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Abstract

We construct an exact regular vortex solution to the self-dual equations of the Abelian Higgs model in noncommutative space
for arbitrary values of θ . To this end, we propose an ansatz which is the analogous, in Fock space, to the one leading to exact
solutions for the Nielsen–Olesen vortex in commutative space. We compute the flux and energy of the solution and discuss its
relevant properties.  2001 Published by Elsevier Science B.V.

1. Introduction

The recent interest aroused by quantum field the-
ories in noncommutative space [1–3] prompted the
search of localized classical solutions in noncommu-
tative geometry. Instantons, solitons carrying various
kinds of fluxes, BPS and non-BPS solutions to differ-
ent noncommutative theories have been presented in
Refs. [4–16]. Among these models, the Abelian Higgs
model in noncommutative space has received particu-
lar attention in connection with vortex like solutions
[7–16].

Several vortex solutions that have been discussed up
to now are regular at finite noncommutative parameter
θ , but they become singular in the limit θ → 0 [7,
14]. More precisely, the magnetic field B associated
to the flux tube behaves as B → δ(2)(x) as θ → 0.
This fact is not surprising since these solutions are
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obtained through a procedure which is the analogous
to performing singular gauge transformations leading
to topologically non-trivial solutions from trivial ones
in commutative space.

A different class of vortices in noncommutative
space has been considered by D.P. Jatkar, G. Mandal
and S. Wadia [8], which are closer in spirit to the reg-
ular Nielsen–Olesen vortices of the theory in ordinary
space. More specifically, in [8], self-dual Bogomol’nyi
equations were derived and the solutions in the limit-
ing cases θ → 0 (where they are regular) and θ → ∞
were considered.

Bogomol’nyi equations for Abelian Higgs model
were also discussed in [13] and [16]. The case consid-
ered there corresponds, in our terminology, to the anti-
self-dual case. In fact, as in the model in commutative
space, there are two sets of Bogomol’nyi equations,
one admitting solutions with positive flux (which we
call self-dual), another admitting solutions for nega-
tive flux (which we call anti-self-dual). Nevertheless,
while these two sets of equations (and their solutions)
are trivially related via a parity transformation in com-
mutative space, the presence of the parity breaking pa-
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rameter θ prevents such a trivial connection in the non-
commutative case. Hence the existence and properties
of solutions should be checked separately. While this
has been done in detail for the anti-self-dual case in
[13] and [16], less is known for the self-dual case with
the exception of the limiting cases θ → 0, θ → ∞.

We present in this note an ansatz leading to regular
vortex solutions in noncommutative space for arbitrary
value of θ . Starting from the noncommutative Abelian
Higgs Lagrangian, we solve the associated self-dual
equations finding an exact solution that is the noncom-
mutative version of the exact one presented long ago
for the ordinary Nielsen–Olesen vortices [17] and, re-
markably, it shares, qualitatively, all its basic proper-
ties. In fact the solution converges to it as θ go to zero
while, for large values of θ , its profile differs apprecia-
bly from the Nielsen–Olesen solution.

We consider space–time with coordinates Xµ (µ =
0,1,2,3) obeying the following noncommutative re-
lations

(1)
[
Xµ,Xν

] = iθµν.

We take θ0i = 0 (i = 1,2,3). Concerning θ ij , it can
be can be brought into its canonical (Darboux) form
by an appropriate orthogonal rotation

(2)
[
X1,X2] = iθ,

[
X1,X3] = [

X2,X3] = 0.

One way to describe field theories in noncommu-
tative space is by introducing a Moyal product ∗ be-
tween ordinary functions. To this end, one can estab-
lish a one to one correspondence between operators f̂

and ordinary functions f through a Weyl ordering

(3)

f̂
(
X1,X2) = 1

2π

∫
d2k f̃ (k1, k2)

× exp
(
i
(
k1X

1 + k2X
2)).

Then, the product of two Weyl ordered operators f̂ ĝ

corresponds to a function f ∗ g(x) defined as

f ∗ g(x) = exp
(

iθ

2
(∂x1∂y2 − ∂x2∂y1)

)

(4)× f (x1, x2)g(y1, y2)

∣∣∣∣
x1=x2,y1=y2

.

Given a U(1) gauge field Aµ(x), the field strength
Fµν is defined as

(5)Fµν = ∂µAν − ∂νAµ − i(Aµ ∗ Aν − Aν ∗ Aµ).

We shall couple the gauge field to a complex scalar
field φ with covariant derivative

(6)Dµφ = ∂µφ − iAµ ∗ φ.

Dynamics for the model will be governed by the
Lagrangian

L = −1
4
Fµν ∗ Fµν + Dµφ ∗ Dµφ

(7)− 1
2
(
φ ∗ φ̄ − η2)2

.

Here we have chosen coefficient of the symmetry
breaking potential at the Bogomol’ny point [17,18].
We are looking for static axially symmetric Nielsen–
Olesen vortices with A0 = A3 = 0. Then, the only
relevant coordinates in the problem will be i = 1,2.

