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Abstract

Nonconforming Galerkin methods for a Helmholtz-like problem arising in seis-
mology are discussed both for standard simplicial linear elements and for several
new rectangular elements related to bilinear or trilinear elements. Optimal order
error estimates in a broken energy norm are derived for all elements and in L? for
some of the elements when proper quadrature rules are applied to the absorbing
boundary condition. Domain decomposition iterative procedures are introduced
for the nonconforming methods, and their convergence at a predictable rate is
established.

Subject Classification: Primary 65N30; Secondary
Keywords: nonconforming finite element, Helmholtz, domain decomposition method

1 Introduction

Seismic waves attenuate when travelling through rocks and other solid materials, with
the fraction of energy loss per cycle being essentially independent of frequency over
a wide range of frequencies and with attenuation being an increasing function of
frequency. These attenuation effects are more often described better in the space-
frequency domain than in the space-time domain, which leads to the formulation of a
Helmholtz-like problem to describe the behavior of seismic waves at a given angular
frequency. For the computational purpose, the medium is usually truncated into a
bounded domain of reasonable size for computation and with artificial boundaries on
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which absorbing boundary conditions are employed to minimize the effects of these
boundaries.

The Helmholtz-like problem to be considered in the paper is to describe pressure
waves in a two- or three-dimensional bounded domain with an absorbing boundary con-
dition. The object of this paper is to present a collection of nonconforming Galerkin
procedures and corresponding domain decomposition iterative procedures to solve the
problem. Analyses will be carried out for nonconforming methods based on the trian-
gulation of the domain into N-simplices [7] or N-rectangles [12] for N = 2 or 3. An
extension to quadrilaterals can be made for N = 2.

Nonconforming finite element methods have been employed by structural engineers
since about 1960: for instance, see the elements of Adini [1], Morley [19], Zienkiewicz
[25]. Also for elliptic cases including Stokes and elasticity problems, well-known are
the P; nonconforming element of Crouzeix and Raviart [7] and the rotated @1 element
of Rannacher and Turek [20]. In our recent papers [12, 5], a modification to the rotated
(21 element has been made to have simple degrees of freedom for second-order elliptic
problems.

Among the advantages of using our nonconforming elements instead of standard
conforming ones, we mention that the hybridization of nonconforming procedures is
easier to achieve. Specifically, the Lagrange multipliers associated with fluxes on each
inter-element boundary are constants with the degrees of freedom being the values at
the midpoints of boundaries, whereas in the case of conforming elements the number
of dof’s is equal to the number of vertices of the face of the element. Consequently,
the amount of information to be passed to the neighboring subdomains is considerably
reduced if nonconforming elements are used in domain decomposition procedures. An-
other advantage of using our nonconforming elements is that the spectral radius of the
iteration operator in the domain decomposition iterative procedure can be estimated,
and that has not been done for conforming elements.

In §3, L*(Q) and H'(Q) error estimates for the global nonconforming Galerkin
method are derived. Since the bilinear form related with Helmholtz-like problem is
noncoercive, it does not determines a norm and, consequently, the Strang lemmas [23,
24] do not hold. Therefore, a bootstrapping argument of Schatz [22] used by Douglas-
Santos-Sheen-Bennethum in [10] to analyze a similar problem using conforming finite
element spaces will be applied.

The global hybridization of the nonconforming procedure and a corresponding do-
main decomposition iterative procedure will be described and analyzed in §4 and §5,
respectively. Quite analogous iterative procedures for nonconforming methods for co-
ercive second order elliptic problems were introduced by Douglas et. al., [12] and were
based on ideas for conforming methods for second order elliptic problems introduced
first by P. L. Lions [16, 17] and then applied to the more difficult Helmholtz problem by
Després [8]; later [9], a more precise convergence argument was given for the coercive
second order elliptic problem as approximated by mixed finite element methods.

The organization of the paper is as follows. In §2 our model problem is stated. In §3
a global nonconforming Galerkin method is defined and optimal order error estimates



are derived. This global nonconforming Galerkin method is hybridized in the next
section. The convergence and spectral radius of the domain decomposition iteration
are studied in detail in §5. In the final section we prove some technical lemmata.

2 The Helmholtz Problem

2.1 The Model Problem

Let Q = (0,1)Y, N =2 or 3, and T’ = 01, and let v denote the unit outward normal
to I'. Given f(,w) € H Q) for a fixed w > 0, consider the following Helmholtz
problem:

o7 (™)
Lu=——F——u—-V.-|—Vu) = f(z,w), x € €, 2.1a
K(w0) oy V) =) (210
L (z,w)u =0 er (2.1b)
5, T waels,wu=0, x , )

where K (-,w), p € L*(Q), and «a(-,w) € L*>®(I'), along with some additional assump-
tions to be specified later. In (2.1), u(x,w) represents the Fourier transform (in time)
of the pressure u(z,t) and p(x) is the density, assumed to be bounded below and above
by positive quantities ppmin and pmax, respectively. Also,
KR(z)

