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Abstract 

The 2-(phenyl-hydrazono)-succinic acid dimethyl ester compound was synthesized by reacting 

phenylhydrazine with dimethylacetylene dicarboxylate at room temperature and characterized by 

elemental analysis, infrared, Raman, 1H and 13C NMR spectroscopies and mass spectrometry. Its 

solid state structure was determined by X-ray diffraction methods. The X-ray structure 

determination corroborates that the molecule is present in the crystal as the hydrazone tautomer, 

probably favored by a strong intramolecular N–H···O=C hydrogen bond occurring between the 

carbonyl (–C=O) and the hydrazone –C=N–NH– groups. A substantial fragment of the molecular 

skeleton is planar due to an extended -bonding delocalization. The topological analysis of the 

electron densities (Atom in Molecule, AIM) allows to characterize intramolecular N–H···O 

interaction, that can be classified as a resonant assisted hydrogen bond (RAHB). Moreover, the 

Natural Bond Orbital population analysis confirms that a strong hyperconjugative lpO1→ 

*(N2–H) remote interaction between the C2=O1 and N2–H groups takes place. Periodic system 

electron density and topological analysis have been applied to characterize the intermolecular 

interactions in the crystal. Weak intermolecular interactions determine the packing and the 

prevalence of non directional dispersive contributions are inferred on topological grounds. The 

IR spectrum of the crystalline compound was investigated by means of density functional theory 

calculations carried out with periodic boundary conditions on the crystal, showing excellent 

agreement between theory and the experiments. The vibrational assignment is complemented 

with the analysis of the Raman spectrum. 
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1-Introduction 

Hydrazone compounds having the general formula R1R2C=N–NHR3 (R= alkyl or aryl 

groups), are substances formally derived from aldehydes or ketones by reaction with hydrazine 

or a hydrazine derivative. The hydrazones are well-known compounds for which methods of 

preparation and structural properties [1] as well as biological aspects [2] were reviewed recently. 

In particular, these molecular organic compounds have received considerable attention as 

nonlinear optical materials due to their potentially high nonlinear effects and rapid response in 

electro-optic devices [3, 4]. For example, the second harmonic generation (SHG) efficieny of 

benzaldehyde phenylhydrazone was evaluated to be higher than that of urea [5]. It was 

postulated that the large value of second order hyperpolarizability displayed by this kind of 

molecules is associated with an Internal Charge Transfer (ICT) process between electron-donor 

to electron-acceptor groups, facilitated by an extended conjugated  system. In this direction, a 

family of phenylhydrazono compounds containing the curcumin group was prepared and its 

structural and electronic properties were determined, showing that the frontier orbital energies 

are dependent on the electron-donor or electron-withdrawing nature of the substituent groups [6]. 

Tautormeric equilibria of azo-hydrazone compounds was reported very recently, the azo-

enamine tautomer being the predominant form in the solid state, whereas the hydrazone-imine 

form is the preferred form in solution [7]. Structural properties of salicylhydrazone and 

aroylhydrazones derived from nicotinic acid hydrazide have been studied [8], the co-existence of 
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two tautomeric forms was determined for the solid substance, as well as for highly concentrated 

solutions, whereas only the hydrazone tautomer is present in diluted solutions [9, 10]. It is 

anticipated that the formation of inter- and intra-molecular hydrogen bonds strongly influence 

these equilibria [11]. 

It is an interesting observation that hydrazone species bearing a carbonyl group, i.e. R1= 

acyl radical (RC=O, see Scheme 1), are scarcely studied, mostly because the general method for 

the synthesis of hydrazones failed when the hydrazine is in presence of an electrophilic 

substituent as the C=O group. Examples include a series of N-acylhydrazone compounds with 

antinociceptive and anti-inflammatory activities synthetized by Barreiro et al. [12], for which the 

conformational properties in solution were also determined by using NMR data [13]. Regarding 

structural aspects, the configurational and conformational landscape of 3-oxo-2-

(phenylhydrazono) derivatives is influenced by the environment, and a complex interplay 

between inter- and intra-molecular hydrogen bond interactions was observed in the crystalline 

structures [14]. Acyl hydrazone compounds bearing also the tetrahydrocabazole group were 

recently synthesized by Sarıgöl and coworkers [15] and the conformation adopted by the C=O 

double bond and the hydrazone group was investigated by using quantum chemical calculations. 

More recently, the tautomeric equilibria of azo-hydrazones dye compounds and their Ni(II) and 

Cu(II) metal complexes were reported [16-18]. 
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Scheme 1. Representation of acyl substituted hydrazones. 