The alternative approach to noncommutative field
theories is to directly work with operators in the phase
space (X1,X2), with commutator (2). In this case
the ∗ product is just the product of operators and
integration over the (X1,X2) plane is a trace,

(8)
∫

dx1 dx2 f
(
x1, x2) = 2πθ Tr f̂

(
X1,X2).

In this framework, we introduce complex variables z

and z̄

(9)z = 1√
2

(
x1 + ix2), z̄ = 1√

2

(
x1 − ix2),

and annihilation and creation operators â and â† in the
form

â = 1√
2θ

(
X1 + iX2),

(10)â† = 1√
2θ

(
X1 − iX2)

so that (2) becomes

(11)
[
â, â†] = 1.

With this conventions, derivatives are given by

(12)∂z = − 1√
θ

[
â†,

]
, ∂z̄ = 1√

θ
[â, ].

The field strength takes then the form

F̂zz̄ = ∂zÂz̄ − ∂z̄Âz − i
[
Âz, Âz̄

]
= − 1√

θ

([
â†, Âz

] + [â,Az̄] + i
√

θ
[
Âz, Âz̄

])

(13)≡ iB̂,
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with B̂ the magnetic field. Concerning covariant deriv-
atives

Dz̄φ̂ = ∂z̄φ̂ − iAz̄φ̂ = 1√
θ
[â, φ̂] − iÂz̄φ̂,

(14)Dz
ˆ̄φ = ∂z

ˆ̄φ + iÂz
ˆ̄φ = − 1√

θ

[
â†, ˆ̄φ] + iÂz

ˆ̄φ,

where

Âz = 1√
2

(
Â1 − iÂ2

)
,

(15)Âz̄ = 1√
2

(
Â1 + iÂ2

)
.

The energy functional associated to action (7) can
be then written as [8]

(16)

E = 2πθ Tr
(

1
2
B̂2 + Dz̄φ̂Dz

ˆ̄φ + Dzφ̂Dz̄
ˆ̄φ

+ 1
2
(
φ̂ ˆ̄φ − η2)2

)
.

We want to find static solutions minimizing the
energy. To this end, we shall proceed à la Bogomol’nyi
writing the energy E in the two following forms [8]

(17)

E = 2πθ Tr
(

1
2
(
B̂ + (

φ̂ ˆ̄φ − η2))2 + 2Dz̄φ̂Dz
ˆ̄φ

+ (
T̂ s + η2B̂

))

with T̂ s defined as

(18)T̂ s = ∂z
(
(Dz̄φ̂) ˆ̄φ) − ∂z̄

(
(Dzφ̂) ˆ̄φ)

or

(19)

E = 2πθ Tr
(

1
2
(
B̂ − (

φ̂ ˆ̄φ − η2))2 + 2Dz̄
ˆ̄φDzφ̂

− (
T̂ a + η2B̂

))

with

(20)T̂ a = −T̂ s .

Now, one can easily see that Tr T̂ a = 0 [8] and hence
the energy is bounded by the magnetic flux, as in
the case of vortices in ordinary space. The bound is
attained when the following first order Bogomol’nyi
equations hold

B̂ = η2 − φ̂ ˆ̄φ, Dz̄φ̂ = 0
(21)(self-dual equations),

or

−B̂ = η2 − φ̂ ˆ̄φ, Dzφ̂ = 0
(22)(anti self-dual equations)

We have fixed in Eqs. (21), (22) our terminology.
Equations (21) are called self-dual equations while
equations (22) are the corresponding anti self-dual
equations. Solutions to Eq. (21) correspond to positive
magnetic flux, while those to (22) give negative
magnetic flux. Note that our convention coincide with
that in ([8]) and is the opposite to that in [16], where, in
our terminology, anti-self-dual solutions are discussed
in detail and a critical value of the noncommutative
parameter is found, θc = 1/η2, such that solutions
cease to exist when θ > θc. Now, as stressed above,
in the noncommutative case, the presence of the parity
breaking θ parameter renders the connection between
the anti-self-dual and the self-dual case non-trivial,
in contrast to what happens in the commutative case
where it is straightforward.

In what follows, we construct exact solutions to the
self-dual equations (21) for arbitrary values of θ and
in this sense, our calculation complements those in [8]
and [16]. To this end, we propose the following ansatz

(23)

Âz = i√
θ

∑
n

(√
n + 1 − √

n + 2 + en
)|n + 1〉〈n|,

(24)φ̂ = η
∑
n

fn|n〉〈n + 1|.

Notice that the Higgs field can be rewritten as

(25)φ̂ = η
f (N̂)√
N̂ + 1

X1 + iX2
√

2θ
,

where N̂ = â†â and 〈|f (N̂)|n〉 = fn. This should be
compared with the ansatz in the commutative case,

(26)φ = ηg(|z|) z
with g(0) to be determined by solving the Bogo-
mol’nyi equations and requiring that at infinity g(|z|)
∼ 1/|z|. This has been done in [17] with the result

(27)g(0)2 = 0.72791.