B(ma w) - Z’Y(m: LU)
is the complex bulk modulus of the viscoacoustic material. The real and imaginary
parts of K(z,w) are related by the quality factor Q(z,w):

K(z,w) = K, (z,w) + iK;(z,w) =

(2.2)

1w
Qz,w)  Blz,w)
The coefficients 5(z,w) and 7(z,w) characterize the dispersive properties of the mate-
rial and will be chosen to be of the form (see [18, 21])

(2.3)

o, 1 , 1+ w?r(z) "
fla,w) = 1=y N iy (24a)
2@ —n@)
1B = @ ™ T @n )’ (240

71(z) and 7»(x) are given angular frequencies such that the quality factor Q(z,w) is
approximately equal to a constant Q,,(z) in the range 7, *(z) < w < 7, *(z). Realistic
values for @),,(x) in rocks are in the range 30 to 1000.

Equation (2.1.b) is a first-order absorbing boundary condition obtained by imposing
the condition that the boundary I' be transparent for normally arriving waves. Its
derivation can be found in [21]. The complex coefficient «(z,w) can be written as

a(z,w) = M(z,w) —iN(z,w),
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with M(z,w) and N(z,w) being given by

1/2
D) M(z,w) = C,(2(C + 1)) [1+(1+(0,-/c,y)4)1/2 ,

2 1/2 2]
ii) N(x,w):g—:(Q(Cf-l—Cf))/ [1+(1+(Ci/0r)4)/] ,
and
Cr(z,w) = K, (z,w)/p(x),  Ciz,w)= Ki(x,w)/p(x).
Set
— W’ = —A(z,w) +iB(z,w iwa(x,w): z,w)+iD(x,w
Klaw) A0 FiBle) ey = Clow) +ib)

and assume that A(z,w), B(z,w), C(z,w), and D(z,w) are bounded below and above
by positive constants. Let B, = Bpin(w) be the lower bound for B(z,w).

2.2 Weak formulation

Set
CI,(’LL ’U) —w2 (—1 u ’U) + <—1 Vu C’U) + iw <—’U, ’U> (2 5)
’ K ) ) ’ ’ .

where (+,-) and (-, -)r denote complex L*(2) and L?(T") inner products, respectively. A
weak formulation of (2.1) is to find v € H'(Q2) such that

a(w0) = (f,0),  veH(Q). (2.6
Minor modifications of the argument given in [11, 15] lead to the following theorem.

Theorem 2.1 Forw # 0 and f(-,w) € H 1(Q), there exists a unique solution u(-, w) €
HY(Q) to (2.6), and it is also a unique solution to (2.1). Moreover, if f(-,w) € L*(Q),
then u(-,w) € H*(R).

3 The Nonconforming Galerkin Method

We shall approximate the solution of (2.6) using nonconforming finite elements based
on standard simplicial elements or the rectangular elements given in [12]. For h > 0,
let 7, be a quasiregular triangulation of 2 such that Q = szlﬁj with €2; being N-
simplices or N-rectangles of diam (€2;) < h. Set

and denote by &; and &j; the centroids of I'; and I, respectively.
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3.1 Nonconforming elements

For the simplicial nonconforming elements, set (as usual)
NC! = Pi(Qy),

where P,(E) is the class of polynomials of degree £ on the set E. For the rectangular
nonconforming elements, we shall make use of the same elements as described in [12].
Let

x? — 84 (=1

. 34 )
e { 2o Byt Ig8 (=9 (3.

6 2 b b

and, in the two-dimensional case, define two reference bases by
QZ = Spa‘n {1ﬂxay39€('x) _ef(y)}’ l= 1a25 (32)

on the reference element R = [—1,1]%. A nodal basis is easily found; the basis function
corresponding to the node (1,0) is given by

Oe(z) — 6e(y)
46,(1)

‘ 1 1
wig(@,y) = 3 + 57+

; 0=1,2. (3.3)

The method can be adapted to allow quadrilaterals that are not parallelograms in the
partition. In this case the basis on the reference square should be modified to include
the term zy just for these quadrilaterals; see [2, 5]

For the three-dimensional case with R = [—1,1]3, the minimum dimension of Qy is
six, and the choices

Q, = Span{l,z,y,z,0i(x) — 0(y),0(x) — 0s(2) } (3.4)
= Span{l,z,y,2,00(y) — 0e(2),0:(y) — ()}
= Span{l,z,y,2,0i(2) — 0u(x),00(2) —Ou(y)}, £=1,2,

have that dimension. The nodal basis element associated with the node (1,0,0) is
given by
. 1 1 1
wigo(e,y,2) = ¢ + 5o -

6 27 66,(1)

(204(x) — O4(y) — 0u(2)), £=1,2;

the other five nodal basis functions can be obtained by reflection and permutation.
Two other acceptable choices are given by

Q, = Span{l;z;,0(z;),i=1,2,3}, (3.5)
1 O(m) R }
= Span§ —x; + 0=1,2,3;1— —— Op(x; {=1,2.
P {2 20,(1) 9@(1); tle)
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The seven degrees of freedom associated with (3.5) are the values at the centers of
the faces and at the center of the element; for computational purposes, the basis
element associated to the origin is a bubble function (as shown above) and can be
eliminated without serious cost over what would be required with the corresponding
basis consisting of six functions.

