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Abstract 

The Andes of southern Patagonia experienced a Miocene shift towards faster and higher 

angle subduction followed by the approach and collision of the Chile oceanic ridge. We 

present a kinematic study characterizing palaeostress fields computed from brittle tectonics, 

to better constrain upper-crustal deformation during this complex scenario. Although 

previous studies already suggested variable kinematics, it is striking that in a long-lasting 

subduction environment, the computed palaeostress tensors are mostly strike-slip (55%), 

while 35% are extensional, and only 10% compressive, concentrated along a main frontal 

thrust. Cross-cutting relationships and synsedimentary deformation indicates that a long-

lived strike-slip regime was punctuated by a lower Miocene extensional event in the foreland 

before the main compressional event. The results are discussed in contrasting geodynamic 

models of plate coupling/decoupling vs. direction and rate of convergence of the subducting 

plate, to explain the main mechanisms that control back-arc deformation. 

 

Keywords: Southern Andes; Patagonia; brittle deformation; geodynamics; tectonics; plate 

coupling/decoupling 
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1. Introduction 

 Evolution of Neogene deformation in the Southern Patagonian Andes (SPA) was 

related to changes in convergence vectors and to subduction of the Chile oceanic ridge 

(COR; Bourgois et al., 2000; Somoza and Ghidella 2005, 2012; Ghiglione and Cristallini 

2007; Scalabrino et al., 2010). During an early Miocene plate reorganization event (~23 Ma; 

Lonsdale, 2005), oblique subduction towards southern South America shifted from 

subduction of the Farallon plate (NE ~5 cm/yr) to the faster and higher-angle Nazca plate 

(ENE ~15 cm/yr) (Somoza and Ghidella 2005, 2012). This event was followed by collision of 

segments of COR since ~15 Ma, generating contrasting scenarios of subduction north and 

south of the Chile triple junction (CTJ). 

 

 Oblique subduction of the fast and oblique Nazca plate (az. 10° 8 cm/yr; Gripp and 

Gordon, 1990; DeMets et al., 1990) north of the CTJ presently produces partitioning of 

deformation along the Liquiñe-Ofqui dextral strike-slip system (Fig. 1a; Hervé, 1994), while 

south of the CTJ, subduction of the slower Antarctic plate (NE 2 cm/yr) generates almost no 

upper-plate-related deformation (Scalabrino et al., 2010). The CTJ has moved northward 

from ~55° to its present position at ~46° during the Miocene (e.g. Cande and Leslie, 1986; 

Scalabrino et al., 2011; Aragón et al., 2013), and our working hypothesis is that the 

boundary separating these two contrasting deformation domains has moved accordingly. 

Therefore, strike-slip deformation could dominate in the SPA, which has undergone a long 

period of oblique subduction previous to collision of ridge segments (Fig. 1b–d). 

 

 In order to characterize and understand the stress field along the foothills of the SPA 

we present 54 new palaeostress tensors, obtained at 48 sites (Fig. 2a). We established a 

succession of the three end-member tectonic regimes in a quite short period of time. 

Analysis of cross-cutting relations and synsedimentary deformation indicates that long 
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lasting transcurrent deformation was interrupted by a prompt extensional event coeval with 

the early Miocene plate reorganization, followed by the compressional event producing 

basement thrusting. Our results show that back-arc deformation is strongly affected by 

oceanic plate reorganization in the subduction zone, and can lead to fundamental contrasts 

in terms of tectonic and sedimentary events. 

