NOTA

CALIBRACIÓN RADIOCARBÓNICA EN LA REGIÓN DEL CANAL BEAGLE

RADIOCARBONIC CALIBRATION IN THE BEAGLE CHANNEL REGION

Luis Abel Orquera* y Ernesto Luis Piana**

Fecha de recepción: 22 de febrero de 2020 Fecha de aceptación: 9 de mayo de 2020

En enero de 1975 iniciamos una campaña de excavación a orillas del canal Beagle, región sobre la que existía muy poca información arqueológica y a la que creíamos que por los costos operativos difícilmente regresaríamos. La campaña, empero, pronto indicó que varios aspectos diferían de lo que hasta entonces se creía al respecto, y esto nos motivó a regresar año tras año. Así cobró forma lo que fue llamado *Proyecto Arqueológico Canal Beagle*, orientado hacia un estudio metodológicamente coherente, sistemático y de larga duración sobre el poblamiento humano antiguo de la región. Cuarenta y cinco años después de ese comienzo, las tareas continúan y ya está en plena actividad una segunda generación de investigadores, en tanto una tercera está en preparación.

Cuando se tomó conciencia de la riqueza de información arqueológica ofrecida por la región, y ante la imposibilidad de enfrentar el análisis simultáneo de todas las variables presumibles, se optó por elaborar un plan de trabajo en torno de las tres que fueron consideradas más importantes o mejor detectables: 1) los posibles cambios a través del tiempo en el comportamiento o en las estrategias de los antiguos habitantes de la región; 2) la incidencia de diferencias microambientales sobre el acceso a los recursos naturales; y 3) la funcionalidad de los sitios (Orquera y Piana 1996, 1999; Orquera et al. 2008, Zangrando 2009 y en otras ocasiones). Con esa planificación hemos excavado quince sitios en extensión (ver ubicaciones en la figura 1), seis enterratorios y numerosos sondeos exploratorios. La estratigrafía y los hallazgos de la mayoría de los primeros han sido expuestos en detalle en varias ocasiones (una visión general en Orquera y Piana 1999; ver también Orquera et al. 2011; Piana 1984; Orquera y Piana 1988, 1995, 1996, 2005; Estévez Escalera y Vila Mitjà 1995; Piana y Canale 1995, Piana et al. 2000, 2004, 2006, 2008, 2012; Álvarez et al. 2008; Zangrando 2009; Zangrando et al. 2014, 2018; entre otros).

^{*}L.A. Orquera, Investigador Principal del CONICET (jubilado), Director de la Asociación de Investigaciones Antropológicas, Buenos Aires. Email: laorquera@gmail.com

^{**} E. L. Piana, Investigador Principal del CONICET (jubilado), Centro Austral de Investigaciones Científicas, Ushuaia. Email: arqueologiatierradelfuego@gmail.com

Figura 1. Ubicación de localidades y sitios donde el Proyecto Arqueológico Canal Beagle desarrolló principalmente su actividad

Obviamente, no se deben olvidar las acciones pioneras en esta misma región hechas por Bird (1938 y 1946), Menghin (1956 y 1960) y alguno más. También es necesario integrar los resultados logrados por el Proyecto Arqueológico Canal Beagle con los obtenidos por Figuerero Torres y Mengoni Goñalons (1986) en Isla El Salmón, Yesner (1990) en Playa Larga, Ocampo y Rivas (2000, 2004, 2005) y Aspillaga y colaboradores (1999) en la costa norte de la isla Navarino, Legoupil (1993-94) en el sur de esa isla y en otras más meridionales.

Igualmente imperioso es que al leer este trabajo se recuerde la secuencia de poblamiento de la porción occidental del Estrecho de Magallanes, de los senos Otway y Skyring y de otros lugares próximos a ellos, pues: a) los ambientes son muy semejantes al del canal Beagle; b) allí se desarrolló una forma de vida muy similar; c) la descrita para la zona del canal Beagle posiblemente haya tenido origen en esa otra región; y d) los procesos de desarrollo ocurridos en ambas regiones tuvieron contactos y pasaron por historias muy parecidas, probablemente eslabonadas aunque con algunas diferencias interesantes. En este sentido, consultar en especial Emperaire y Laming 1961; Ortiz Troncoso 1979; Legoupil 1989, 1993-94, 1997, 2000, 2003; Legoupil y Pigeot 2009; San Román 2010 y otras obras de estos mismos autores, como también Lara *et al.* 2020 (ver también las consideraciones al respecto hechas por Orquera y Piana 2006, Piana y Orquera 2007, Orquera *et al.* 2011).