For the rectangular nonconforming elements in two or three dimension, let

NCH=Qu(y), £=1.2.

The simplicial or rectangular nonconforming finite element space is then defined as
follows:

NCt = {v v == vlo, e NC},j =1, T; (&) = vi(&), V{5, k}}

with the degrees of freedom taken to be values at the midpoints ;;, of each faces of €25,
and in the case (3.5) with additional value at the center of the element.

Note that all of the simplicial and rectangular elements given above have the critical
orthogonality property [12]

(1,w; —wy)r,, =0, weNC" (3.6)

Moreover, in the rectangular case, QZ(I/%) is invariant under both reflection and per-
mutation of the coordinates. For £ = 2, if v; € ./\/'C;-L vanishes at a midpoint §; of the
boundary face I';, so does the approximate integral by quadrature at the two-point or
2 x 2-point Gauss rule on I';; this property is valuable in establishing optimal order
convergence of the numerical solution in L?(€2). Thus, all of these choices (for £ = 1
or 2) for a local basis are acceptable and are essentially indistinguishable with respect
to difficulty of assembly of the approximate problem and the solution of the associated
linear equations, though the numerical solutions will differ.

When N = 2, quadrilateral elements can be employed without difficulty; see [12]
for details which are equally applicable here.

3.2 The nonconforming Galerkin method

Let (-,-); = (-, ")a;, and set, for u,v € L*(Q) such that u;,v; € H' (),

() = — (%%) + ZJ: (%vu,w)j +iw <<%u,v>>r (3.7)
- S 1), (),

J
The nonconforming Galerkin approzimation of (2.1) is defined as u* € NC" such
that

an(u” v) = (f,v), v e NC. (3.8)



In (3.7), (-, -)) denotes an approximation of (-, -) on the boundary faces by a quadra-
ture rule. In order to define specific quadrature rules to follow, we shall assume that
f € L*(Q) so that the solution u of (2.6) to belong to H?(Q2). However, if the bound-
ary integrals are evaluated exactly, such an assumption will not be necessary, at least
in defining the nonconforming procedure (3.8). The first-order correct mid-point rule
will be employed for all three types of elements: simplices, 2-quadrilaterals, and 3-
rectangles. We shall also employ second-order correct rules, which will be different
depending on the type of element to be treated. For the two-dimensional cases, the
boundary faces are lines and the usual two-point Gauss quadrature rules will suffice.
For 3-simplicial elements, if T" is a boundary triangle, let ¢;, ¢ = 1,2, 3, be the midpoints
of the edges of T and set

3

(v, whp =) _(vw)(&)

i=1

17|
5

This quadrature rule ([6, p.183]) is exact on polynomials of degree two. For 3-rectangular
elements, we shall use 2 x 2 Gauss quadrature on each face of a 3-rectangular element
contained in I'.

To show uniqueness of the solution u” of (3.8), set f = 0in (3.8) and choose v = u”.
Taking the imaginary part in the resulting equation and using the fact that M > 0
and K; > 0, we immediately conclude that u" vanishes. Existence follows from finite
dimensionality.

3.3 Error estimates

Next, we shall derive error estimates for the procedure (3.8). Let broken norms and
seminorms be defined by

o = D lullng,  fu
J

Ju 2

3n,h = Z u iz,Qja |u|$n,h,,1" = Z u
J J

Also, set
]N\h’ = {)\ € Hj,kPo(ij) : )\jk € Po(ij); )\jk -+ /\kj = OV], k}

Let us define projections Il and P, by

IM: H*(Q) —» NC": (v —TIv)(€) =0, £=¢ or &
Py : H*(Q) — A" <%%—Povj,z> =0, z€Po(y), y=Tjporly;
J v

if a seven dimensional basis is employed on €);, add equality at the center of 2; to the
requirements for II.



Since IT reproduces linear functions on elements and P, reproduces constants on
faces, it follows from standard polynomial approximation results [4, 6] that

lo =Tl + 1Y llo = olf? ; + h* Y llo = Toll5; + 2 Y o= Tof o,
i i j

D
J

< Olv||aht, v e H*(Q). (3.9)

2

0,89

Denote by F(G,w) the boundary quadrature error:

E(v,w) = Z {{v, w)r, — «an»rj }-

J

The following bounds for the boundary quadrature errors will be used in the error
analysis that follows. If the subscript £ is used to indicate the order of the rule for
simplicial elements and both the index for @, and the order of the quadrature rule for
rectangular elements, it is shown in [12] that

|Ei(p,w)| < Chlglipalwlse, weNC", £=1or2, (3.10a)
|Ex(p,w)| < CR?|@lap0|wlon, w e NC". (3.100)
Also, it is shown in the appendix (§6) that
|Ei(p,w)| < Chll@llinllwllin ¢, weNCh £=1or2. (3.11)
Set
§=u—u" n = Iu — u".