 

2. Geological and tectonic setting 

The Late Cenozoic evolution of the SPA is one of the most prominent examples of 

coupling between subduction dynamics, climate and tectonic deformation (Lagabrielle et al., 

2009). Existing thermochronological data (Thomson et al., 2001, 2010; Fosdick et al., 2013; 

Guillaume et al., 2013) indicate enhanced exhumation that migrated eastward between ~33 

Ma and 5–3 Ma, potentially related to the approach and collision of the COR (Haschke et al., 

2006; Scalabrino et al., 2011). For the northern SPA a Miocene pre-ridge dextral 

transpressional deformation due to fast oblique subduction has been proposed (Scalabrino 

et al., 2009), followed by late Miocene–Pliocene compression during ridge collision and a 

post-ridge extensional stage concomitant with glaciations at the latitude of the present CTJ 

(Lagabrielle et al., 2004; 2007). However, kinematic data necessary to understand the 

complex space and time pattern of deformation are still scarce at a more detailed regional 

scale, the nature and kinematics of faulting being still open to discussion. 

 

 The studied sector is subdivided by the Basement thrust, a segmented fault with east 

vergence and ~N–S orientation (Fig. 2a), which superposes Jurassic–Cretaceous and Late 

Cenozoic rocks over the Miocene units (Giacosa and Franchi, 2001). The basement front 

segment delimited by the Sierra Colorada Fault is shifted towards the east relative to the 

regional trend (Figs. 2a,b and 3a), a characteristic that can be related to the tectonic 

inversion of Mesozoic rift structures in the foreland (Giacosa and Franchi, 2001; Sruoga et 
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al., 2014), as shown also in the southern end of the SPA (Likerman et al., 2013; Ghiglione et 

al., 2014). The structural domain located to the west of the Basement thrust is characterized 

by NNW-oriented fold-and-thrust sheets involving Palaeozoic basement with ductile 

deformation, Jurassic synrift volcanics and Cretaceous retroarc sequences (Giacosa and 

Franchi, 2001; Ghiglione et al., 2015, 2016). The external domain placed to the east is 

composed of Mio-Pliocene and some scattered Cretaceous units, which form a frontal 

monocline (Fig. 2). 

 

3. Brittle deformation analysis 

We used field observations and mapping work at different scales, ranging from 

satellite images (Fig. 3a) to meso-scale field observations and measurements (Figs. 4, 5a 

and 6). At a regional scale, satellite image analysis (Landsat TM, ALOS-PALSAR) west of 

Sierra Colorada fault led to the mapping of kilometric-scale lineaments in the El Quemado 

Complex (Jurassic volcanics) (Fig. 3a). Analysis of lineament directions shows 3 main 

families, a dominant N–S-oriented set, and secondary W–NW, and E–NE families (Fig. 3b). 

The comparison with directional statistics of the meso-scale faults measured in the same 

area reveals a good correlation (Fig. 3b). Indeed, the N–S-trending set and E–NE fault 

directions are recognized. The comparison between faults and lineament distributions at 

complementary scales confirms that meso-scale faults are representative of the distribution 

of regional brittle deformation (Ghiglione 2002; Rosenau et al. 2006). 

 

The established directional distribution overall fits well with a regional N–S right-

lateral Riedel fault system (Fig. 3c; Riedel, 1929) parallel to the front of the orogen, as 

shown by well represented N–S-trending main M dextral faults and N–NE-trending R dextral 

faults (Fig. 3d). E–NE-trending R' left-lateral faults, and N–NW trending P dextral faults show 
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some scattering but also have a reasonably good fit (Fig. 3d). The N–NE families of reverse 

faults and N–NW extensional faults can be related, respectively, to the compressional and 

extensional events described below. 

 

 Beyond this specific mapping justified by the exceptional exposure of large-scale 

brittle structures in the El Quemado Complex, we systematically collected minor fault data 

(Figs. 4 and 5a) along the frontal region of the SPA, to determine the related palaeostress 

orientations. 

 

 In terms of methodology, fault/striae analysis is based on the Wallace and Bott 

principle (Wallace, 1951; Bott, 1959), which has long been discussed and still remains a 

matter of debate concerning stress vs. strain relationships (e.g. Angelier and Mechler, 1977; 

Twiss and Unruh, 1998; Yamaji, 2000). This principle states that faults slip parallel to the 

direction of maximum resolved shear stress on the considered plane of the local spatially 

homogeneous stress tensor (refer to Lacombe, 2012; Riller et al., 2017 for further 

discussion). 

