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Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronal populations
is regulated by common non-Gaussian inputs across neurons. We model these deviations from random-walk
processes with q-Gaussian distributions into simple threshold neurons, and investigate the scaling properties in
large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to
regulate population statistics such as sparsity, entropy, and specific heat. This type of description allows us to
provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its
possible implications on information transmission.
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As experimental methods in neuroscience become capable
of recording simultaneous activity of large populations of
neurons, the complexity of the neurophysiological data high-
lights the necessity to develop a reliable framework accounting
for the statistical features of synchronous activity patterns.
Particularly, pairwise maximum entropy models (i.e., the Ising
model) have been proven useful in characterizing synchronous
neural activity [1–3]. In spite of their early success, further
studies on the subject have found that interactions among
pairs are not sufficient to fully capture statistics in different
data [4–7]. Nevertheless, what are the functional implications
and the source of these higher-order interactions are still open
questions.

For instance, it has been shown that these complex in-
teractions are dynamically modulated by the stimulus [8]
and that they can impact coding properties [4]. Higher-order
interactions are also necessary for accounting dynamics in
ongoing neural avalanches [9] and it has been suggested that
simultaneous silence, the coinactivation of neurons, is a ubiq-
uitous feature of beyond-pairwise interactions and concisely
summarizes them [10]. The latter finding is of paramount
importance since the activity of neural populations is known
to be sparse and this sparsity has numerous consequences [8].

A recent model that has shed some light on the matter is
the dichotomized Gaussian (DG) model [11]. This model is
capable of generating spike trains by thresholding a multivari-
ate Gaussian random variable [12]. Despite being substantially
simple, its spiking mechanism is similar to the one assumed
in balanced networks, where the mean input to each neuron is
typically smaller than the threshold and thus spikes are induced
by fluctuations in the input [13]. It showed that higher-order
correlations can arise as a consequence of this threshold
operation of common input to a population of neurons and
that these resulting interactions have a strong impact on the
entropy, sparsity, and statistical heat capacity of the ensemble
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[14]. Thus, the DG model has been reported to reproduce neural
activity patterns better than the pairwise model [9].

In spite of the broad usefulness of this rather simple ap-
proach, one particular question has been eluded: what happens
when the statistics of the sum of the inputs (or rather the mem-
brane potential) is not Gaussian distributed? In vivo recordings
of subthreshold membrane potential fluctuations in rat primary
auditory cortex in both anesthetized and awake preparations
[15,16] showed dynamics consisting of excursions much larger
than the small fluctuations predicted by most random-walk
models. Also, the local field potential activity distribution mea-
sured in [9] was found to be more heavy-tailed than expected
by the Gaussian fit used. Thus, an extension of the DG model
was proposed in [17–19] to take into account such deviations,
showing how non-Gaussian distributed membrane potentials
affected input-output statistics. In this Rapid Communication,
we focus on the kurtosis of the input distribution as a measure
of non-Gaussianity.

Modeling non-Gaussian membrane potentials. A com-
monly used theoretical approach is to consider that the input to
the neuron consists of many small uncorrelated postsynaptic
potentials summed together. In this case, according to the
central limit theorem, the membrane potential is Gaussian dis-
tributed (assuming finite variance) and its fluctuations follow a
random walk [11,12,14]. But the central limit theorem does not
hold if correlations between far-ranging random variables are
not negligible. This would be the case in which the presynaptic
population is highly correlated: neurons might be silent most
of the time, except during brief moments when large groups
of them fire in a synchronized manner. One cannot distinguish
between these two cases (or even among intermediate ones)
by studying the output population firing pattern alone, since
either model could account for essentially any observed spike
train. That is assuming either uncorrelated or highly correlated
presynaptic variables can lead to the same spiking pattern.

A key feature of this non-Gaussian dynamics is given by
the more frequent occurrence of “outliers,” i.e., the all-or-none
firing. Hence, a heavy-tailed distribution would be required
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one to capture this phenomena. This singular representation
in the data would also require one to carefully account for the
sparsity of the neural code. Also, one would like to represent
the input of the presynaptic population using as few parameters
as possible and at the same time providing flexibility to the
representation.