 

Prompted by this versatile tautomeric and conformational equilibria displayed by 

hydrazono-carbonyl compounds, we became interested in the study of 2-(phenyl-hydrazono)-

succinic acid dimethyl ester (R= CH3O–, R2= CH3OC(O)CH2–, R3= C6H5–, see Scheme 1). 

Quite recently, this species was postulated as an intermediate in the synthesis of 3,5-di-

functionalized pyrazoles [19]. The aim of this work is to provide a comprehensive structural 

study for this molecule, including the detailed description of the intramolecular and 

intermolecular interactions in the solid phase, and to determined how these properties influence 

the vibrational properties. Thus, the preparation, isolation and full characterization is presented, 

along with the study and analysis of its molecular structure in the crystalline state as determined 

by single-crystal X-ray diffraction analysis and vibrational spectroscopic techniques (FTIR and 

FT-Raman). The most salient conformational, tautomeric and configurational properties for the 

isolated molecule have been studied by using quantum chemical calculations at the B3LYP/6-

311++G(d,p) level of approximation. Vibrational frequencies and modes were also calculated at 

the B3LYP/6-31G** level at the  point of the periodic system, after optimization of all atom 

positions with cell parameters kept at the experimental values. Furthermore, Natural Bond 

Orbital (NBO) [20] population analysis has been performed in order to evaluate the donor 

acceptor intramolecular interactions. Since the large number of sites potentially able to establish 

C–H∙∙∙O intermolecular interactions makes the system particularly suitable for studying the 

directional characteristics of this kind of weak interactions and their contribution to crystal 

packing, we decided to perform an AIM topological analysis of the crystal electron density. 
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2-Experimental 

2.1-General- Melting points were recorded using a digital Gallenkamp (SANYO) model MPD.BM 

3.5 apparatus and are uncorrected. 1H and 13C nuclear magnetic resonance (NMR) spectra were 

determined in CDCl3 at 300 MHz and 75.4 MHz respectively using a Bruker spectrometer. Mass 

Spectra (EI, 70eV) on a gas chromatography–mass spectrometry (GC-MS) instrument Agilent 

technologies, and elemental analyses were conducted using a LECO-183 CHNS analyzer. Solid-

phase (in KBr pellets) infrared spectra were recorded with a resolution of 2 cm–1 in the 4000-400 

cm–1 range on a Bruker EQUINOX 55 FTIR spectrometer. The FT-Raman spectra of the 

powdered solid sample were recorded in the region 4000-100 cm–1 using a Bruker IFS 66v 

spectrometer equipped with Nd:YAG laser source operating at 1.064 m line with 200 mW power 

of spectral width 2 cm–1. 

2.2-Synthesis of 2-(Phenyl-hydrazono)-succinic acid dimethyl ester (3). In a 100 mL two neck 

round bottom flask, fitted with a reflux condenser, hydrazine (0.22 g, 2 mmol) and dimethyl 

acetylene dicarboxylate (0.28 g, 2 mmol) were stirred for two hours in 10 mL (1:1) mixture of 

toluene and dichloromethane. The progress of the reaction was monitored by thin layer 

chromatography. After the completion of the reaction, the solvent was removed under reduced 

pressure the residue was extracted with ethyl acetate and water, the organic layer was dried over 

anhydrous sodium sulphate and concentrated. The crude product was recrystallized from aqueous 

ethanol. Yield 73%, mp 81°C. FT-IR (ν cm−1): 3268, 3049, 2956, 1739, 1688, 1562, 1437, 1351, 

1198, 1164, 1151, 1145, 1000, 791, 691 (see section 3.4 for details). 1H NMR (300 MHz, 

CDCl3): δ 12.2 (br s, 1H, NH), 7.34-6.91 (m, 5H, Ar H), 3.83 (s, 3H, CO2CH3), 3.74 (s, 3H, 
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CO2CH3) 3.56 (s, 2H, CH2); 13C NMR (75 MHz, CDCl3): δ 171.4 (C=O), 163.5 (C=O), 142.9 

(C=N), 129.3 (ArC), 122.5 (ArC), 121.8 (ArC), 113.9 (ArC), 52.0 (CO2CH3), 51.7 (CO2CH3), 

38.9 (CH2). The 1H and 13C NMR spectra are provided as supplementary material (Figures S1 

and S2, respectively). Anal. Calcd for C12H14N2O4: C, 57.59; H, 5.64; N, 11.19; %; Found: C, 

57.63; H, 5.61; N, 11.23 %. EIMS (m/z): 250.1 (53%). 