 

 About 1000 fault planes and their slickensides were measured at 48 sites, from which 

54 palaeostress tensors were calculated, including their principal stress orientations and the 

related -ratio ( =(σ2−σ3)/(σ1−σ3)) representing the shape of the stress ellipsoid (see 

Table 1 with detailed parameters and the stereonet plate provided in supplementary 

material). In six sites, superimposed brittle deformation stages could be differentiated from 

cross-cutting relationships, leading to two palaeostress tensor inversions (Table 1). The 

MIM© software was used in order to determine the stress axes (Yamaji et al., 2011). The 

stability and the quality (Q parameter) of each tensor were estimated from a series of 
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criteria, including the visualization of the inverse function (Yamaji, 2000), the distribution of 

the measurements, the number of faults used in the inversion, the average misfit angle M 

and a geometrical coherency test using the geometric right-dihedra method (Angelier and 

Mechler, 1977) and PBT method (Delvaux, 1993).  

 

 Tensor's qualities were classified from 1 (very good) to 3 (low quality), and only about 

15% of the measurements have been discarded due to the high misfit individual angle. 

About 13 tensors exhibit plunge of sub-horizontal axes above 15°, and only 2 above 20°, 

and/or plunges of sub-vertical axes lower than 70°, and could be back-tilted according to S0 

(palaeo-horizontal) following the andersonian theory. These tensors were rotated to test 

changes in stress orientation, but only number 48 presented noticeable changes and 

reasonable field arguments showing its tilting (Figs. 5b,c; see discussion below). 

Accordingly, only tensor 48 was kept rotated in the final database.  

 

 The overall stress map (Fig. 7) includes comparable strain axes; shortening and 

stretching directions published by Diraison et al. (2000) and Lagabrielle et al. (2004). The 

obtained stress field is quite complex, and presents the three main deformational modes 

(extension, compression, strike-slip). Looking at the strike-slip tensors (about 55% of the 

total) two major directions arise from our database (Fig. 7), with subhorizontal σ1 at az. ~30º 

and ~110º, associated to subhorizontal σ3 axis at az. ~120º and ~20º, respectively. 

Extensional tensors represent 35% of our database with corresponding best σ3 axis oriented 

at az. ~60° (dominant direction) and az. ~150° (minor direction). A minority of reverse 

tensors (10%) arise with a best σ1 axis oriented at az. ~45°.  
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 The -ratio (shape of the stress ellipsoid; Fig. 8), constrains the mode of deformation 

prevailing during the brittle phase(s) (Ritz and Taboada, 1993; Tricart et al., 2006; Beucher 

et al., 2017). The transcurrent tensors (31 data) show a clear unimodal distribution, with one 

central peak at around 0.5, which indicates a pure strike-slip system. On the contrary, a 

bimodal distribution for the 19 extensional tensors, with a main peak at low values (0.2) 

indicates a multi-trend extension, and a second peak around 0.7, indicating a tendency to 

transtension (Fig. 8). The 4 reverse tensors do not allow providing reliable statistics. 

 

4. Discussion and conclusions 

Through the determination of palaeostress tensors our results show the existence of 

the three main modes of deformation in the SPA (Fig. 7), distributed as follows: strike-slip 

deformation prevails in the western basement domain, while extension was observed in the 

lower Miocene foothills (Figs. 5a and 6) underneath the compression-dominated Basement 

thrust front (Fig. 2b). How such a particular pattern of deformation may arise from the 

regional geodynamics, and in which temporal order, are the main concerns of this 

discussion. 