Nonextensive statistical mechanics deals with strongly
correlated random variables, sometimes referred to as global
correlation [20,21]. The generalization of the classic entropy
as the basis for generalizing the Boltzmann-Gibbs theory,
reaches its maximum at the distributions usually named as
q Gaussians. This fact, and a number of conjectures and
numerical indications [22–24] suggest the existence of a q

analog of the central limit theorem as well. q Gaussians are
the probability density functions given by

f (x; q,ξ ) =
√

ξ

Cq

expq(−ξx2), (1)

where expq(x) = [1 + (1 − q)x]1/(1−q) is defined as the q

exponential [21]. The parameters q and ξ are positive real
numbers and Cq is a normalization constant. For 1<q <3,
these distributions exhibit heavier tails than a Gaussian dis-
tribution and in the limit of q = 1 the latter is recovered.
Thus, they are natural candidates to study the issue raised
here, and the q analog of the central limit theorem justifies
the use of this distribution in the presence of a large number of
correlated inputs. The dichotomized q Gaussian (q-DG) model
is proposed as an extension of the DG model that uses this
family of functions [17–19]. Since finite variances are required
for this model, we further restrict the values of q in the range
[1,5/3) [18,19].

Thus, we model a multivariate N -dimensional binary ran-
dom variable X ∈ {0,1}N with mean μ and covariance matrix
6. A sample from the q-DG distribution is obtained by
first drawing a sample from an N -dimensional q-Gaussian
random variable U and then thresholding it into 0 and 1. This
thresholding operation will change the moments of the output,
so X, in general, will not have the same mean and covariance as
U . However, we can choose the mean h and covariance α of U

such that after truncation, X has the desired moments μ and 6

[12]. Input-output statistics where previously explored in [19],
putting special emphasis on how higher-order correlations in
the latent process influence population firing patterns.

Given the q-DG model, how can we best define a “distance”
that quantifies the “tailedness” of the distribution of the input
to the population of cells? For instance, DeWeese and Zador
[15] used excess kurtosis, defined as the ratio of the fourth
central moment divided by the fourth power of the standard
deviation minus three (which is the kurtosis value expected
for a Gaussian distribution); they found large values for their
whole-cell patch-clamp recordings of subthreshold membrane
potentials in many cases. The standard measure of kurtosis
is related to the tails of the distribution, and higher kurtosis
is the result of infrequent extreme deviations (or outliers) as
opposed to frequent modestly sized deviations. Distributions
with kurtosis greater than 3 (or positive excess kurtosis) are
said to be leptokurtic. Predominantly positive kurtosis values
for traces recorded in awake auditory cortex reflected the
unimodal nature of membrane voltage distributions with long

tails. This measure, however, is static and cannot distinguish
time durations among excursions. Let us emphasize that we
are not focusing on the temporal statistics.

For q-Gaussian distributions, excess kurtosis is finite and
defined as k(q) = 6(q − 1)/(7 − 5q) for 1 < q < 7/5, which
shows that they are leptokurtic in this range. Then, the rela-
tionship between the deformation parameter and kurtosis is
not proportional: at first, kq increases slowly as q becomes
larger and then diverges since it approaches an asymptote.
Thus, it establishes two possible regimes, one with low, close
to zero kurtosis (“down state”) and another one with large,
positive kurtosis (which corresponds to brief bumps or “Up
state” [16]). Here, the terminology of “Up” and “Down” refer
to cases of second- and higher-order interactions in the inputs
that are different from the definition of “active” and “silent”
states. The limit where the first ends and the second one begins
depends on the criteria used: (i) we can set q = 1.25 as the
limit since it corresponds to the maximum tolerable value for
excess kurtosis to be considered Gaussian-like (k = 2) or (ii)
evaluating the first and second derivative one can establish that
that point is where kurtosis rapidly changes. In the following,
an excess kurtosis value of k = 22.8 (q = 1.38), a value close
to the average found by [15], is used as reference for the Up
state.