Then, by (3.7) and the orthogonality of v € N'C" on any edge to constants,

: o
— 29 po —wE [ = h 12
ap(0,v) Ej <p o, Pouj,v>agj\rj w <pu, U) : veNC (3.12)

Note that since neither a(-,-) nor ax(-,-) is coercive, neither a(u,u) nor ay(u,u)
determines a norm. Consequently, the Strang lemmas do not hold (see [6, 23, 24]).
Therefore, we follow the argument of Schatz used by Douglas-Santos-Sheen-Bennethum
in [10] to analyze a similar problem using conforming finite element spaces. First, we
will obtain an estimate of ||n[/o in terms of ||7||i, and ||u||2, which in turn will imply
an estimate of ||d||o in terms of ||d]|1 5 and ||u||2. Then, a bootstrapping argument will
be applied to obtain L*(Q2) and H*(Q) error estimates in terms of ||u]|s.

Start by considering the dual problem to (2.1) to find ¢ € H?(Q2) satisfying

w? 1
p=—2yp_v.(2vy) =1, €q, 3.13
vm-Zu-v-(Ive)=n (3:130)
oy
a—y—zwmﬁ—o, zerl, (3.13b)



By standard elliptic regularity results for second order elliptic equations,
[¥]l2 < Cw)lInllo- (3.14)
First, by (3.6), for ¢; € Py(Q2;) we have

Inlly = (n, L")

_ 1 18¢> . <a >
= § —Vn, Vi, —§ =L —
(Kn, >+ (p n, %) _ <"’pay an\JrrM pw )

J

= ap(n, ) +iwE (;77, ¢> — Z <77, %g—qf>aﬂj\r (3.15)

J

. Q 10v;
= ap(n, ¥ +sz(—n, )— <n-—q-,——]—P¢-> :
n(n,9) P Z i — 4 p o, (L o0\

J

Next, for v € NC",
ah(na U) = ah(éa ’l)) - ah(u - Hua U) (316)

1 0u;
= Z<_ﬂ _P()U/j,v> —’[,(UE (gu:v) —ah(u—Hu,U).
— \p oy 8, \I P

From (3.15) and (3.16),
Il = anos =) = an(u~ M) i [ £ (2n,6) = B (Zuo)] (317
10 .
_Z<77g ~, w P0¢j>anj\r+z<;a—yj — Pyuj, vj _Q/Jj>agj\r.

j
Let us bound each term on the right side of (3.17). Thanks to (3.9) and (3.15),
v € N'C" can be chosen such that

[ —vllo + Al[¥ [v W2 —wvlor < O[$llsh® < Cllnlloh®.  (3.18)
Then,
lan(n, = v)[ < Cw)[lInllially {n, % —vhp ] (3.19)
< Cw)| <n ¥ —v)r| + w|E(n, w—v)|]
< C(w)[h||n||1h||nllo+|n|or|¢ ]
< C(w)h

by (3.18), elliptic regularity (3.14), the trace inequality, and (3.10).



The second term can be decomposed as follows:

ap(u — Mu,v)

:;(U—HU,L*U)]'+;< Hulg—z> +z‘w<<%(u—11uw>>F

= Z(u — Iu, L*v); + Z <u — Mu, L 0vs > (3.20)
F " p 3y 0Q;\T
_;<u—Hu, (j}(%—iw%) (wj—vj)>r'—sz<p(u—Hu) ),

J

where the boundary condition (3.13b) was invoked. Let us obtain an estimate for each
term in the right side of (3.20). First note that the argument given in [12] implies that

10
S (u—Tu, L)y + |3 :< — I, —ﬂ> < O|lull2||n]loh?. (3.21)
J J pov LN
The third term in (3.20) can be estimated as follows:
1o . a) >
u—1Iu, | —— —iw—) (Y; —v; 3.22
§jj< (b —5) =) (322

C(w)|u = Tulor [ = vll7 1l = vz < C@)lullsllnlloh®.

By (3.10), the last term in (3.20) can be bounded by

C(w)lullzlnlloh®?, €=1 or 2,
C(w) =2

Thus, (3.21)-(3.23) imply that the second term in (3.17) can be bounded as follows:

w|Eg(%(u — Mu),v)| < { (3.23)

|an(u — T, v)| < C(w)lnllo [llull A* + &] , (3.24)

where

ullgh, £=1or 2,
. { Jull 595

‘u|2,rh2, {=2.

Now, we continue to bound the other terms in the right side of (3.17). For the third
term, using (3.10), we have

iwEy (%n w) ‘ < O(w)

(w) ¢=1or2, (3.26)
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and

1wk (gu, v) <
p
Next, for properly chosen ¢, the fourth term has the bound (see [12])
10y,
5 (=55 = Py )
; p B\l
Finally, for the last term in the right side of (3.17) we have
1 0u;
‘Z<—7—POUJ,U] ¢j>
J I\l

By applying (3.20) and (3.24)-(3.29) in
Inllo < C(w) [

C(w)|ulyrlvlorh < Cw)||ull2l|nlloh,
C(w)|ular|vlorh® < C(w)|ulorlnlloh?, €=2.