 

Several authors have proposed a transpressional regime for the SPA based on the 

measurement of widespread strike-slip kinematic indicators (Coutand et al., 1999; Diraison 

et al. 2000; Lagabrielle et al. 2004). The Eocene–Miocene scenario with oblique 

convergence of the Farallon and Nazca plates (Figs. 1b–d; Cande and Leslie, 1986) seems 

to be responsible for the transcurrent scenario (i.e. Scalabrino et al., 2010) and widespread 

strike-slip deformation of the basement domain (Fig. 7), which is comparable to the current 

dynamics of the Northern Patagonian Andes (Fig. 1a; Cembrano and Hervé, 1993; Rosenau 

et al. 2006; Georgieva et al. 2016). We suggest that overall Neogene deformation may have 

been dominated by transpressional right-lateral deformation partitioning along the Basement 
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thrust (Fig. 1 c,d), i.e. a now extinct ancestor of the Liquiñe-Ofqui fault. For the particular 

case of the Sierra Colorada fault segment, an origin during Jurassic 

extensional/trantensional deformation has been proposed (Sruoga et al., 2014), i.e. 

providing a weakness zone readily reactivated during oblique subduction and related 

partition of deformation. Subordinate and scattered extensional deformation is affecting the 

Basement domain (Fig. 7), interpreted as relicts from the Jurassic rift. The results are overall 

in accordance with expected transcurrent deformation dominating the SPA during oblique 

subduction previous to collision of ridge segments (Fig. 1b,c). 

 

Lagabrielle et al. (2004) recognized synsedimentary folds and thrusts in the lower 

part of the Río Zeballos Group (Río Jeinemeni Formation; lower Miocene) along superb 

exposures in the Jeinemeni river southern cliff, and proposed a major 

contractional/transpressional? phase leading to the development of the main Basement 

thrust (Fig. 2a). New exposures at the base of the cliff reveal an extensional phase 

underlying the thrusting event (Fig. 6). Another example of this event of synextensional 

deformation can be found in the Lincoln river area (Fig. 5a). We documented outcrops of 

extensional growth strata and grabens that are overlain by the main thrust affecting Jurassic 

to Miocene sequences, and include rotated normal faults in the Río Jeinemeni Formation. 

Once back-tilted, these faults provided an extensional tensor (#48 Fig. 5b; see discussion 

above). This outcrop illustrates the synsedimentary nature of the deformation, indicated by 

depositional sequences thickening towards the listric faults and a decrease in dip from older 

to younger strata (Fig. 5a), a fact that allows us to state that the extensional phase took 

place during deposition of the growth strata in the early Miocene (Fig. 5c). Another indication 

constraining the age of extensional faulting is that the synrift formations are sealed by a 

horizontal post-extensional sequence made of undeformed strata from the Cerro Boleadoras 

Formation (Figs. 5c and 6). In concordance, many other tensors calculated in subhorizontal 

Miocene outcrops located at the latitude of the Buenos Aires plateau to the east of the 
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Basement thrust, i.e. not affected by later compression, yielded extensional palaeostress 

axes (Fig. 7), therefore reflecting their syn-extensional nature. 

 

Afterwards, the COR moved towards the South American margin, triggering the 

compressional thrusting of the Basement front (Lagabrielle et al., 2004). Tensors along the 

main thrust front between Lincoln River and Paso Roballos confirm its compressional nature 

(Figs. 5b and 7). Synsedimentary folds and thrusts cropping out along Jeinemeni river’s 

southern cliff (Lagabrielle et al., 2004), and covering the synrift sequences (Fig. 6), give an 

indication of the sudden passage from extension to compression. These sequences are 

covered by the post-deformational Cerro Boleadoras Formation, constraining the short time-

lapse in which synrift deposition was followed by the Basement thrusting phase (Fig. 5c). 

The geodynamic setting during the middle Miocene included young and hot approaching 

oceanic crust from the COR (Fig. 1c), i.e. positive buoyancy slab and shallower subduction 

angle, indicating a possible episode of enhanced coupling between the South America and 

Nazca plates. A tenfold acceleration in sedimentation rates (~100 m/My) calculated for the 

18–14 Ma period (Blisniuk et al., 2005) strengthens the interpretation of high coupling 

between the plates (see Horton and Fuentes, 2016; Horton, 2018).  