CRONOLOGÍA

En ocasiones anteriores (por ejemplo: Orquera y Piana 1999:114, nota 46) señalamos reticencia a presentar calibraciones a años calendáricos de los fechados radiocarbónicos por estar las propuestas entonces disponibles basadas únicamente sobre datos obtenidos en el Hemisferio Norte; su aplicación al Hemisferio Sur (donde las condiciones ambientales son diferentes) no era segura. Publicaciones más recientes (McCormac *et al.* 2004; Hogg *et al.* 2013, Stuiver *et al.*

2013, etc., y el programa CALIB 7.01, actualizado hace muy poco) atendieron específicamente a datos del Hemisferio Sur que muestran diferencias con los obtenidos para el norte, por lo que la dificultad quedó eliminada. Por motivos que escapaban a nuestra voluntad, publicar las calibraciones de nuestros datos se retardó un poco, pero decidimos no postergarlo más.

La tabla 1 da a conocer esos resultados para los sitios que hemos excavado en extensión en cumplimiento del Proyecto Arqueológico Canal Beagle. En una columna presenta –para facilitar las comparaciones—las conversiones a años calendáricos de los puntos medios de las variaciones propuestas por los fechados radiocarbónicos originales según las actualizaciones indicadas por McCormac *et al.* (2004), lo que no significa que ellas deban ser consideradas como ineludiblemente representativas de las antigüedades ahora propuestas (ni que los autores de ese artículo lo hayan afirmado o dejado ver así). Otra columna indica los márgenes –con dos sigmas de amplitud— dentro de las cuales las dataciones primigenias deben ser reubicadas con alto grado de probabilidad (más del 90 %). Como consecuencia, la figura 2 actualiza la distribución temporal de los distintos conjuntos, modificando la presentada en publicaciones anteriores (por ejemplo: Orquera y Piana 1991: fig. 37).

Tabla 1. Calibración de fechados radiocarbónicos de sitios excavados en forma extensa (no sondeos exploratorios) por el Proyecto Arqueológico Canal Beagle

_	Cuadrícula	B	Materiales	Código laboratorio	Edades 14C	Calibraciones de puntos medios según McCORMAC et al. 2004	Calibraciones AP (2 sigmas) según CALIB 6.0	Observaciones
Sitio	Cua	Capa	Mat	Códi	Eda	Calib punto McC	Cali sigm 6.0	Obse
Lancha Packewaia	VI	В	carbón	MC 1062	280 ± 65	302	137-471	
Lancha Packewaia	III	В	carbón	MC 1074	280 ± 85	302	58-488	
Lancha Packewaia	III	С	carbón	MC 1066	410 ± 75	467	296-529	
Lancha Packewaia	VI	С	carbón	MC 1063	455 ± 85	495	297-588	
Lancha Packewaia	III	D	carbón	CSIC 314	470 ± 50	499	327-594	
Lancha Packewaia	VI	D	carbón	MC 870	1080 ± 100	933	739-1177	
Lancha Packewaia	I	D	carbón	CSIC 311	1120 ± 50	965	904-1088	
Lancha Packewaia	II	D	carbón	CSIC 312	1590 ± 50	1402	1342-1538	
Lancha Packewaia	I	X	carbón	CSIC 306	4020 ± 70	4421	4223-4800	
Túnel I	XIII	beta	carbón	Beta 4388	450 ± 60	495	323-532	
Túnel I	XIII	beta	carbón	AC 701	650 ± 80	561	503-681	
Túnel I	XVI	C 1	carbón	AC 850	1920 ± 80	1820	1691-2013	Piso 2
Túnel I	XVI	C 1	carbón	AC 851	1990 ± 110	1880	1510-2156	Piso 2

(Tabla 1. Continuación)