Heavier tails allow for diverse interaction structures. First,
we want to determine how kurtosis has an effect on the
higher-order moments of the population activity distribution.
If we consider a homogeneous population of N neurons (for
simplicity), we can calculate the probability of exactly m cells
firing within a given time window in this model as

P (m) = Eε

·µ
N

m

¶
[P (u > 0|ε)]m[P (u 6 0|ε)]N−m

¸
. (2)

For each neuron in the q-DG model,

P (ui > 0|ε) = 8q

µ√
αε + h√
1 − α

¶
, (3)

where 8q(·) is the cumulative distribution function of a q

Gaussian and ε corresponds to a Gaussian noise random
variable [19]. h and α are the input mean and covariance,
respectively, equal for each neuron and pair of neurons. By
symmetry, all activity patterns with the same number of spikes
are equally likely. Such a model is fully characterized by
the number of neurons that spike synchronously, i.e., the
population spike count m = P

i Xi .
In general we can the represent neuronal population activity

by a binary vector x = (x1, . . . ,xN ) in the space X of all binary
vectors of length N , where xi = 0 if neuron i is silent in some
time window and xi = 1 if it is firing one or more spikes. The
probability distribution P (x) of observing a particular pop-
ulation response can be expressed using different coordinate
systems. A useful way of characterizing the population activity
distribution is by specifying the 2N − 1 individual probability
values; these are called the p coordinates. The probability can
also be determined by the 2N − 1 marginal probability values;
these are called the η coordinates [25]. Provided P (x) 6= 0 for
any x, any such distribution can be expanded in the so-called
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FIG. 1. (a) Interaction coefficients for a homogeneous population with mean firing rate μ = 0.05 and pairwise correlation coefficient
ρ = 0.1, for three different models. Down and Up states correspond to excess kurtosis of k = 0 and k = 22.8, respectively. (b) Strain of the
population entropy rate for a homogeneous population generated with the q-DG model with μ = 0.05.

log-linear model, or θ -coordinates system [25,26]:

P (x) = exp

⎛
⎝X

xiθi +
X
i<j

xixj θij +
X

i<j<k

xixjxkθijk

+ · · · +
X

i<···<N

xi · · · xNθi···N − ψ

!
, (4)

where the 2N − 1 different θ coefficients uniquely determine
the distribution. The use of this coordinate system to study
probabilities and interactions was developed by Amari and co-
workers [25,26].

Let us assume that the neural population is a fully homo-
geneous pool; all the parameters characterizing single neuron
properties and interactions between any group of neurons do
not depend on the precise identity of the considered neurons,
but only on the number of neurons considered. With this
assumption the probability distribution is now characterized
by only N parameters. Due to the symmetry of the population
all the θ coordinates of a given order i are equal and can be
represented by θi (e.g., all interaction coefficients at order 3,
θijk , are equal to a single parameter that we indicate by θ3).

Within this information geometry framework [26], neuronal
firing in a homogeneous population of size N can then be
represented by the N th − order maximum entropy model in
standard interaction coordinates θ [4,10]. Using this represen-
tation, the probability of having exactly m neurons active at a
certain time bin is

P (m) ∼
µ

N

m

¶
exp

"
NX

i=1

µ
m

i

¶
θi − ψ

#
. (5)

We assume all the parameters characterizing single neuron
properties and interactions between any group of neurons do
not depend on the precise identity of the considered neurons,
but rather on the number of neurons. Thus, the probability
distribution is now characterized by only N parameters: all
the θ coordinates of a given order m are equal and can be
represented by θm.

Let us compare the equivalent equations (5) and (2) to ex-
tract information of how these correlation coefficients depend
on input statistics. By solving linear equations, we can obtain
the parameters θm (m = 1, . . . ,N), and the normalization

factor ψ . This approach gives a good sense of how structured
neural response is.