 

In summary, the brittle deformation recorded in the SPA shows general strike-slip 

predominance in the Basement domain, probably due to deformation partitioning along the 

Basement thrust during Neogene oblique subduction. Evidence of synsedimentary normal 

faulting in lower Miocene rocks reflects an extensional palaeostress field coeval with low 

sedimentation rates, which could have taken place during an early Miocene event of plate 

decoupling. Afterwards, the SPA underwent a Middle Miocene compressional phase 

together with a tenfold increase in sedimentation driven by plate coupling, a consequence of 

the approach and collision of hot and young oceanic crust. 
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Figures captions 

Figure 1 a) Location of main morphostructural units and tectonic features discussed in the 

text and location of figures, after Ghiglione et al. (2010, 2016) and references therein. Yellow 

Myr ages in the Pacific trench indicate the time of collision of each Chile ridge segment 

between oceanic transform fault zones. Red opposing arrows indicate relative convergence 

between plates cited along the text. COR: Chile oceanic ridge; FZ transform fault zone; LAr 

Lago Argentino; LBe Lago Belgrano; LPo Lago Posadas; LSM Lago San Martín; LVi Lago 

Viedma; MEs Magallanes Strait; MFF: Magallanes-Fagnano fault; NSR North Scotia Ridge; 

RTu Río Turbio; SAz Seno Almirantazgo; UEs Última Esperanza. (b–d) Sketches showing 

Cenozoic tectonic evolution. Plate configuration and convergence rates from Cande and 

Leslie (1986), Somoza and Ghidella (2012) and Eagles and Jokat (2014): (b) Late Miocene 

~15–10 Ma: Compressional deformation was active along the Basement thrust front. (c) 

Early Miocene ~20 Ma: the Nazca plate initiates an orthogonal convergence to the South 

American plate with extensional axes trending ~E–W. d) Eocene ~45 Ma: the Farallon 

plate’s movement is oblique to the trench, leading to major transcurrent mode of 

deformation. 

 

Figure 2 (a) Geological and structural map modified after Giacosa and Franchi (2001), 

Escosteguy et al. (2003) showing measurement sites and main structures discussed in the 

text and (b) regional cross-section. See Figure 1 for location of both figures. 

 

Figure 3 (a) Satellite image interpretation of structural lineaments corresponding to large-

scale brittle features measured in Jurassic rocks from El Quemado Complex and main 

mapped thrusts. See geological map from Figure 2 for location. (b) Plot of the 4500 

lineaments drawn on the satellite image (Ronda et al., 2014) and the 308 micro-to-meso-
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scale fault planes measured on the same sector in this study. (c) Theoretical dextral N–S 

Riedel system oriented in a fashion where each one of its constituents fits the established 

directional distribution of fault planes corresponding to the correspondent movement shown 

in: (d) Fault plane separation according to deformation type, notice the close similarity of 

those predicted by a Riedel system, shown in (c). 

 

Figure 4 (a) Positive flower structure with left-lateral strike-slip movement in Palaeozoic 

rocks (Río Lácteo Formation). (b) Detail of the pop-up structure and (c) of the sinistral fault 

plane. (d–f) Fault plane and sinistral striae near the same site. (g) Stereonets for Site 24, 

MIM on the left (σ1 169º and σ3 76º, n=12, PHI=0,76), and PBT on the right (σ1 182º and σ3 

88º, n=12, PHI=0,33) along with their misfits. 