< ClinllolInll1,nh-

< CllullzInlloh”.

(3.17), we conclude that

+€g}.

{=1or2,

(3.27)

(3.28)

(3.29)

(3.30)

Next, we bound ||d]|o using the triangle inequality, (3.30), and an approximation

property of II:

1610 < [nllo + [[u = Tullo < C(w)]
C@)h(lI8lln + [lu =

[[ullz + &]

(3.31)

n) + Blullz + ¢ < CW)[ASNI1n + h*[lull2 + &d-

Next, we wish to bound |[|6||; 5 in terms of ||§]|o and ||u||2. First, by (3.7) and (3.12),

1
pl/2

J

12

1612, < ‘

jh:‘ +Z( Vs, v(s)
e )« i)
+Z< v(svu—nu))] (%25’”>

min

m5

—(5

PRE

(3.32)

1 0u,;
+Z<—ﬂ —Pouj,n> — W <<g5,n>> —jwk ( 77)
T \P I \T; p r p
1 w? w?



The first four terms in the right side of (3.32) are bounded, for all positive ¢, as follows:

“ + Z ( V6, V(u— Hu))] (%25 5) - (%QM - Hu)‘ (3.33)

< C(W) [||5||o + [Ju = Iul[7 4]
With properly chosen ¢; € Py(§2;) in applying (3.6), the next term in the right side of
(3.32) satisfies the estimate

1 0u;
5 (35— o)
j p J 6Qj\1“j

n < Chllull2 |

12

i < Cw) [lI8llg + h[lull3]

(3.34)

—=— — Pouj,m; — q->
<pal/] e BQJ-\PJ-

] < Cllull3h? +£[18]1% 5.

The next two terms in the right side of (3.32) are bounded by using the trace inequality
and the approximation properties of II:

w <g5,(5> — jw <g5,u — Hu>

p r p r
< Cw)Ildllo

Finally, by (3.

11)
wk (guh,nﬂ
p

(3.35)

(w) [llalls + A*[lull2] +€lldl13 p-

the last term in the right side of (3.32) is bounded as follows:

< CO(w) (3.36)
< Clw)ll6fln =+ llull] TH6lln + ITu = wll1 4]
< Cw) [AlOIE, + A2 lullz] + elldlIE -
Substituting (3.33)-(3.36) in (3.32) gives, for sufficiently small £ and &,
() [l15]lo + Allull2] (3.37)
Next, apply (3.37) in (3.31) to obtain
18]l < C(w) [All8llo + A*[|ullz + =] , (3.38)
from which, for sufficiently small A > 0, it follows that
16]lo < C(w) [A*[lullz + ] - (3.39)
For the H'-error estimate, insert (3.39) into (3.37) to have
16]l.p < C(w) [Allull2 + & - (3.40)

We summarize the above results in the following theorem.
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Theorem 3.1 Let u and u" be solutions of (2.1) and (3.8), respectively. Then, for
sufficiently small h > 0 and under the inverse assumption on the partition €);,

C(w) [P*|lull2 + ] ,

C(w) [hllullz + &,

lu—u"llo <
lu—u"ln <

where € is defined in (3.25).

Remark 3.1 The inverse assumption is needed only to derive bounds for the error
associated with boundary quadrature. If the boundary integrals are evaluated exactly,
this assumption can be removed.

Remark 3.2 In the proof of the theorem above, no assumptions on the imaginary
parts of K and o were made, though the positivity of K; was used in the existence and
uniqueness theorem for the approrimate problem. A somewhat more complicated argu-
ment would have eliminated the need to require K; > 0; see [11]. Therefore, Theorem
3.1 holds also for purely real K and .

4 The Hybridized Procedure

To hybridize the nonconforming procedure in the manner of Fraeijs de Veubeke [13] and
Arnold-Brezzi [3], we employ A" as a space of Lagrange multipliers, associating elements

~ ~ 1 Oul
A e AP with — Ou

new space

P (&) on T We also localize the space N'C" by introducing the
i

NCt ={ve L’(Q): v|o, € NCI}.

The hybridized nonconforming procedure then consists in finding (", \*) € NC" | x
A" such that

= e R )
+Zk: <<Xh, 90>>ij =(f,9). peNC, (4.1a)

> (o, i), =0, f¢ A", (4.1b)

The following lemma is immediate.

Lemma 4.1 Ifu" € NC" |, then @" € NC" if and only if

S (0., =0, oein
7.k
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The following theorem gives an existence and uniqueness result for the procedure
(4.1).

Theorem 4.1 Problem (4.1) has a unique solution which, by Lemma 4.1, coincides
with that of (3.8).