	1	1		1		1	•	
Sitio	Cuadrícula	Сара	Materiales	Código laboratorio	Edades ¹⁴ C	Calibraciones de puntos medios según McCORMAC et al. 2004	Calibraciones AP (2 sigmas) según CALIB 6.0	Observaciones
Túnel I	XVI	C 2+3	carbón	AC 852	2000 ± 110	1887	1692-2160	
Túnel I	XVI	entre C1 y C3	carbón	AC 854	2570 ± 135	2709	2309-2894	
Túnel I	XIII- XIV	alfa	carbón	AC 1030	2660 ± 100	2745	2376-2926	
Túnel I	IV	alfa	carbón	Beta 2516	2690 ± 80	2751	2489-2954	
Túnel I	XIII	gamma	carbón	Beta 4387	2880 ± 60	2927	2784-3082	
Túnel I	XVI	С 2 о п	carbón	AC 856	2930 ± 100	2970 - 2990	2782-3255	
Túnel I	XIII	alfa	carbón	AC 677	3090 ± 90	3252	2990-3448	dudoso
Túnel I	XIII	C 2-3 unif.	carbón	AC 702	3530 ± 90	3702	3555-3987	
Túnel I	XIII	C 3	carbón	Beta 4385	4300 ± 80	4837	4566-4987	
Túnel I	XIV	D 12	carbón	AC 833	4590 ± 130	5290	4863-5482	
Túnel I		D	carbón	AC 327	5020 ± 100	5660	5579-5929	experimental
Túnel I	IV	7 D	hueso de guanaco	AC 703	5280 ± 100	5945	5750-6221	
Túnel I	IV	7 D	carbón	AC 683	5630 ± 120	6320 - 6392	6176-6669	
Túnel I	III	D basal	carbón	AC 236	5700 ± 170	6410	6177-6799	
Túnel I	XV	D 36	carbón	AC 845	5840 ± 185	6569 - 6630	6271-7029	
Túnel I	I	9 D	carbón	CSIC 308	5850 ± 70	6575	6440-6758	
Túnel I	XIV	D 88	carbón	AC 838	5950 ± 150	6727	6408-7032	
Túnel I	III	12 D	carbón	CSIC 309	5960 ± 70	6734	6560-6937	
Túnel I	XIV	D 141	carbón	AC 1028	6020 ± 120	6788	6532-7161	
Túnel I	III	13 E	carbón	CSIC 310	6070 ± 70	6880	6675-7029	
Túnel I	III	D basal	carbón	Beta 2819	6140 ± 130	6947	6661-7270	
Túnel I	XIV	D 137	carbón	AC 883	6150 ± 220	6950	6579-7429	
Túnel I	XI	E 1	carbón	Beta 3270	6200 ± 100	7005	6783-7272	
Túnel I	XV	E 6	hueso de guanaco	AA 103147	6365 ± 69	7254	7154-7421	
Túnel I	XIV	D 110	carbón	AC 840	6410 ± 150	7270	6937-7567	
Túnel I	XIV	D 136	carbón	Beta 21969	6460 ± 110	7320	7155-7521	
Túnel I	V/IX	F inf.	carbón	AC 674	6680 ± 210	7508	7155-7939	dudoso
Túnel I		G	sedimento	AC 660	6830 ± 140	7614	7429-7929	
Túnel I	XII	G	sedimento	Beta 6748	6900 ± 70	7674	7577-7841	

(Tabla 1. Continuación)