 

Figura 5 (a) Photographic panoramas at different zooms with structural interpretation in 

sedimentary sequences from Lower Miocene (Río Jeinemeni Formation) cropping out at Río 

Lincoln showing extensional growth strata, probably related to listric faults dipping to the 

~W–NW. Synextensional features include increasing thickness of strata towards the faults, 

decrease in dip from older to younger strata and abrupt thickness changes. (b) Extensional 

tensor obtained from deformed equivalent sequences in the opposite shore of the river (site 

48; see Table 1), with subhorizontal σ3 best axis at 240°/12° (azimuth/plunge convention) 

after rotation according to S0 stratification (see Table 1). Concerning this specific tensor, 

part of the measurements (see supplementary data) may correspond to layer-parallel 

shortening (LPS, Tavani et al., 2015); they have been discarded from the inversion. c) 

Evolutionary sketch based on cross-cutting relations and synsedimentary deformation for the 

same site and at Jeinemeni river (see Figure 6). See location in Figure 2. 
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Figure 6 Photographic panoramas looking to the NW of Jeinemeni river exposures showing 

superposition of extensional and compressional deformational structures during deposition 

of the Río Jeinemeni Formation (lower Miocene). The subhorizontal, post-deformation strata 

belong to the Cerro Boleadoras Formation. 

 

Figure 7 Palaeostress direction map for the MIM method plotted against the geological 

background. See geological references and site numbers in Figure 1. Additional 

deformational axes in blue are from Lagabrielle et al. (2004) in the northern sector and 

Diraison et al. (2000) south of 47°S. 

 

Figure 8 -ratio (shape of the stress ellipsoid) histograms for all tensors (54 data), broken 

down by tensor type; see text for discussion.  

 

 

Table 1 Parameters of the 54 palaeostress tensors including: the site ID number; its 

coordinates latitude and longitude; the lithology; the orientation of the stratification of the 

sedimentary bed (S0), if applicable, i.e. not in metasedimentary schists where we indicated 

“NA” for “non applicable”; the age of the rocks (Pz, Palaeozoic, J, Jurassic, K, Cretaceous, 

M, Miocene; the name of the regional formation (Fm); the number of all faults and striae 

measured (N); the number of faults and striae used for each method (n); the orientation 

(azimuth/plunge) of the computed σ1 and σ3 stress axes together with the corresponding ϕ 

ratio [ϕ =(σ2-σ3)/(σ1-σ3)]; the average misfit angle (M); the quality parameter assigned to 

each tensor Q (1: very good, 2: good, 3: poorly constrained), the star indicates the single 

back-tilted tensor (see text for details); and the deformation mode (DEF), i.e. SS for strike-

slip, N for normal faulting, and R for reverse faulting. MIM© software (Multiple Inverse 
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Method version 6.02) was used to determine the stress axes, because of its up-to-date 

computing strategy (Yamaji et al., 2011). 

 

Supplementary material 

A/ Stereonets of the 54 palaeostress tensors are presented following the MIM software 

representation (equal area projection, lower hemisphere). Each stereonet shows the fault 

planes and striae used for the computation analysis. The triangles and stars represent σ1 

and σ3 axes respectively. 

 

B/ table of the 1000 single fault measurements used in this study  
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TABLE 1 

Outcrop parameters  Multiple inverse method   

ID Latitude Longitude Lithology So_(az/dip) Age Fm N n σ1_(az/pl) σ3_(az/pl) φ M Q DEF 

Site 1-1 46°49,064' 71°50,522' Tuff 105/15 Ki RT 11 11 221/6 111,1/1,1 0,6 9,75 2 SS 

Site 1-2 46°49,064' 71°50,522' Tuff 105/15 Ki RT 27 27 5/80 273,1/0,3 0,74 9,67 1 N 

Site 2 46°53,152' 71°53,242' Andesite 345/40 J QC 20 17 46/2 251,6/87,7 0,62 10,94 2 R 

Site 3 46°57,674' 71°53,698' Dike 345/40 J QC 15 11 230,4/5,7 347,4/77,6 0,15 22 3 R 

Site 4 47°07,330' 71°50,922' Tuff 10/30 J QC 14 12 283,5/5,5 159,2/80,4 0,67 16,4 2 R 

Site 5 47°09,090' 71°49,714' Tuff 180/5 J QC 17 15 130,7/76,4 260,8/8,8 0,7 7,3 2 N 