Proof. Since (4.1) is ﬁnite dimensional, it suffices to show uniqueness. Thus, set
f =01in (4.1a), choose ¢ = 4" in (4.1a), and use (4.1b) to conclude that

(A +iB)a",u") + Z (%Vﬂh, Vah) +{((C +iD)a", ")) = 0. (4.2)
j
Taking the imaginary part in (4.2) gives
(Ba", a") + <Duh h>>r =0,

so that @" = 0. Consequently, (4.1a) reduces to

Z <<Xh, 90>>F =0, peNC",. (4.3)

Ji.k ik

Next, we show that \» = 0. Let (); be any element in the partition having a common
face I';, with another element Q* Then, choose ¢ = ¢ € NC", such that ¢ is
supported in Q;, G(&) = )\Jk on I'jx, and the other degrees of freedom needed to
determine ¢ vanish. Then, for any of the suggested quadratures, from (4.3) we conclude

that /\*,c = (; thus, i jk vanishes on all interior boundaries I' ;5. This completes the proof.
O

5 A Domain Decomposition Iterative Procedure

5.1 The iterative procedure

Consider the decomposition of problem (2.1) over the partition {;}. For j =1,...,J,
find u;(z,w) € H(;) such that

i) _K({jw) uj(z,w) — V- (%Vuj(x,w)> = f(z,w), v €Q;, (5.1a)
ii) %Z;w) +iwa(z,w)u;(z,w) =0, zely, (5.1b)
subject to the interface consistency conditions
uj(z,w) = ug(z,w), z € L', (5.2a)
el L 52
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Instead of (5.2), we shall impose consistency through the Robin transmission conditions
1 8u] 1 Ouy

kU = ——a— + Bk, € ', C 09y,
p 81/]k + /Bjk:u] pal/]c] + 6]kuk) X jk J
1 Ouy 1 Ou;
pa + Bjrur = p8 + Bjruy, x € ['y; C 082,

with 3, being a complex—valued function defined on the interfaces I'jj.

Since the object of the domain decomposition procedure is to localize the calcula-
tions, we motivate our iterative procedure by first defining one at the differential level
in the following fashion: Given u§ € H'(Q;), find u} € H'(;) such that

1 «
2 .
—w | ——u”, Vui,V —|—zw<—un, > 5.3
(K(,’L‘,CLJ) ! SO)] ( SO)] P ! 4 T ( )

J
10u"!
+Z<[ it B — 1)] ,90> =(f,9);, e€H(Y).
P OUVgj Tk
We shall not pursue an analysis of this iteration but will, instead, define a corresponding
domain decomposition iteration for our nonconforming method. Let us introduce a new

set A" of Lagrange multipliers A%, associated with the fluxes __8—(§Jk) at the mid-
P OVjg

points &; of the interior faces I';;:
{)‘h )‘h|1“ ik /\?k € PO( Jk) Jk}
Note that A, and Akj are considered to be distinct. The iterative procedure is defined

as follows. Choose ( ?0, )\?ko, /\h 0) € ./\/'C;-L X Aji x Ay; arbitrarily. Then, for all {jk},

compute (uhn, )\;L,cn) eN C;-’ X Aji as the solution of the equations

1 1 o
—w? <7u’?’", go) + (—Vu’-"", ngJ) + iw <<—u’?’", g0>> (5.4a)
K(Iaw) ! j p ! j P ! r;

+Z<<A?1;",90>>F = (£, 0> p € NCY, J
k

jk
At = =X+ Bl ™ (Ek) — up™" " (Eky)] om Ty (5.4b)

Equation (5.4a) is useful in the analysis below, but it is implicit in the variable u™""
For computational purposes, (5.4a) should be replaced by

1 h,n 1 hn
d (K(:v,m“f ’g”)j " <7av“j ’W)j
+iw <<%u;m, <p>>rv + Z <<5ij?;gn(§jk): €0>>ij (5.5)

= (1) + . <<AZ;-" P+ By l(fjk), 90>>F , peNC,
k

jk

after which (5.4b) should be executed.
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5.2 Convergence of the iterative procedure

If @* = @t|o, and My = At|p,,, we demonstrate the convergence of (u ’?",)\;‘k") to

(u ;‘, )\;’k) as n tends to infinity. For notational simplicity we shall take 3;; = Br + i1,

Br 2> 0, Br > 0; the general case is a trivial extension.
First, note that (", X ) satisfies the local equations

Uy Ajk
2 L, . @ p
—w | ———=u",p Vu Vo | +iw({ =y, ¢
+ 3 (M w}}u = (f.9)i, peNCL. (5.6)
k J
Also, since 5\?,6 = —S\Zj, (4.1b) is equivalent to
Ny = =Xy + Bla5 (§x) — @(&y)]  on L. (5.7)
Set
n n ~ n _ \hn Y
e; = u? — u? on 25, Wik = Aji — /\;?k on I'j.