Sitio	Cuadrícula	Capa	Materiales	Código laboratorio	Edades ¹⁴ C	Calibraciones de puntos medios según McCORMAC et al. 2004	Calibraciones AP (2 sigmas) según CALIB 6.0	Observaciones
Túnel I	V	F inf.	carbón	Beta 2517	6980 ± 110	7740	7387-7961	
Túnel II		В	carbón	AC 824	1120 ± 90	963	786-1184	
Túnel II	L 3	С	carbón	AC 1031	1140 ± 90	968	800-1185	
Túnel VII	I/II	B 135	carbón	AC 871	100 ± 90			
Imiwaia I		В	carbón	AC 1579	150 ± 70	0 - 70	150-282	dudoso
Imiwaia I	IV	B inf.	carbón	AC 1727	1400 ± 150	1287	1179-1357	
Imiwaia I	IV	B sup.	carbón	ENEA 882	1495 ± 31	1311	1300-1381	
Imiwaia I	IV	B sup.	carbón	AA 86510	1577 ± 41	1400	1346-1529	
Imiwaia I	IV	B sup.	carbón	ENEA 878	1581 ± 43	1404	1346-1582	
Imiwaia I	III	D 85	carbón	ENEA 887	2987 ± 44	3076	2952-3239	
Imiwaia I	III	D 178	carbón	AA 78554	3013 ± 35	3089 - 3143	2996-3250	
Imiwaia I	III	D 80	carbón	AC 1580	3340 ± 150	3479	3161-3922	
Imiwaia I	IV	K 50	carbón	ENEA 880	5715 ± 43	6439	6318-6566	
Imiwaia I	II	M 35	carbón	AC 1582	5750 ± 170	6398	6180-6945	
Imiwaia I		M 105	carbón	ENEA 889	5802 ± 43	6505 - 6530	6443-6666	
Imiwaia I	IV	K 50	carbón	AA 86509	5840 ± 44	6630	6485-6728	
Imiwaia I	Refilam.	M alto	carbón	AC 1397	5872 ± 147	6640	6308-6988	
Imiwaia I		M 240	carbón	AA 78550	5943 ± 48	6691 - 6717	6625-6864	
Imiwaia I		R 2	carbón	AA 78549	6390 ± 49	7173 - 7232	7170-7416	
Imiwaia I	sondeo 11	R	carbón	AA 94162	6425 ± 48	7275	7243-7425	
Imiwaia I	sector B		carbón	AA 90438	6564 ± 45	7427	7321-7512	
Imiwaia I	X rasgo 1	S	carbón	AA 94161	7824 ± 52	8550	8420-8654	
Imiwaia I	I	S	carbón	AA 78551	7842 ± 53	8585	8426-8751	
Shamakush I	I	F techo	carbón	AC 1029	890 ± 100	740	639-937	
Shamakush I	I	D 290	carbón	AC 1047	940 ± 110	792	650-990	
Shamakush I		F	carbón	AC 1293	1022 ± 100	917	684-1067	
Shamakush I	sondeo	D techo	carbón	AC 827	1220 ± 110	1063	905-1303	
Shamakush I	V	D	carbón	AC 1291	1927 ± 120	1822	1538-2101	

(Tabla 1. Continuación)

Sitio	Cuadrícula	Capa	Materiales	Código laboratorio	Edades ¹⁴ C	Calibraciones de puntos medios según McCORMAC et al. 2004	Calibraciones AP (2 sigmas) según CALIB 6.0	Observaciones
Shamakush VIII		C 30	carbón	AC 1679	730 ± 55	658	555-690	
Shamakush VIII		C 25	carbón	AC 1678	1400 ± 90	1287	1058-1431	
Shamakush VIII		C 185	carbón	AC 1681	1380 ± 115	1280	970-1433	
Shamakush X		Е	carbón	AC 832	500 ± 100	507	587-647	
Shamakush X	sondeo	Е	carbón	AC 831	1480 ± 100	1309	1172-1568	
Paiashauaia II		B (re)	carbón	AA 78553	771 ± 35	670	638-727	
Mischiúen I	F9	C sup.	carbón	AC 1623	860 ± 90	730	637-922	
Mischiúen I	E10	C inf.	carbón	AC 1624	1060 ± 85	927	733-1088	
Mischiúen I	E 10 NE	D	carbón	AC 1625	1970 ± 95	1872	1693-2102	palimpsesto
Mischiúen I		F norte	carbón	AC 1648	4430 ± 180	5880	4521-5472	
Ajej I			carbón	AC 1667	1270 ± 180	1150	962-1297	
Ajej I		С	carbón	AC 1584	1400 ± 90	1286	1058-1431	
Kaiyawoteha III		C 3	carbón	ENEA 881	577 ± 42	706	502-631	
Kaiyawoteha II		N 1	carbón	ENEA 879	726 ± 41	656	559-680	
Binushmuka I		contacto B/C	carbón	AA 99093	1884 ± 40	1735	1701-1884	
Binushmuka I	A	contacto B/C	madera	Beta 347690	1890 ± 30	1740	1710-1839	
Binushmuka I		C techo	carbón	AA 99091	1929 ± 39	1822	1728-1918	
Binushmuka I	A	C cuerpo	carbón	AA 99090	1963 ± 38	1869	1747-1993	
Binushmuka I	В	C	carbón	AA 99089	5902 ± 45	6665	6532-6791	
Binushmuka I	В	С	carbón	Beta 347692	5950 ± 40	6635	6637-6808	
Binushmuka I	В	S	carbón	Beta 347691	7310 ± 40	8028	7996-8177	
Binushmuka I	A	S	carbón	AA 99092	7486 ± 64	8293	8157-8394	
Heshkaia 35		В	carbón	AA 87119	816 ± 33	682	662-739	
Heshkaia 35		C inf.	carbón	AA 90434	656 ± 35	562	548-653	
Heshkaia 35		C sup.	carbón	AA 98121	532 ± 35	520	497-550	