2.3-Computational details. Molecular quantum chemical calculations have been performed with 

the GAUSSIAN 03 program package [21] by using the B3LYP DFT hybrid methods employing 

Pople-type basis set [22]. The valence triple- basis set augmented with diffuse and polarization 

functions in both the hydrogen and weighty atoms [6-311++G(d,p)] has been used for geometry 

optimization and frequency calculations. The calculated vibrational properties corresponded in 

all cases to potential energy minima for which no imaginary frequency was found. The Potential 

Energy Distribution PED analysis has been computed using the VEDA4 program [23, 24]. 

Periodic calculations were performed at the B3LYP/6-31G(d,p) level with Crystal98 and 

Crystal09 codes [25, 26]. The topology of the resulting electron density was then analyzed using 

the TOPOND98 program [27]. The whole vibrational data are given as supplementary 

information in Table S1. 

2.4-Crystal structure determination. Data were collected on a STOE IPDS II two-circle 

diffractometer with a Genix Microfocus tube with mirror optics using MoKα radiation (λ = 

0.71073 Å) and were scaled using the frame scaling procedure in the X-AREA program system 

[28]. The structure was solved by direct methods using the program SHELXS [29] and refined 

against F2 with full-matrix least-squares techniques using the program SHELXL-97 [29]. H 

atoms bonded to C were refined using a riding model and the H atom bonded to N was freely 
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refined [28]. Relevant crystallographic data are given as supplementary information in Tables 

S1-S6. Full crystallographic data have been deposited with the Cambridge Crystallographic Data 

Centre (CCDC 896977). Enquiries for data can be directed to: Cambridge Crystallographic Data 

Centre, 12 Union Road, Cambridge, UK, CB2 1EZ or (e-mail) deposit@ccdc.cam.ac.uk or (fax) 

+44 (0) 1223 336033. 

 

3-Result and discussion 

The title compound 2-(phenyl-hydrazono)-succinic acid dimethyl ester was synthesized 

by slight modification of the literature method [19] using the general Cope-type intermolecular 

hydroamination of acetylene and hydrazine derivatives reported by Cebrowski et al. [30]. In the 

present case, equimolar quantities of phenyl hydrazine and dimethylacetylene dicarboxylate 

(DMAD) in dry toluene and dry dichloromethane, react at room temperature, as outlined in 

Scheme 2. The crude product was recrystallized from aqueous ethanol. 

 

Scheme 2. Synthesis of 2-(Phenyl-hydrazono)-succinic acid dimethyl ester. 

 

The 1H-NMR (300 MHz, CDCl3) data of (3) displayed characteristic deshielded singlet at 

δ= 12.2 ppm for –NH proton, two proton singlet for –CH2– at δ 3.56 ppm, three proton singlets 
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at δ 3.74 and 3.83 ppm for methyl protons of esters –CO2CH3 and –CH2CO2CH3, respectively, 

besides the aromatic protons in the range δ= 6.97-7.34 ppm. In the 13C-NMR data of (3) signal 

for –CH2– carbon at δ 38.9 was observed while those at δ= 51.7 and 52.0 ppm correspond to the 

ester methyl carbons. Additionally, the aromatic carbons appeared at δ 129.3, 122.4, 121.8, and 

113.9 (ipso C) and the δ N=C at 122.4 ppm and carbonyls of two ester functionalities were noted 

at δ=163.6 and 171.4 ppm, respectively. The mass spectral (m/z= 250.1, M+) and elemental 

analytical data was in full agreement with the assigned structure. 

 

3.1-Tautomerism, configurational and conformational landscape. 

The prototropic enolimine–ketoenamine tautomeric and the configurational E/Z 

configurational equilibria inherent to Shiff bases, also applies to hydrazone compounds. Miljanić 

et al. demostrated a complex tautomeric behaviour of aroylhydrazones depending on the state of 

the sample –DMSO solution or solid- [9]. The position of equilibrium depends considerably also 

on the nature of substituent groups on the hydrazone moiety [31-33]. In the present case, the 

relative stability of main tautomers and configurational isomers have been computationally 

determined by performing full geometry optimization and frequency calculations at the 

B3LYP/6-311++G(d,p) level of approximation. Three main tautomeric forms were considered, 

as shown in Figure 1 along with the relative electronic energies (corrected by zero point energy) 

computed for each form. The hydrazone (ketoenamine) form is strongly favored over the enol-

azo (enolimine) form by ca. 38.7 kcal/mol. A third tautomeric form was also considered, which 

can be formally related with the migration of hydrogen from carbon to nitrogen to form the 

enamine tautomer [34]. The later is computed to be higher in energy by ca. 9.5 kcal/mol than the 
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hydrazone form. It is plausible that the formation of the title compound is mediated by a 

tautomeric equilibria between these last two forms. 