Site 6 47°09,256' 71°49,661' Tuff 190/10 J QC 10 10 79/13 345,6/14,6 0,5 14,22 2 SS 

Site 7-1 47°09,702' 71°50,602' Rhyolite 155/25 J QC 17 13 134,6/70,9 344/16,7 0,4 8,12 2 N 

Site 7-2 47°09,702' 71°50,602' Rhyolite 155/25 J QC 21 18 221/2 130,3/19 0,5 27,1 3 SS 

Site 8 47°11,137' 71°48,574' Pyroclastic 135/20 J QC 26 20 220/8 128,9/8 0,39 19,29 2 SS 

Site 9 47°11,743' 71°35,941' Rhyolite 200/10 J QC 12 12 102,3/15,8 12,3/0 0,5 8,83 3 SS 

Site 10 47°11,445' 71°38,453' Rhyolite 5/5 J QC 12 12 123/14 30/11,7 0,52 8,46 2 SS 

Site 11 47°13,629' 71°40,279' Rhyolite 220/15 J QC 10 10 67/5 158,8/18,9 0,5 9,76 1 SS 

Site 12 47°14,093' 71°41,767' Pyroclastic 225/10 J QC 14 10 137,7/13,9 229,2/6,1 0,7 15,79 2 SS 

Site 13 47°15,701' 71°44,720' Pyroclastic 10/15 J QC 17 17 29/7 121,8/20,9 0,5 10,45 2 SS 

Site 14 47°19,570' 71°46,385' Silicified tuff 15/10 J QC 26 20 334,7/18,3 70,3/16,1 0,45 22,92 2 SS 

Site 15-a 47°22,921' 71°43,392' Silicified tuff 340/13 J QC 15 10 236/87 9/2 0,2 10,97 2 N 

Site 15-b 47°22,921' 71°43,392' Silicified tuff 340/13 J QC 13 11 161/8 70,1/6,9 0,21 27,34 3 SS 

Site 16 47°27,425' 71°42,368' Tuff 160/22 J QC 14 10 175/12 267/18,7 0,58 7,29 1 SS 
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Site 17 47°30,063' 71°46,186' Green tuff 35/17 J QC 21 16 290/12 28/12,6 0,6 20,94 2 SS 

Site 18 47°28,758' 71°46,929' Gray tuff 0/0 J QC 17 16 283/76 66,2/11,2 0,25 13,06 2 N 

Site 19 47°23,748' 71°48,498' Red tuff 10/19 J QC 12 11 198/20 291,7/10,3 0,57 15,78 3 SS 

Site 20-a 47°21,362' 71°47,664' Light green tuff 135/22 J QC 8 8 10/77 244,7/7,6 0,17 12,31 3 N 

Site 20-b 47°21,362' 71°47,664' Light green tuff 135/22 J QC 16 16 289/8,7 199,1/0,1 0,52 15,56 2 SS 

Site 21 47°30,565' 71°56,646' Pyroclastic 200/64 J QC 29 22 34,4/11 124,6/1 0,7 25 2 SS 

Site 22 47°21,567' 71°58,980' Quartz sandstones 237/32 Ki Sp 20 15 342,2/19 248,2/11,2 0,4 20 2 SS 

Site 23-a 47°21,211' 71°59,042' Metasedimentary NA Pz RL 10 10 152,9/18,2 248,4/16,5 0,8 19,64 3 SS 

Site 23-b 47°21,211' 71°59,042' Rhyolite sill 160/40 J QC 9 9 267/17 173,8/10,6 0,41 16,13 2 SS 

Site 24 47°26,398' 72°04,122' Metasedimentary NA Pz RL 14 12 169/12 76,3/12,7 0,76 21,43 3 SS 

Site 25 47°25,760' 72°01,747' Metasedimentary NA Pz RL 18 14 145/19,6 319,1/70,4 0,6 18,88 2 R 