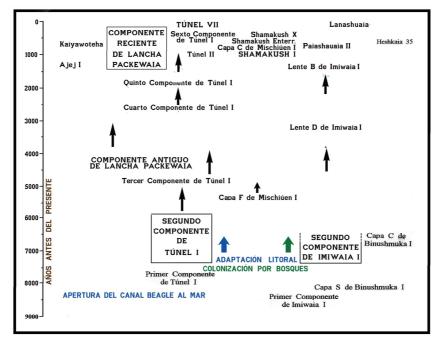


Figura 2. Ubicación cronológica de los conjuntos arqueológicos más importantes detectados por el Proyecto Arqueológico Canal Beagle (el ordenamiento de izquierda a derecha refleja la distribución espacial oeste-este dentro de la región)

La tabla 2 incluye las dataciones obtenidas en enterratorios humanos detectados en la región que hemos trabajado. En solamente un caso se encontró carbón asociado que permitiese un fechado confiable; en los restantes hubo que recurrir a elementos esqueletarios, pero dado que sus poseedores muy probablemente vivieron merced a una dieta predominantemente marítima los resultados obtenidos a su respecto están afectados por el Efecto Reservorio en un grado no bien determinable (ver más abajo). La tabla 3 contiene las calibraciones aplicables a fechados radiocarbónicos obtenidos en la región del canal Beagle y en islas al sur hasta el Cabo de Hornos por investigadores que trabajaron en otros proyectos.

Tabla 2. Calibración de fechados radiocarbónicos de enterratorios excavados por el Proyecto Arqueológico Canal Beagle

Sitios	Código Laborat.	Materiales analizados	Fechados (años AP)	Calibración
	AC 1680	carbón	620 ± 60	613 a 655 AP
Shamakush Entierro	AA 78556	hueso humano	680 ± 43	Efecto Reservorio
	AA 78557	hueso humano	1536 ± 46	Efecto Reservorio
Imiwaja Entierros	AA 78555	hueso humano	640 ± 43	Efecto Reservorio
Imiwaia Entierros	AA 78548	hueso humano	1363 ± 46	Efecto Reservorio
Paiashauaia I	AA 78558	hueso humano	1504 ± 46	Efecto Reservorio
Piscicultura	AA 78741	hueso humano	818 ± 44	Efecto Reservorio

Tabla 3. Calibración de fechados radiocarbónicos de la región del canal Beagle obtenidos por investigadores no integrantes del Proyecto Arqueológico Canal Beagle

								'AJ	CALIBRACIÓN	ACIÓN
Sitio	Sector	Capa	Material	Taxón	Código Laborat.	Edad ¹⁴ C	Lugar de publicación	Efecto rese	Punto medio (años AP) s/ McCormac et al. 2004	Variación (años AP) según CALIB 7.04 (2020)
				Costa noi	Costa norte del canal Beagle	Beagle				
Isla El Salmón 5			carbón		GrN 12430	1765 ± 25	Figuerero T. y Mengoni G. 1986		1610	1574-1704
Isla El Salmón 5			carbón		AC 939	1820 ± 120	Figuerero T. y Mengoni		1698	1418-1936
Isla El Salmón 5			carbón		AC 938	1560 ± 90	G. en Goldstein 1987		1385	1272-1607
Río Pipo 17			carbón		GK 14317	1080 ± 85	Figurero Torres v		933	762-1108
Tolkeyen			carbón		GK 14315	760 ± 80	Mengoni Goñalons, en		<i>L</i> 99	547-774
Tolkeyen			carbón		GK 14316	490 ± 80	Majewski 1991		503	319-635
Playa Larga	estruct. 1	prof. 15 cm	carbón		GX 14535	550 ± 70	Yesner 1990		528	449-652
Playa Larga	estruct. 2	prof. 15 cm	carbón		GX 14534	445 ± 70	Yesner 1990		493	312-556
Playa Larga	estruct. 2	30-35 cm	carbón		GX14536	610 ± 70	Yesner 1990		551	502-660
Playa Larga	estruct. 2	45-50 cm	carbón		GX14549	765 ± 75	Yesner 1990		899	557-803
Playa Larga	estruct. 2	65-70 cm	carbón		GX 14538	940 ± 70	Yesner 1990		792	712 -920
Playa Larga	estruct. 2	75-80 cm	carbón		GX 14539	810 ± 70	Yesner 1990		089	659-910
Lanashuaia I		C 300	carbón		CNA 301	1160 ± 70	Evans et al. 2016		086	908-1186
Lanashuaia I		C 321	carbón		CNA 302	1160 ± 60	Evans et al. 2016		086	926-1122