Depending on the relative orientation of the substituent around the N1=C1 double bond, 

two different configurational isomers, e.i. E and Z, are feasible for the hydrazone form. The E 

form is most stable than the Z one by 4.4 kcal/mol. The E form allows for the stableshing of a 

pseudo-six-membered ring between the ester and hydrazo groups, favoring a C2=O1···H–N2 

intramolecular hydrogen bond interaction. 

Finally, different conformations of the hydrazo-E form have been considered, by rotating 

the C1–C2 single bond, i.e. by changing the mutual orientation of the C=O and C=N double 

bonds. Two conformations resulted to be minima in the potential energy surface, characterized 

by the O1/C2/C1/N1 dihedral angle adopting values of 0º and 180º, corresponding to the syn and 

anti rotamers, respectively. The syn conformer is preferred over the anti one, which is computed 

higher in energy by 3.8 kcal/mol. 

It is worthy to notice that the molecular structure of the most stable form obtained after 

this computational analysis coincides with the experimental molecular structure derived by X-ray 

crystallography discussed in the next section. Thus, the obtained geometrical parameters and 

vibrational data will be discussed in the following sections. 
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Hydrazo E syn (0.00) 

 

Hydrazo E anti (3.82) 

 

Hydrazo Z (4.42) 

 

Enol-azo (38.67) 

 

Enamine (9.46) 

Figure 1. Molecular structures optimized [B3LYP/6-311++G(d,p)] for different tautormers, configurational isomers and conformers 

of the title species. Relative energies values (E°, in kcal/mol) are given. 
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3.2-Molecular and crystal structure. 

Crystals suitable for X-ray crystallography were obtained by recrystallization from 

ethanol. The title compound crystallizes in the triclinic centrosymmetric space group (P-1) with 

one molecule in the asymmetric unit. The molecular structure observed in the crystal corresponds 

to the hydrazo-E-syn form computed as the most stable form for the vacuum isolated molecule. 

An ORTEP drawing of the molecule is shown in Figure 2. Details of crystallographic data 

refinement are reported in Table 1. The main structural parameters resulting for the molecule are 

collected in Table 2, where the corresponding values obtained from quantum chemical 

calculations are also reported for comparison. There is in general good agreement between both 

sets of structural data, the values being within expected ranges [35]. The overall structure was 

found to be similar to that of dimethyl 2-[2-(2,4,6-trichlorophenyl)hydrazin-1-

ylidene]butanedioate, published recently [36]. 

 

Figure 2. Crystal structure of 2-(Phenyl-hydrazono)-succinic acid dimethyl ester (3). 
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Table 1. Crystal data and structure refinement for (3). 

Empirical formula  C12H14N2O4 

Formula weight  250.25 

Temperature  173(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.748(2) Å = 87.02(3)°. 

 b = 7.930(3) Å = 78.35(3)°. 

 c = 12.871(4) Å  = 67.51(3)°. 

Volume 623.0(4) Å3 

Z 2 

Density (calculated) 1.334 Mg/m3 

Absorption coefficient 0.101 mm-1 

F(000) 264 

Crystal size 0.37 x 0.24 x 0.04 mm3 

Theta range for data collection 3.33 to 25.77°. 

Index ranges -8<=h<=8, -9<=k<=9, -15<=l<=15 

Reflections collected 6803 

Independent reflections 2325 [R(int) = 0.1152] 

Completeness to theta = 25.00° 99.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9960 and 0.9634 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2325 / 0 / 167 

Goodness-of-fit on F2 1.002 

Final R indices [I>2sigma(I)] R1 = 0.0763, wR2 = 0.1852 
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R indices (all data) R1 = 0.1236, wR2 = 0.2101 

Largest diff. peak and hole 0.284 and -0.312 e.Å-3 

 

Table 2. Experimental X-ray and calculated [B3LYP/6-

311++G(d,p)] selected geometric parameters (Å and º) of the central 

hydrazone group for (3). 

Parameter Exp Calc  Parameter Exp Calc 

C21–N2 1.372(5) 1.402  C21–N2–N1 119.2(3) 121.3 

N2–N1 1.347(3) 1.317  N2–N1=C1 121.0(3) 122.1 

C1=N1 1.295(4) 1.303  N1=C1C2 125.1(2) 123.1 

C1–C2 1.469(4) 1.472  C1–C2=O1 124.8(3) 124.9 

C2=O1 1.219(3) 1.223  O2–C2=O1 123.3(3) 122.6 

C2–O2 1.336(4) 1.347  C1C4C5 112.9(3) 113.4 

C1–C4 1.513(4) 1.504  C4C5=O3 127.1(3) 126.3 

C4–C5 1.485(5) 1.521  O4–C5=O3 121.2(3) 123.6 

C5=O3 1.203(4) 1.205  N1=C1–C2=O1 3.6(6) 2.4 

C5–O4 1.341(3) 1.350  N1=C1–C4–C5 103.7(4) 108.8 
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The molecular conformation is stabilized by an intramolecular N–H···O=C hydrogen 

bond [37] [d(N2···O1)= 2.693(4) Å, (N2–H···O1)= 142º(4)] which forms a pseudo-six-

membered ring. One of the ester residues is in plane with the phenyl hydrazon moiety (r.m.s. 