We also calculate these coefficients for the binary infinite-
range Ising model and the DG model with the same mean
firing rate μ and pairwise correlation ρ [14]. The Ising model
is a trivial case: all coefficients beyond second order are zero.
The DG model exhibits higher-order correlations and presents
an alternation in the signs of its coefficients with respect to
the successive orders of interaction, as previously reported in
[10]. Figure 1(a) shows that a sufficient departure from the
expected kurtosis of a Gaussian membrane potential breaks
the alternation in signs expected for the case q = 1. By the
break of the alternation of signs we mean that in the Down
state, not all even interaction coefficients are positive and
odd ones are negative. Furthermore, the absolute values of
the coefficients decrease for low-order interaction coefficients
(i.e., m = 3,4,5,6), suggesting a lesser higher-order correlated
structure. Even so, this effect depends on the value of the
pairwise correlation ρ and output firing rate μ (which is in
turn related to the neuron firing threshold).

Particularly, the third-order maximum entropy component
(also called “strain” [6]) has been broadly used as a measure
of departure from pairwise maximum entropy models. Triplet
firing patterns provide insight into network behavior: if all
three-neuron subsets have a positive strain, synchronous ac-
tivity across the entire population is facilitated, whereas if
all three-neuron subsets have a negative strain, global syn-
chronization is suppressed. Using this measure, it was found
that local firing patterns are distinctive: while multineuronal
firing patterns at larger distances can be predicted by pairwise
interactions, patterns within local clusters often show evidence
of higher-order correlations [8].

The strain of a distribution over three binary random
variables is the third-order interaction term in a maximum
entropy model of third degree and can be calculated as

θ3 = log
P111P100P010P001

P110P101P011P000
. (6)

Each one of these probabilities can be calculated numerically
for the q-DG, e.g., P111 = P (m = 3), since there is no closed-
form analytic expression in general.

The triplet interaction coordinate in the Down state was
found to be always negative and to decrease monotonically
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FIG. 2. (a) Sparsity and (b) entropy rate for a homogeneous population with μ = 0.05 and ρ = 0.1, considering the three different models.
In both figures, Down and Up states correspond to k = 0 and k = 22.8, respectively.

with increasing correlation coefficients: assuming random-
walk dynamics makes it impossible to reach non-negative
values of strain [14]. Figure 1(b) shows that common input can
lead to zero or even positive strain if the subthreshold mem-
brane potential distribution is sufficiently non-Gaussian. This
result implies that higher-order correlations in the common in-
put distribution are needed to have a higher occurrence of spike
triplets. This condition also depends on firing rate and correla-
tion coefficient: as spike probability becomes smaller and pair-
wise correlation decreases, these values become achievable.
Nevertheless, this analysis is valid on a three-neuron model
and does not necessarily hold for larger ensembles.

Up states have different global statistics. The number of
parameters in Eq. (5) depends on the size of the population
and thus, to study larger populations, further minimal repre-
sentations of these higher-order features are needed. It was
concluded that these beyond-pairwise interaction patterns are
concisely summarized by simultaneous silence [10], constrain-
ing neural activity. Simultaneous silence refers to neuronal
coinactivation: the occurrence of brief silent periods during
which all neurons in the local network do not fire. Sparsity is
considered to be an important component of population coding
that relies on network inhibition [8,10]. Let us evaluate whether
heavy-tailedness impacts output activity patterns in the q-DG
(as a hallmark of sparsity in the input signal). Figure 2(a) shows
sparsity (estimated as the probability of the population being
quiet, i.e., P (m = 0)N , versus N .

Notice that in the Down state, Fig. 2(a) depicts that cor-
relations increase sparsity, and in large populations is still
dominated by higher-order interactions (in agreement with
[14]). For larger values of excess kurtosis (i.e., the Up state),
and thus larger departures from the random-walk dynamics, the
distribution is less sparse than in the Down state for population
sizes bigger than 102. Still, activity remains much sparser
than the Ising model. This implies that while higher-order
interactions are still present, representation capacity in the
neural population is more restricted due to the underlying
beyond-pairwise correlations in the latent process. Hence, it
defines an optimal ensemble size for coding.