(Tabla 3. Continuación)

								'AJ	CALIBRACIÓN	ACIÓN
Sitio	Sector	Capa	Material	Taxón	Código Laborat.	Edad ¹⁴ C	Lugar de publicación	Efecto rese	Punto medio (años AP) s/ McCormac et al. 2004	Variación (años AP) según CALIB 7.04 (2020)
				Isla Navarino	Isla Navarino y otras más meridionales	ridionales				
Isla Navarino	costa oeste		madera		no informado	970 ± 90	Bird com. pers.	ç.	802-898	700-1015
Lauta			valvas quemadas	no informado	Gif 2729	2780 ± 110	Ortiz Troncoso 1977-78	Si,		
Lauta			valvas quemadas	no informado	R 4542/1	1080 ± 60	Ortiz Troncoso 1977-78	S,		
Lauta			valvas quemadas	no informado	Gif 2728	280 ± 90	Ortiz Troncoso 1977-78	Si,		
Grandi 1			carbón		Gif 8851	6160 ± 110	Legoupil 1993-94		2569	6732-7263
Grandi 1			carbón		Gif 9314	6120 ± 80	Legoupil 1993-94		6934	6738-7167
Baily 1			carbón		Gif 8862	1410 ± 50	Legoupil 1993-94		1289	1182-1357
Bertrand 1			carbón		Gif 8854	1300 ± 70	Legoupil 1993-94		1177	1052-1300
Isla Herschel			carbón		Gif 8852	09 ± 089	Legoupil 1993-94		568-633	536-676
Áridos Guerrico			valvas	no informado	A 10918	6495 ± 60	Ocampo y Rivas 2000	sí		
Caleta Segura		100 cm	carbón		A 10913	5635 ± 70	Ocampo y Rivas 2000		6394	6275-6548
Caleta Segura		30-40 cm	carbón		A 10917	1895 ± 50	Ocampo y Rivas 2000		1745-1813	1700-1914
Caleta Segura			carbón		A 10912	1540 ± 70	Ocampo y Rivas 2000		1360	1292-1536
Bahía Honda			carbón		A 10914	4895 ± 60	Ocampo y Rivas 2000		5589	5464-5732
Eugenia			carbón		Beta 127304	1590 ± 70	Ocampo y Rivas 2000		1407	1307-1573
Bahía Virginia			carbón		Beta 127306	1490 ± 60	Ocampo y Rivas 2000		1314	1270-1488

(Tabla 3. Continuación)

								'A,I	CALIBRACIÓN	ACIÓN
Sitio	Sector	Capa	Material	Taxón	Código Laborat.	Edad ¹⁴ C	Lugar de publicación	Efecto rese	Punto medio (años AP) s/ McCormac et al. 2004	Variación (años AP) según CALIB 7.04 (2020)
Caleta Róbalo		inferior	carbón		A 10910	1275 ± 50	Ocampo y Rivas 2000		1172	1055-1274
Caleta Róbalo			carbón		A 10911	365 ± 40	Ocampo y Rivas 2000		330-442	309-475
Guerrico Alto			carbón		RT 3214	945 ± 30	Ocampo y Rivas 2000		794	740-905
Guerrico Alto			carbón		Beta 127300	870 ± 90	Ocampo y Rivas 2000		732	641-925
Caleta Segura/ Bahía Honda			carbón		TR 3215	920 ± 20	Ocampo y Rivas 2000		771	732-803
Caleta Segura/ Bahía Honda			carbón		Beta 127303	810±60	Ocampo y Rivas 2000		089	633-774
Ensenada Villarino			carbón		Beta 127301	880 ± 60	Ocampo y Rivas 2000		736	506-299
Puerto Eugenia			carbón		A 10917	630 ± 40	Ocampo y Rivas 2000		556	530-650
Santa Rosa			carbón		Beta 127308	590 ± 70	Ocampo y Rivas 2000		545	494-659
Isla Martínez			carbón		A 10916	220 ± 50	Ocampo y Rivas 2000		195-278	56-311