From (5.4)-(5.7), we obtain the error equations for the iteration:

1 1 o
—w? ( e, > + (—Ve'?,V ) + fw <<—e’?, >>
K(xaw) ¥ j p ! v j P ¥ r;

J

T Z <<'u?k’ S0>>ij =0, pc NC?; (5.8)
k
and
Wi = —piy '+ Blef (Ee) — ef ()], En € T (5.9)

Choose ¢ = €7 in (5.8) and take the imaginary part in the resulting equation to obtain
n n 1 n n n
Re " (5, = (40— (595 9) (€,
k
Y (e, = —(Bef, &)~ (Def &), -
k

Since, for any pair of complex numbers p and g,

Ip £ Bq|* = [p|* + |B8]*]¢|? £ 2[BrRe(pq) + BrIm(pq)],

ZZ | £ Bel (&) 13 = Z [

Jj ok Ji.k
1
roin S |-+ (195, ) + 0
J

25,3 (B )+ (), |

J

2 T B E ] (510)
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Set
R* = R(e", ") = > > i — B (En) o, (5.11)
j k
Then, (5.9) and (5.10) imply that
R" = ZZ st + Ber ()3
.~
= > [m Yor,, + 18Pl ) B
k,j
—25RZ[ (et ep ) + (%Vez_l,VeZ_l> +<<Cez_1,ez_1>>rk}
k
28 3 [(Bep e e+ (Der e, |

k
= - [t (v v (gt
r J

15 Y (B e+ (D e, | < B (5.12)

J

provided that B;Bmin — BrRAmax > 0. Therefore, under this condition on the coefficient
B,

—(Ae;-”_l,e;-”_l)j + (%Vegn_l,Ve;”_l) + <<Ce;-”_1,e;-”_1>>r_]
j J

_4ﬂ]ZZ[(Be§”—1’ : i+ <Dem 1’ ;n 1>> ]

and the sequence {R"} converges. From the assumed relation 5;Bmin — BrAmax > 0
and the positivity of C and D, we can conclude that e} tends to zero when n — oo.
Note that the convergence of { "} also implies that |17, | is bounded independently of
n, j, and k. Then, choosing ¢ in (5.8) equal to Ky, at §x and zero at the other nodes
on €; shows that p7, — 0. Therefore, R" — 0 as n — oo.

5.3 An estimate for the spectral radius of the iterative proce-
dure

We shall give a second, and more precise, demonstration of the convergence of the
iterative procedure (5.4) by showing that the iterations approach the fixed point of an
operator T} defined as follows. Given f € L?(Q), let Ty : NC", x A" — NC", x A" be

17



the affine map such that for any (p,6) € NC*, x A", (u,\) = T(p,0) is the solution

of the equations
1 1 o

—w? <7u-,<p> + (—Vu-,Vgo) + iw <<—u-,g0>> 5.13a

K(z,w) ") \p 7 j p T, (>:13)

+ Z {Bu;(&r), Sp»rjk =(f,9); + Z {(Or; + Bor (&) QD»FM , Q€ /\/’C?,
k k
Ajk = =0k + Blu;(&n) — pe(&e)]ls &k € Ty (5.13b)

Lemma 5.1 The pair (u, \) is a solution of (5.6)-(5.7) if and only if it is a fized point
of Tr. If (u, A) is a fized point of Ty, then u; (k) = ug(&x) and Ajy, = —Aji for all j, k.

Proof. Let (u, \) be a fixed point of T}. By (5.13),
9 1 1 ) !
—w <mug‘; @)j + (;Vuj, V@)j + w <<;uj, 90>>Fj + Zk: ik, @D, = (5 0);5
so that (u, \) satisfies (5.6). Next, from (5.13b),
Ajk = =Mk + B (Er) — ur(&r)), (5.14)
and (5.7) is satisfied. Also, from (5.13b),
Aej = =g + Blur (&) — uj () (5.15)

From the last two equations we conclude that u;(&x) = ux(&x) and from (5.14) we
have \jr = —Aji, as desired. This proves one of the conclusions. The other implication
follows immediately from the fact that any solution of (5.6)-(5.7) is a fixed point of T’.
This completes the proof. O

Next, let (u®, A\°) = Ty(p,0) be the solution of (5.6)-(5.7) for f = 0, so that
Tr(p,0) = To(p,8) +T4(0,0) and (p, §) is a fixed point of T if and only if

Tt(p,0) = (p,0) = To(p. 0) + 1¢(0,0),
so that a fixed point of T} is a solution of the equation
(I — To)(p,9) = T(0,0).

In the analysis of these fixed points and in the remainder of the paper, the following
notation is convenient:

max Q
hmax = max{hmaX(Qj)}a h'min = min{hmin(Qj)}ﬂ C = max h ( ])
J J

O min() (5.16)

where hpyin(€2;) and hmax(€2;) denote the maximum diameter of 2; and minimum di-
ameter of a ball inscribed in ;.
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Theorem 5.1 Assume that B is chosen such that B;Bmin— BrAmax > 0, Br >0, B >
0. Let p(Tp) be the spectral radius of Ty. Then there exists a positive constant M =
M (B) such that

1 2

PZ(TO) =1- i = Y>

consequently, the iterative procedure (5.4) is convergent with an error in the n'*-iteration
bounded by O(v§). Moreover,

’Yg S 1-— Cthin;
with C' > 0 being a computable constant depending only upon the medium and (3.