In the same way, introducing the ansatz (23), (24)
we expect to derive a recurrence relation for fn

whose solution is uniquely determined by requiring
that f (∞) → 1.
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Notice also that the flux-tube solutions presented in
[6,14] correspond to the choice of coefficients en = 0
and fn = 1, leading to “quasi pure gauge” solutions
(which, in the θ → 0 limit give singular vortex so-
lutions with magnetic field B = δ(2)(x)). What we
are looking for here is to determine, through recur-
rence relations deriving from (21)–(24), the non-trivial
values for en, fn that correspond to exact solutions,
which should lead to the regular ones found in [17]
in the commutative θ → 0 case. In fact, this ansatz
can be seen as the analogous to performing, in the
commutative case, a U(1) singular gauge transforma-
tion exp(inϕ) on |φ(r)|; the condition |φ(0)| = 0 en-
sures the regularity of the solution. In noncommutative
space, the equivalent of such a procedure is to apply an
operator Sn with Ŝ the shift operator defined as [6]

(28)Ŝ =
∑
k

|k〉〈k + 1|.

Ansatz (24) just corresponds to a combination of bra
and kets like in S but with arbitrary coefficients fn. It
is easy to also see that the compatible ansatz for the
gauge field is just (23).

Now, in order to determine the up to now arbi-
trary coefficients fn, en, we plug ansatz (23), (24) in
Eq. (21) getting the following recurrence relations
√

(n + 2)(fn+1 − fn) − enfn+1 = 0,

2
√

(n + 1) en−1 − e2
n−1 − 2

√
(n + 2) en + e2

n

(29)= −θη2(f 2
n − 1

)
.

This coupled system can be combined to give for fn

f 2
1 = 2f 2

0
1 + θη2 − θη2(f 2

0 )
,

f 2
n+1 = (n + 2)f 4

n

f 2
n − θη2f 2

n (f 2
n − 1) + (n + 1)f 2

n−1
,

(30)n > 0.

Given a value for f0 one can then determine all fn’s
from (30). The correct value for f0 should make
f 2
n → 1 asymptotically so that boundary conditions

are satisfied. The values of these coefficients will
depend on the choice of the dimensionless parameter
θη2.

For small θ we have checked that we reobtain the
values for the commutative solution. Indeed,

(31)
f 2

0
2η2θ

= 0.72792, θ � 1

(compare with Eq. (27)), while for large θ we reobtain
the result of Ref. [8]

(32)f 2
0 = 1 − 1

η2θ
, θ � 1.

Exploring the whole range of θη2, one finds that the
vortex solution with +1 units of magnetic flux exists
in all the intermediate range. As an example, we list
three representative values,

θη2 = 0.5, f 2
0 = 0.40069 . . .,

θη2 = 1.0, f 2
0 = 0.56029 . . .,

(33)θη2 = 2.0, f 2
0 = 0.70670 . . . .

Once all fn’s and en’s are calculated, one can compute
the magnetic field, using for example the formula

(34)B̂ = η2
∞∑

n=0

(
1 − f 2

n

)|n〉〈n|

or, using the explicit formula for |n〉〈n| in configura-
tion space [6]

(35)

B(r) = 2η2
∞∑

n=0

(−1)n
(
1 − f 2

n

)

× exp
(−r2/θ

)
Ln

(
2r2/θ

)
,

where Ln are the Laguerre polynomials.
We show in Fig. 1 the resulting magnetic field B

as a function of rη. For θ = 0 one recovers the result
for self dual Nielsen–Olesen vortices in ordinary space
[17]. As θ grows, the maximum for B decreases and
the vortex is less localized with total area such that
the magnetic flux remains equal to 1. It is important
to stress that we have found noncommutative self-dual
vortex solutions in the whole range of θ , in agreement
with the analysis for large and small θ presented in [8].

As θ becomes larger, one needs more and more pre-
cision in order to match the value of f0 so that the vor-
tex has the adequate behavior at infinity, but a solution
can be always found (this should be contrasted with
the anti self-dual case discussed in [16]). One can eas-
ily integrate B(r) in (35) and check that the magnetic
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Fig. 1. Magnetic field of the vortex as a function of the radial
coordinate (in units of η) for different values of the anticommuting
parameter θ (in units of η2). The curve for θ = 0 coincides with that
of the ordinary Nielsen–Olesen vortex.

flux Φ , which can also be written as

(36)Φ = 2πθ Tr B̂

gives, for the exact solution,

(37)
Φ

2π
= 1.

We have also computed the energy by inserting our
vortex solution directly in Eq. (17). As expected, the
solution saturates the bound giving

(38)E = 2πη2.

In summary, we have constructed exact regular vortex
solutions to the self-dual equations of Abelian Higgs
model in noncommutative space for arbitrary values
of θ . The solution corresponds to a magnetic flux

Φ = 2π (solutions with Φ = 2πn can be constructed
by straightforward generalization of our procedure).
For θ → 0 it converges to the commutative Nielsen–
Olesen solution while, for growing θ the flux tube
becomes more and more delocalized. The connection
between self-dual and anti-self-dual solutions deserves
a thorough investigation which we hope to present
elsewhere.
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