La tabla 4 presenta las calibraciones de dataciones radiocarbónicas de conjuntos arqueológicos ubicados en el sur de la Península Mitre y en la Isla de los Estados obtenidas tanto por investigadores vinculados a nuestro grupo de trabajo en la región del canal Beagle como por otros que actuaron en cumplimiento de proyectos propios. La incorporación de esta tabla se justifica porque esa zona es vecina de la que enfocamos de manera principal en este artículo y porque algunos aspectos sugieren la existencia de relaciones estrechas entre ambas en algunos momentos de la prehistoria.

Por último, sería posible presentar además un listado de calibraciones para dataciones que hemos obtenido, no en excavaciones extensas, sino en numerosos sondeos exploratorios o en prospecciones, pero dada su longitud debe ser consultado en el apéndice que acompaña a este artículo en Internet.

En esta presentación hemos omitido la mayoría de los fechados sugeridos por análisis de productos marinos o de seres humanos y/o animales que se alimentaban mayoritariamente de ellos, pues están afectados por el Efecto Reservorio, que en los alrededores del canal Beagle puede llegar a aumentar las determinaciones de antigüedad hasta en seiscientos años. Pero esto no sucede de manera pareja en todos los casos, porque la determinación de edades de las fechas que deberían servir como base para la calibración es alterada por factores diversos en magnitudes que no son constantes. Por ejemplo, es muy frecuente que cuando se dan a conocer análisis efectuados con conchillas de moluscos no se mencione a qué taxón pertenecían éstos o si hubo mezcla de especies distintas. Sin embargo, no todas provocan un aumento similar de antigüedades (ver tabla 5). En 1986 dos investigadores expertos en análisis radiocarbónicos y uno de nosotros publicaron un listado comparativo de dataciones efectuadas sobre diversas clases de moluscos extraídos en nuestras investigaciones en Tierra del Fuego: tres realizados con conchillas de Mytilus mostraron resultados parecidos (400 a 500 años de más antigüedad que el carbón de leña recuperado en la misma subunidad), si bien análisis posteriores mostraron diferencias un poco más altas, de hasta 650 años. Los fechados hechos a partir de conchillas de lapas (Nacella y Fissurella) indicaron diferencias algo mayores (600 y 700 años), si bien otro análisis produjo un resultado mucho más aberrante. En cambio, los análisis hechos con valvas de Trophon (caracoles marinos) dieron dos resultados estadísticamente no diferenciables de los obtenidos con carbón de la misma subcapa y, nuevamente, otro discordante. Por último, los análisis hechos con Balanus, que no son moluscos sino crustáceos cirripedios, produjeron resultados totalmente incoherentes (Albero et al. 1986). Años después, en otro laboratorio se efectuó un nuevo análisis comparativo, esta vez con materiales de Imiwaia I que incluían conchillas de nueve taxones diferentes (datadas por ¹⁴C no calibrado entre 5869 y 6143 años AP) pero no carbón por no habérselo hallado en la misma subcapa. Esto impidió establecer la medida del Efecto Reservorio, pero el ordenamiento resultante fue algo distinto: en fisurellas (contrariamente a lo ocurrido en los análisis anteriores), volutas, acantinas y balanos se constataron antigüedades bastante similares a las obtenidas en los mitílidos, pero trofones, almejas, chitones y nacelas quedaron fechados entre 105 y 150 años más atrás que los mitílidos.

A mayor abundamiento, no siempre las valvas de una misma especie provocan una modificación similar de antigüedad: influye la mayor o menor cercanía de los lugares donde fueron recolectados a la desembocadura de ríos o arroyos que descargan en el mar productos orgánicos de origen terrestre. Esto hace que la incidencia de los carbonatos antiguos conservados en el agua de mar se vea diluida, y que por lo tanto el Efecto Reservorio se reduzca (Albero *et al.* 1988).

En el caso de los cetáceos, algunas especies suelen frecuentar durante buena parte del año aguas más templadas, por ejemplo, las cercanas a Patagonia septentrional, en tanto otras suelen permanecer todo el año al sur del Estrecho de Magallanes o incluso se trasladan a mares próximos a la Antártida: en el primer caso la magnitud del Efecto Reservorio disminuye bastante, en el segundo aumenta.