deviation for all non-H atoms 0.060Å ) whereas the other one is significantly twisted (80.6º) out 

of this plane. The molecules lie in planes parallel to (1 4 4), but no pi-stacking is observed 

between the aromatic rings. There are, instead, N···N short contacts of 3.314 and 3.364 Å 

between molecules related by (1-x,1-y,1-z). 

 

3.3-Molecular and crystal structure and topology of the electron density. 

In order to characterize the intermolecular interaction network that could be expected, 

positions of hydrogen atoms were optimized at the B3LYP/6-31G(d,p) level and then an AIM 

topological analysis was performed on the resulting electron density. Relevant topologic and 

geometrical parameters of all symmetrically nonequivalent interactions are reported in Table 3. 

As expected, if the value of the electron density at the critical point or the positive eigenvalue of 

the Laplacian are taken as indicators of their strengths [38], C–H∙∙∙O interactions in the title 

compound spread in a very broad range of interaction energies. On the other hand, there is a 

rather direct correlation between interaction strength and geometry, directionality being no 

evident even for some of the strongest ones (schematically shown in Figure 3), an indication that 

electrostatic contributions are not dominant. 
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Figure 3. Schematic representation of the most relevant C–H∙∙∙O interactions. Between 

parenthesis symmetry operation generating the neighbor molecule (i: -1+x,y,z ;  ii: 1-x,-y,1-z ;  

iii: 2-x,1-y,-z ; iv: 2-x,-y,-z ; v: 1-x,1-y,-z ; vi: -x,1-y,1-z ; vii: 2-x,-y,1-z ; viii: -1+x,1+y,z ; ix: 1-

x,1-y,-z ). 

 

Table 3. Topological parameters (atomic units) of the crystal and isolated molecule (3,-1) critical 

points (electron density (ρ), Laplacian (2
ρ) and positive curvature (3)) and geometrical 

parameters (Å and °) of the corresponding interactions. 

 ρ 
2
ρ 3 dH∙∙∙O D–H∙∙∙O 

INTRAMOLECULARa      

H2∙∙∙O1 0.0302 0.0951 0.1732 1.921 130.1 

      

INTERMOLECULARb      

(ii) 

(i) 

(iii) 
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H3C∙∙∙O4(i) 0.0101 0.0315 0.0526 2.444 166.2 

H25∙∙∙O3(ii) 0.0084 0.0292 0.0453 2.518 140.2 

O1∙∙∙H4B(i) 0.0080 0.0286 0.0434 2.524 133.4 

H6A∙∙∙O2(iii) 0.0072 0.0251 0.0389 2.578 168.51 

H6B∙∙∙O3(iv) 0.0051 0.0207 0.0292 2.719 125.2 

O3∙∙∙H3A(v) 0.0043 0.0167 0.0234 2.840 128.38 

O1∙∙∙H26(v) 0.0032 0.0130 0.0182 2.932 133.5 

H24∙∙∙O4(vi) 0.0031 0.0123 0.0172 3.007 141.3 

H3A∙∙∙O3(vii) 0.0028 0.0119 0.0155 3.013 137.1 

H6A∙∙∙O2(viii) 0.0024 0.0105 0.0133 3.123 125.0 
a: crystal (first line) and isolated molecule in the crystal geometry (second line). b: atom 

belonging to the reference molecule on the left of the interaction symbol. Between parenthesis 

symmetry operation generating the neighbor molecule (i: -1+x,y,z ;  ii: 1-x,-y,1-z ;  iii: 2-x,1-y,-z 

; iv: 2-x,-y,-z ; v: 1-x,1-y,-z ; vi: -x,1-y,1-z ; vii: 2-x,-y,1-z ; viii: -1+x,1+y,z ; ix: 1-x,1-y,-z ). 