Proof. Let 7 be an eigenvalue of T with associated eigenvector (u,A), so that

R(To(u, N)) = [y[*R(u, ), (5.17)

and, by (5.12),

R(To(u,\)) = R(u,\) — 45RZ

(Aug, uj); ( Vuj,Vu]) «C“J'a“j»rj]
_ 45,2[(3%,%) —l—((DuJ,uJ))F] (5.18)

Combining (5.17) and (5.18) gives

|7‘2:1 - 4ﬁRZ
- 15 S [(Bus )y + (D] /R

J

<1 — 4min (5,Bmin_5RAmax,f—R) [||u||§+ ||Vu||§,h} / R(u,)), (5.19)

ma.

Au]’ “J ( Vuy, VU’]) _ + «Cuj, Uj»rj
J

/R

so that |y| < 1.
Now, R(u, ) will be estimated in terms of the sizes and shapes of the subdomains
to obtain a rate of convergence of the iteration (5.4), which can be interpreted as a

domain decomposition procedure at the level of individual elements.
It follows from (5.13) that

1 1
—w? (7%, ) + <—Vu-,V ) + w << Us, >> + ,
K(z,w) jr P ; P jr» VP ; P) J Z Ajks> #

=0, peNC. (5.20)
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Let €2; be any element and let I'j, be an interior face of €2; common with another
element Q. Choose ¢ = ¢ € NC} in (5.20) such that $(&5,) = A3, on I3, and all
other degrees of freedom needed to determine ¢ vanish. Scaling arguments show that

||95||§,Qj < C hmax(92 <<)‘1k’)‘;'k>>r* ’
hmax(

||V95||(2),Qj < Cﬁ (N M) rs, (5.21)
Thus,
o) = (=) - (Lvu,ve (5.22)
ik Ak s, = K(x,w)u],go RV uj, V@ j _

1/2
i) V5| [ €050 500, |

from which we can conclude that, for all elements €2;,

< Chmax(szj)lﬂ[

5 (A Ay < s (0) s, + e ) Tl | (529

It was shown for rectangular case in [12] that

(ugy iy, < Chunin() 7 Mlusllg g, (5.24)

for the triangular case, the estimate follows from the triangle inequality and the inverse
inequality combined with (3.11). Combining (5.23), (5.24), and the inverse inequality
IVugllog; < Chumin() ™ [lujllog, gives

Ru,N) = D03 o= Bus(&elin, <23 [Parlir, + 181 (i uidr, |
k Jik

< CZh;%nmj)[hmx(Qj)hmm< ) (1l 0, + Aain(2) 21 Vil g, )
J

n w\?nujna,g,.]

i D [ (a2 in() + 1) s B, + €IV 5l 0,
J

< Chgiymax (b, + 181%,€) [lull + IVull§a] » (5.25)

with Amax, Pmin, and ¢ as defined in (5.16).
Now combining (5.19) and (5.25) we conclude that

4min (BrBmin — BrAmax; Br/ Pmax)
Cmax (hZ,. + |8/ ()

< Ch}

p2(TO) < 1- hmin =1- N(/B)hmin’
as desired. This completes the proof. O
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6 Appendix

Here, we prove an estimate for the boundary quadrature error employed in the deriva-
tion of the error estimates for the procedure (3.8).

Lemma 6.1 Assume the partition {;} to be quasiregular. Let ./\/'C? denote the non-
conforming space corresponding to the use of 0, in the definition of its local basis. Then,

for v, € NC,
|Ee(p, )| < Chllol|1nll¥]

Proof. Let F be a face (or a side) of €2; of diameter h, and let ¢,9 € ./\/'C?.
Consider first the case £ = 1. Then,

(o, ) r — (o, ) p

1h, L=1or2.

(@, ) — (EVE)|F|| = [{¢ — ¢(€), v — ¥(€)) ]
Ch2|€0|1,FW} 1,F
CR|lllya lellso, v
Chllells a1 ll0;,

where the orthogonality property (3.6), the quadrature errors on F, a trace inequality,
and an inverse inequality were invoked. Therefore, in general, for ¢, € N C?,

(e ¥)r — (o, V) pl < Chll@llally

so that the lemma follows for £ = 1.
For ¢ = 2, let F' denote the face z = 1 of the reference cube and decompose ¢ and
¥ as follows;

1/2
2,0,

1/2
AL

ININCINA

|1 nll%]]1,m,

p=¢1+¢2, @1 €Span{l,z,y}, ¢ € Span{fa(x),6a(y)},
with v, and 1y defined analogously. Then,

<90: w>F = <(pla 1/)1)F + <Q02’ w2>Fa

since the two subspaces are orthogonal. By the construction of 6y,

(o, VN = (1, V1) p
so that

<(pa w>F - «(pa w»F = <§025 7ﬁ2>F

Now, the best linear interpolants of ¢y and 1, are identically zero; hence,

(o, V) r — Lo, VD i | < Clpalor|ie (0

again applying the orthogonality of the two subspaces. Scaling and a trace inequality
lead to the conclusion for £ =2. O

o,7|V2lo,r < Clplo,r|¥|o,r,
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