Site 26-a 47°25,164' 71°58,496' Rhyolitic tuff 170/50 J QC 10 10 354,8/9,4 87,5/15,7 0,52 12,69 2 SS 

Site 26-b 47°25,164' 71°58,496' Rhyolitic tuff 170/50 J QC 12 11 110/16 200,5/2 0,51 13,94 2 SS 

Site 27 47°25,130' 71°57,822' Sandstones 290/36 Ki RB 23 15 276/77 69,4/11,8 0,75 16,19 2 N 

Site 28 47°44,132' 72°05,674' Conglomerates 330/30 J QC 21 17 262/8 170,2/11,9 0,11 15,4 2 SS 

Site 29 47°43,954' 72°05,515' Pyroclastic 340/45 J QC 40 33 111/17,7 203,7/12,7 0,9 29,72 3 SS 

Site 30 47°43,729' 72°05,251' White tuff 350/16 J QC 25 21 18,4/84,9 194,4/5,1 0,2 16,55 2 N 

Site 31 47°46,328' 72°11,933' Metasedimentary NA Pz RL 14 10 193,4/77,6 20,5/12,3 0,2 21,96 3 N 

Site 32 47°45,954' 72°09,192' Metasedimentary NA Pz RL 12 9 133,7/19,1 36,9/18,9 0,7 18,47 2 SS 

Site 33 47°47,187' 72°02,999' Pyroclastic 355/23 J QC 19 15 40/1 130,1/9,9 0,75 10,73 3 SS 

Site 34 47º49,820' 72º8,716' Metasedimentary NA Pz RL 22 18 51/84 261,2/5,2 0,37 15,37 2 N 

Site 35 47°50,079' 72°05,197' Tuff 190/41 J QC 21 21 112/5 20,5/16,9 0,1 16,7 1 SS 

Site 36 47°47,877' 72°00,334' Sandstones 350/25 Ki RB 8 8 100/13 194,1/17,5 0,25 14,25 3 SS 
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Site 37 47°51,032' 72°05,521' Tuff 180/18 J QC 19 18 354/10 260,5/18,7 0,85 17,13 3 SS 

Site 38 47°50,967' 72°05,992' Green tuff 185/24 J QC 18 14 112/71 280,4/18,7 0,74 22,31 2 N 

Site 39 47°53,599' 72°05,598' Dark Green Tuff 350/15 J QC 30 25 276,6/75,8 142/10 0,6 15,52 2 N 

Site 40 47°56,899' 72°07,378' Green dacite 355/32 J QC 20 19 44,1/82,2 149/1,9 0,5 16,63 2 N 

Site 41 47°57,099' 72°09,757' Silicified tuff 350/28 J QC 20 17 282/10 189,9/11,9 0,7 26,9 3 SS 

Site 42 47°33,955' 71°54,090' Sandstones 0/0 Mi SC 25 24 270,8/10,7 180,3/3 0,3 9,4 1 SS 

Site 43 47°03,956' 70°49,184' Sandstones 0/0 Mi SC 20 19 50,9/86,3 310,9/0,7 0,3 12,94 1 N 

Site 44 46°36,435' 71°31,749' Sandstones 30/5 Mi SC 20 14 26,6/79,1 190/10,4 0,2 12,01 2 N 

Site 45 46°44,312' 71°43,328' Sandstones 5/5 Mi SC 12 9 297,3/83,3 27,2/0 0,2 7,83 2 N 

Site 46 46°42,078' 71°38,763' Sandstones 0/0 Mi SC 17 14 321,2/80,5 151,3/9,4 0,2 7,9 1 N 

Site 47 46°38,324' 71°38,685' Sandstones 350/5 Mi Cnt 16 10 333,2/72,4 140,2/17,2 0,65 8,84 2 N 

Site 48 46°53,158' 71°52,353' Sandstones 340/86 Mi Jn 33 21 78,5/77,3 240,2/12,1 0,5 13,7 2* N 
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