 

In spite of the a priori apparently favorable conditions for the C–H∙∙∙O interactions to be 

formed, they represent less than one third of the whole set of 33 symmetrically non equivalent 

close shell interactions characterized in the crystal through the topological properties of the 

corresponding (3,-1) critical points. Though a quantitative estimation of the relative contribution 

of the hydrogen bond like interactions to the crystal stability can hardly be made on the basis of 

electron density topological properties, a prevalence of non directional dispersive contributions 

can certainly be expected. The role of C–H···O interactions in crystal packing can better be 

inferred from a structural analysis in terms of substructures. Though arbitrary, the 

centrocymmetric molecular pair generated by symmetry operation (1-x,-y,1-z) seems to be a very 

natural choice as a starting point. The molecules in this pair are linked each other by a symmetric 

pair of H25· · ·O3 interactions (see Table 3 and Figure 4). Interactions H3C· · ·O4 and O1· · ·H4B and 
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their symmetric counterparts connect molecular pairs along a axis, forming infinite chains, as 

shown in Figure 4. Chains are linked each other by H6A· · ·O2 interactions. As illustrated in Figure 

5, the network consisting of these four C–H···O interactions give rise to rather compact layers 

parallel to the (0 1 1) plane, the most relevant C–H···O interaction acting between adjacent 

layers being the H6B· · ·O3 (see Figure 5). In summary, even if secondary as regards crystal 

stability, C–H···O interactions would have a leading role in the formation of specific patterns. 

 

 

Figure 4. Crystal view along a axis showing the H25∙∙∙O3 (----) and H6B∙∙∙O3 (    ) interactions. 

Highlighted in the center a centrosymmetric pair representing one infinite chain.  
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Figure 5. Top view of one of the layers parallel to the (0 1 1) plane. Shaded parallelograms stand 

for evidencing centrosymmetric molecule pairs. Narrow rectangles labeled <u v w> are included 

to ease visualization interaction directions. 

 

The existence of an intramolecular N–H···O interaction is confirmed on topologycal 

grounds. Values of the relevant parameters are reported in Table 3. The interaction can be 

classified as a resonant assisted hydrogen bond (RAHB) [39] with a rather long H···O distance. 

Morevoer, the particular fact of having a molecule with two carboxymethyl groups allows to 

obtain evidence on the resonance mechanism from direct comparison between topological 

features of the covalent bonds involved. The value of the electron density at the critical point 

characterizing the C2=O1 bond (0.4025 a.u.) is in fact somewhat smaller than that at the 

corresponding C5=O3 bond (0.4171 a.u.) but the most relevant indication is the sensible 

difference in the Laplacian (0.2232 a.u. and 0.3900 a.u., respectively). Some influence of the 
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resonance on the other groups taking part in the pseudo six-membered ring can also be expected, 

but obtention of topological evidence would not be straightforward. Concomitantly, some 

differences in the vibrational behavior of the two carboxymethyl groups could probably be 

directly characterized, but RAHB influence on other vibrational modes could only be inferred 

from comparison with related systems [40]. Intramolecular hydrogen bond could also be 

responsible for the fact that among all motifs carboxymethyl groups usually form each other in 

molecular crystals [41], only an R2
2(10) loop can be identified in the crystal. 

 

3.4-Vibrational spectroscopy. 

The FTIR and FT-Raman spectra were recorded in the solid phase, as shown in Figure 6. 

The observed wavenumbers and those calculated at the B3LYP/6-311++G(d,p) level for the most 

stable form are given as Supplementary Material (Table S7), together with an assignment of the 

bands as determined from the normal coordinate analysis. When the experimental and the 

computed infrared spectra for the isolated molecule is compared, it is observed that the 

qualitative agreement is rather poor, especially when the absorption intensities are considered. It 

is well-known that the occurrence of intermolecular interactions prevents the interpretation of the 

experimental spectra on the basis of a single vacuum isolated model, but the whole crystal needs 

to be considered [42]. Thus, periodic density functional theory (DFT) calculations were applying 

to investigate the vibrational properties of the title compound in the crystalline phase. The 

qualitative agreement between the computed and experimental infrared espectra is illustrated on 

Figure 7 and the computed wavenumbers are also given in Table S7. Because the crystal is 

centrosymmetric (triclinic space P-1), only the modes with Au symmetry are active in the 

infrared spectrum. 
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The proposed assignment is in good agreement with the reported data for related species 

[43, 44]. Special attention was dedicated to the band assignment of the normal modes associated 

with the hydrazone group. Thus, the (N–H) stretching mode is observed as a weak absorption at 

3268 cm–1 in the infrared spectrum. This frequency value is lower than that observed for related 

–C=N–NH–, tipically at 3350 cm–1 [9, 44]. It is plausible that the intramolecular N–H···O=C 

hydrogen bond affects the force constant of the hydrozone group. The joint analysis of the 

(C=O) stretching vibration region is of main interest for analyzing the presence of the 

intramolecular hydrogen bond [45]. Two strong absrorptions are observed at 1739 and 1688 cm–1 

in the infrared spectrum, with a counterpart at 1689 cm–1 in the Raman spectrum. Periodic 

quantum chemical calculations computed the (C=O) values of 1782 and 1737 cm–1 for the 

(C5=O3) and (C2=O1), respectively. Consequently, it becomes clear that the (C=O) red-shift 

of ca. 51 cm–1 experimentally observed between the two esther groups denotes the influence of 

the N–H···O=C intramolecular hydrogen bond in th –O2C2=O1– moiety. It is interesting 

noticing that the differences in the force constants associated with the (C5=O3) and (C2=O1) 

stretching modes observed in the vibrational spectra are in perfect agreement with the results 

from the topological analysis and the bond distances already discussed. 

