up to
94% over an input hologram is reported.

A way to confirm our assumptions is to evaluate the
performance of the mentioned optical scaling procedure in
comparison with the well-known JPEG compression format.
We will show that the performance of optical scaling and
JPEG compression are noticeably different when applied over
both the phase and amplitude information of optical field data.
In particular, this difference in terms of achievable com-
pression will be noted when considering the reconstruction
quality and efficiency of both methods. The quality is

assessed by measuring the correlation coefficient (CC)
between the reconstructed objects from compressed and
uncompressed data [29]. The compression efficiency is the
volume difference expressed in kilobytes (KB). We employ
these metrics for both JPEG compression and optical scaling
when applied to actual optical field data.

2. Hologram registering and optical field data
extraction

In order to evaluate our technique, we register the information
of a diffuse 3D object by means of the off-axis Fourier digital
holographic setup shown in figure 1.

In the CMOS camera plane, we register the interference
between a reference plane wave and the Fourier transform
(FT) of the light reflected by the input object, given by (see
figure 2(a))

Hwv,w) = [0, w)|* + |P(v, w)|*? + O(v, w)P*(v, w)
+ O*(v, w)P(v, w),
(1)

where O(v, w) is the FT of the object field, P(v, w) is the tilted
reference plane wave and * means complex conjugate. In the
experimental setup, the reference wave is described as

P(v, w) = exp(—i27f (v cos @ + w cos [3)), 2)

where the angles a and ( determine the tilt of the reference
wave, and f'is the focal length. We now perform the FT of the
registered hologram,

h(x,y) = o(x,y) ® o*(x,y) + p(x, y) ® p*(x, y)
+oM,y)®@6(x —fcosa,y — fcosf)
+0*(x,y) ® §(x + f cosa, y + f cos 3).

3)

In equation (3), o(x, y) and p(x, y) represent the FT of O(v, w)
and P(v, w) respectively.

The first two terms are the autocorrelations of the FT of
the object and reference beams corresponding to the central
order. The last two terms are the FT of the object field and its
complex conjugate, spatially separated due to the convolution
with the Dirac delta function resulting from the FT of the
plane wave given by equation (2). Taking advantage of this
spatial separation, we select the order corresponding to the FT
of the third term of equation (3), filtering the remaining terms.
After applying the inverse Fourier transform over this filtered
term, we finally obtain the optical field data O(v, w) (see
figure 2(b)). A FT over this optical field data will reconstruct
the object data o(x, y). The object shown in figure 2(c) will be
the reference against which we will measure the quality of the
reconstructed objects from the compressed optical field data.

3. Quality and compression performance

Although filtering significantly reduces the amount of data
to be stored, in the subsequent analysis we use the optical
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Figure 2. (a) Hologram, (b) intensity of the optical field data and (c) intensity of the object reconstructed from the optical field data.
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Figure 3. Correlation coefficient between the object reconstructed
from the uncompressed and compressed field datafor optical scaling
and JPEG compression in terms of the achieved volume difference.

field data as the input to be processed by both compression
methods. The experimental data to be compressed are
recorded by using CMOS EO-10012M camera, with a
pixel size of 1.67 um x 1.67 um and 3480 pixel x 2748
pixel resolution. The object has maximum dimensions of
18 mm x 24 mm X 16 mm. The focal length of the lens was
200 mm. A Laserglow Technologies diode pumped solid
state laser operating at a wavelength of 532 nm and an output
power of 50 mW is employed. The angle between the object
and reference beam was approximately 5°, and the pixel size
of the camera used allows for a maximum angle of 9.13°, thus
ensuring that we can resolve the highest frequency of the
interference pattern. This optical field data will be processed
with the scaling compression method for values of magnifi-
cation between 0 and 1 [28]. On the other hand, for com-
parison purposes, the same data is compressed using JPEG
compression with QF between 1 and 100. Then, we proceed

to evaluate the volume difference, defined as
AV = Vg — Vg, 4)

where Vj is the volume of the uncompressed optical field data
and V¢ is the volume of the compressed optical field data,

both volumes expressed in KB. In our experimental case, the
original optical field data area is 940 x 940 pixels and depth
of 8 bits resulting a data volume of Vi = 1726 KB The
volume of the compressed optical field data is the number of
bytes of the file in a computer memory after applied optical
scaling and JPEG compression techniques.

Since we are dealing with lossy compression, we must
also compare the quality of the reconstructed objects. We
achieve this by digitally reconstructing the objects from the
compressed and uncompressed optical fields and then evalu-
ating their quality by using the CC defined as

_ S 3 A — DB — B)
Y s = ) (5,52, B~ )

where m, n are the pixel coordinates, A the object intensity
reconstructed from the uncompressed optical field, B the
object intensity reconstructed from the compressed field data
and A, B are the mean values of A and B, respectively.

In figure 3, each marker of the JPEG curve represents a
decrease of the QF in steps of 5, starting at 100. This value
corresponds to AV = 0. Each point of the optical scaling
curve corresponds to a decrease of 0.05 of the magnification
value stating at 1 when AV = 0. The JPEG compression
achieves the largest volume decrease within the QF range
between 100 and 45, and further reduction of the QF severely
degrades the reconstructed object quality for a small increase
in the volume difference (see media 1). On the other hand,
optical scaling allows for a lesser loss of quality than JPEG
compression at high compression ratios, as shown in the
figure 3 at AV > 1380 KB (see dotted line and inset figures).

In [27], it was demonstrated that the JPEG compression
format shows decreased performance when the distribution of
data is random. In diffuse objects, phase information has more
random distribution in comparison with the amplitude infor-
mation. In consequence, the behavior of the compression
format should be different in both cases. To verify this, we
proceed to evaluate the phase and amplitude information
independently for each method. In order to perform the eva-
luation, we measure the volume difference of the phase and
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Figure 4. Volume difference of the phase and amplitude of the compressed data in terms of: (a) the magnification and (b) the QF.

the amplitude of the compressed optical field data in terms of
the magnification and the QF parameters.

Figure 4 confirms that there is a difference in the per-
formance of both methods. Optical scaling compression
(figure 4(a)) shows the same behavior for both phase and
amplitude information. On the other hand, JPEG compression
(figure 4(b)) shows a significantly lower performance when
applied to phase information. While these results seem to
show that optical scaling is better suited to the compression of
phase information of the optical field data, it is worth noting
that the loss caused by both methods is qualitatively different.
In the case of optical scaling the reconstructed object shows
loss of high frequencies, while in the case of the JPEG
compression it shows an increase in noise. In this sense, while
optical scaling shows a more predictable behavior for optical
field data, there may be cases where the loss of high fre-
quency fringes is not desirable.

4, Conclusions

Since phase carries a significant amount of the holographic
information, it is necessary to achieve the maximum possible
compression with the minimum loss. Methods used for gen-
eral image compression like JPEG or other spatial or spectral
quantization compression methods were not developed for
random distributions. In this work we verified that the optical
scaling procedure is an adequate alternative with better per-
formance in comparison with JPEG compression for random
data distributions. We believe that efficient compression of
optical field data requires taking into account the properties of
phase information, therefore other optical methods should be
further explored.
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