Furthermore, we calculate entropy rate directly from the
probability distribution as

s(N ) = S(N )

N
= 1

N

X
m

P (m) log

µ
N

m

¶
, (7)

where S is the entropy of the system and N is the population
size. In Fig. 2(b), it can be seen that a higher kurtosis value in the
membrane potential distribution increases entropy rate. This
difference does not change further for sizes larger than 102,
when entropy reaches its asymptotic value. Regardless, this
higher entropy value is lower than the upper bound established
by the pairwise maximum entropy model (as expected).

Finally, we study the impact of kurtosis on the heat capacity
of the population. In terms of the spike train statistics, it is the
normalized variance of the surprise of neural spike trains [27].
As a function of population size, we calculate it as

c(N ) = 1

N

X
m

P (m)

·
log P (m) − log

µ
N

m

¶
− S

¸2

. (8)

Introducing an artificial temperature parameter β = 1/T ,
we can rescale the probability as Pβ(x) = P (x)β/Zβ [2]. As
previously shown in [14], the Down state (described by the DG
model) elicits a sharply peaked and diverging specific heat.
This is evidence for a physical system being at a critical point
and implies that fluctuations around the entropy are nonvan-
ishing in large populations. This was proven valid for common
input models, being able to capture this behavior. As shown in
Fig. 3(a), the q-DG model also confirms this for the Up state.

Specific heat scales linearly as size increases, regardless of
kurtosis value in the input distribution. This is also the case for
the difference in specific heat between the Down and Up states,
1c [see Fig. 3(b)]. Figure 3(c) depicts the power of criticality
for the two states. Furthermore, it has been suggested that
the rate at which the specific heat diverges provides a means
of quantifying the strength of criticality [28,29]. We found
that it increases rapidly at first as excess kurtosis becomes
larger and then saturates in a maximum value that defines the
Up state.

Discussion. Common input drives higher-order statistics in
population firing patterns [14]. Nevertheless, previous studies
have only focused on Gaussian-distributed subthreshold mem-
brane potentials. In this Rapid Communication, we showed that
the interaction structure and global statistics of the output of
a population of threshold neurons is affected by nonrandom
walk dynamics in the sum of its inputs.

Local correlations defined by interaction parameters imply
a hierarchical organization [8]. They modestly reduce the
amount of information that a cluster conveys while also modi-
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FIG. 3. (a) Specific heat of the Up state versus temperature for μ = 0.05, ρ = 0.1, and k = 22.8. (b) Difference in specific heat for the Up
and Down states scales linearly with respect to population size. (c) Power of criticality (slope of c vs N ) is defined for the two states.

fying the format of this information, creating sparser codes by
increasing the periods of total quiescence and concentrating
information into briefer periods of common activity. Hence,
kurtosis acts as a modulation of the coupling throughout
columns in the cortex. This is proposed as a mechanism
to regulate local sensibility to stimuli of certain populations
across the transmission of information. Systems near critical
states are maximally responsive to certain external signals
and this sensitivity may be useful to the auditory cortex in
particular. It has been proposed that non-Gaussian membrane
potentials in awake auditory cortex may reflect an adaptation
to the rapid processing of auditory stimuli. Most of the systems
that exhibit criticality in the thermodynamic sense also exhibit
a wide range of time scales in their dynamics, so that it may
provide a general strategy for neural systems to bridge the
gap between the microscopic time scale of spikes and the

macroscopic time scales of behavior. It still seems unclear
why subthreshold dynamics in the auditory cortex would differ
from dynamics in other sensory cortices, although it is an
intriguing possibility that this difference is related to the ability
of the auditory cortex to exploit fine timing of brief sensory
stimuli [30].

Furthermore, the variation of kurtosis through time would
imply a change between two states of the membrane potential,
if the output firing rate remains constant. This would in turn
produce a bimodal distribution when switching from Down to
Up state and vice versa.
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