In the region between 1650-1400 cm–1 the characteristic signals corresponding to the 

C=C stretching are observed in both, the IR and Raman spectra. Superimposed to this features, 

an absorption observed as a broad band of medium internsity at 1562 cm–1 in the infrared 

spectrum, with a counterpart at 1553 cm–1 in Raman, is assigned to the mixed normal mode 

consisting predominantly of the (C1=N) stretching and the (N–H) in plane deformation 
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internal coordinates, with nearly equal contribution, as deduced from the PED analysis. This 

mode is characteristic for the occurrence of the hydrazo tautomer in the solid phase. 

Medium intensity absorptions at 1266 and 1211 cm–1 can be observed in the infrared 

spectrum (with weak counterparts at 1268 and 1214 cm–1, respectively, in the Raman spectrum) 

are assigned to the antisymmetric and symmetric motion of the C1–C stretching coordinates. The 

intense infrared absorptions expected for the C–O stretching modes of the ester moieties [46] 

appear at 1198 cm–1 (1192 cm–1 in Raman) and 1145 cm–1 (1139 cm–1 in Raman) for the C5–O4 

and C2–O2, respectively. 

The (N–N) stretching is clearly observed in the Raman spectrum as a medium intensity 

signal at 1174 cm–1, in good agreement with the computed value (1208 cm–1). For the hydrazine 

molecule, N2H4, this normal mode is reported at 1077 cm–1 in the gas phase (the exact value is 

1077.24056(82) cm–1 from high resolution infrared spectroscopy) [47]. The higher frequency 

observed for the studied hydrazone species indicates a partial nitrogen-nitrogen double bond, a 

point that will be further discussed in the next section. 
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Figure 6. Infrarred (in KBr pellet) and Raman spectra for the solid phase of the title species. 
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Figure 7. Comparison between the experimental and computed infrared spectra. Periodic density 

functional theory (DFT) calculations at the B3LYP/6-31G(d,p) was used. 
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3.5-Natural Bond Orbital Analysis. 

The Natural Bond Orbital (NBO) population analysis allow for the calculations of 

donor acceptor interactions estimated by the second order perturbation theory [20]. In 

particular, the electrostatic contribution for “classical” C=O···H–N hydrogen bonds [48], can be 

associated with the partial transfer of a lone pair of electrons of the oxygen atom to the N–H 

antibonding orbital [49, 50]. Such a hyperconjugative interaction can operate between remote 

orbitals determinaning the conformational landscape of simple molecules [51, 52], as well as the 

backbone conformation of peptides [53]. For instance, the lpO→ *(N–H) remote orbital 

interaction for benzenesulfonylamin acetamide molecule were computed to be as much as 9.5 

kcal/mol [54]. Recently, we also demonstrate that a lpO→ *(N–H) remote interaction is 

responsible for the “S-conformation” largely found in 1-acyl thioureas [55, 56]. For the 

compound here studied, a representation of the lpO1→ *(N2–H) remote interaction between 

the C2=O1 carbonyl and amidate N2–H groups is given in Figure 8. The stabilization energies, 

Ei,j
(2), associated with this hyperconjugative interaction is obtained as 9.88 kcal/mol. The 

hyperconjugative interaction increases the electronic population of the σ*(N2–H) orbital (0.050 

e). 

 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
26 

 

 26 

 

Figure 8. 3D representation of the remote lpO1→ *(N2–H) NBOs overlap responsible for the 

N–H···O=C intramolecular hydrogen bond. 

 

The NBO analysis also accounts for other interesting electronic properties of the central –

C(O)C=NNH– moiety . The presence of a pure p-type [lpp(N2)] lone pair on the N2–H nitrogen 

is defined by its exclusive 2pz orbital occupancy, whereas a sp2 hybrid [s(30.9%), p(69.1%)] 

better describes the valence electron of the nitrogen atom of the C=N1- group. The p-type orbital 

displays an electron occupancy of 1.60 e, indicating the electron-donating capacity. Delocalizing 

interactions evaluated by a second-order perturbation approach reveals that this orbital 

contributes to a strong resonance interactions with the C1=N1 double bond as well as with the  

system of the phenyl ring. The computed E(2) energy values for the lpp(N2)→ π
*(C1=N1) and 

lpp(N2)→ π
*(C=C) interactions are 48.4 and 34.6 kcal/mol, respectively. This strong donor 

acceptor overlap between the lpp(N2) and π
*(C1=N1) orbitals can be associated with resonance 

structure having a partial double bond character for the N1–N2 bond. This picture is in 
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qualitative agreement with the high frequency value experimentally observed for the (N–N) 

stretching in the studied compound. 

The π resonance system is extended through the π(C1=N1)→ π
*(C2=O1) interaction, 

which amount to 16.3 kcal/mol. Finally, the lpO2→ π
*(C2=O1) donor-aceptor interaction 

within the –O2C2=O1– group is computed at 46.7 kcal/mol. As a consequences, the π*(C2=O1) 

corresponds to the LUMO and the occupancy of this formally “vacant” orbital attains as much as 

0.314 e. It should be noted that the molecule has a second ester group –O4C5=O3–. However, it 

is clear that the resonance interaction with the –C=N–NH– system is precluded because the 

presence of the –CH2– group, which acts as a separator between the donor and acceptor. Thus 

only the lpO4→ π
*(C5=O3) interaction is observed within this group, with a value of 46.2 

kcal/mol. This loss of electronic delocalization is also reflected in higher occupancy of the 

π
*(C5=O3) (0.215 e) as compared with π

*(C=O1). According to the usual resonance scheme, 

more efficient lpO→ π
*(C=O) interactions are associated with longer C=O and shorter C–O bond 

distances of the ester moieties, similar to those observed for related compounds [46, 57, 58]. The 

computed donoracceptor values agree with the tendency observed for C–O and C=O bond 

distances, with experimental bond length values of 1.336(1) and 1.341(1) Å for the C2–O2 and 

C4–O5, respectively, whereas the C=O double bond distances amounts to 1.220 (C2=O1) and 

1.203 (C5=O3) Å.  

 

4-Conclusions 
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The synthesis of a carbonyl-bearing hydrazone compound was successfully achieved by 

the reaction between phenyl hydrazine with dimethylacetylene dicarboxylate. The X-ray 

structure determination and the vibrational analysis agree with the fact that the molecule is 

present in the crystal as the hydrazone tautomer. Quantum chemical calculations at the 

B3LYP/6-311++G(d,p) reproduce this observation, the hydrazo E syn form being the most stable 

structure for the isolated molecule. 

A intramolecular N–H···O=C hydrogen bond between the carbonyl (–C=O) bond and the 

hydrazone –C=N–NH– group is present in the crystal and was characterized in terms of 

topological and NBO analysis. In particular, the stabilization energy, Ei,j
(2), associated with the 

lpO1→ *(N2–H) remote interaction amount to 9.88 kcal/mol. To the best of our knowledge, 

this is the first quantitative explanation for such a strong remote interaction involving hydrazone 

compounds. 

The vibrational IR and Raman spectra are well explained by the presence of the 

hydrazone tautomer. Periodic quantum chemical calculations reproduces the infrared spectrum in 

excelent agreement. The carbonyl stretching region shows two bands with (C=O) shift of ca. 51 

cm–1 between the two esther groups, the low frequency one assigned to C=O group affecting by 

the N–H···O=C intramolecular hydrogen bond. The (N–N) stretching is observed in the Raman 

spectrum as a medium intensity signal at 1174 cm–1, in good agreement with the computed value 

(1208 cm–1), reinforcing the proposed hydrazone structure. 

The topological analysis of the periodic system electron density provided evidences on 

the role of the C–H···O interactions in the stablishement of the crystal pattern, though they are of 

secondary importance as regards crystal stability. 
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6- Supplementary data 

Atomic coordinates, equivalent isotropic displacement coefficients, geometrical 

parameters and anisotropic displacement parameters are given in Tables S1-S4, respectively. 

Tables S5 and S6 list the torsion angles and hydrogen bond geometrical parameters, respectively. 

Table S7 gives FTIR and FT-Raman experimental and computed data for the studied compound, 

together with the normal mode assignment. The 
1
H and 

13
C NMR spectra are shown in Figures 

S1 and S2, respectively.  
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Highlights 

► Crystal structures and vibrational properties were determined. ► The molecular hydrazone skeleton is 

planar due to an extended -bonding delocalization ► The acyl hydrazone group is involved in strong N–

H···O=C intramolecular hydrogen bond ► Strong hyperconjugative lpO1→ *(N2–H) remote interaction 

takes place ► Intramolecular N–H···O interaction are described by AIM topological analysis describes. 