Tabla 4. Calibración de fechados radiocarbónicos de la costa sur de Península Mitre y de la Isla de los Estados, obtenidos por integrantes del Proyecto Arqueológico del canal Beagle o por investigadores de otros proyectos

							CALIBR/	CALIBRACIONES
Sitio	Sector	Capa	Material	Código Iaborat.	Edad ¹⁴ C	Lugar de publicación	Punto medio (años AP) s/ McCormac et al. 2004	Variación (años AP) según CALIB 7.04 (2020)
				PENÍ	PENÍNSULA MITRE	4		
Bahía Valentín 8/86		hueso	humano	AA 77542	1468 ± 48	Zangrando et al. 2009	Efecto re	Efecto reservorio
Bahía Valentín 11		C media	carbón	Beta 23140	1350 ± 60	Vidal 1988	1265	1074-1306
Bahía Valentín 11		C 15	carbón	AA 75538	1400 ± 34	Zangrando et al. 2009	1287	1185-1315
Bahía Valentín 11		3	carbón	AA 77539	1590 ± 34	Zangrando et al. 2009	1407	1363-1527
Bahía Valentín 11		D	carbón	Beta 23139	1870 ± 50	Vidal 1988	1723	1611-1886
Bahía Valentín 11		Comp. inferior	carbón	AA 66714	4359 ± 42	Vázquez et al. 2007	4854	4825-4980
Bahía Valentín 11		Comp. inferior	carbón	AA 66713	4939 ± 43	Vázquez et al. 2007	5602	5582-5736
Bahía Valentín 11		X	carbón	AA 7750	5085 ± 39	Zangrando et al. 2009	5745	5651-5915
Bahía Valentín 11		O (techo)	carbón	Beta 23128	09 ∓ 0065	Vidal 1988	6999	6495-6798
				ISLA DI	ISLA DE LOS ESTADOS	SO		
Bahía Crossley 1	7 cm	II	carbón	INAH 147	2312 ± 292	Chapman 1987	2325	imprecisión excesiva
Bahía Crossley 1	8-10 cm	II	carbón	INAH 148	1527 ± 58	Chapman 1987	1350	1290-1445
Bahía Crossley 1	8-10 cm	II	carbón	INAH 286	1659 ± 68	Chapman 1987	1522	1349-1629
Bahía Crossley 1	11-12 cm	II	carbón	INAH 149	1721 ± 103	Chapman 1987	1550	1358-1820
Bahía Crossley 1	11-12 cm	П	carbón	INAH 287	1982 ± 81	Chapman 1987	1876	1693-2066
Bahía Crossley 1			carbón	INGEIS 2817	1500 ± 100	Piana, en Chapman 1987	1335	1177-1582
Bahía Crossley 1	cuadr. J 4	П	carbón	Beta 25699	2000 ± 70	Horwitz 1993	1889	1712-2061
Bahía Crossley 1	cuadr. R 5	П	carbón	Beta 27786	2180 ± 130	Horwitz y Scheinsohn 1996	2119	1774-2363
Bahía Crossley 1	cuadr. J 4	IV	carbón	Beta 25700	2480 ± 60	Horwitz 1993	2366-2455	2346-2709
Bahía Crossley 1	cuadr. J 3	VI	carbón	Beta 25701	2730 ± 90	Horwitz 1993	2764	2487-3004

Tabla 5. Comparaciones entre fechados radiocarbónicos obtenidos sobre muestras de carbón de leña y de distintos taxones afectados por el Efecto Reservorio

Sitio	Capa	Cuadríc.	Elemento analizado	Código laborat.	Edad ¹⁴ C no cal.	Diferencia en años	Observaciones	Inmediatez a ríos	Puntos medios	Variaciones calibradas	
	lente alfa	VIX-IIIX	carbón	AC 1030	2660 ± 100			no	2745	2376-2926	
	lente alfa	IV	carbón	Beta 2516	2690 ± 80			no	2751	2489-2954	
	lente alfa	ШХ	carbón	AC 677	3090 ± 90		osopnp	ou	3252	2990-3448	
TÚNEL I	lente alfa	IV	hueso de ?	AC 704	3190 ± 100	500		ou			
	lente alfa	IV	valva de Mytilus	AC 687	3700 ± 110	1010		ou			
	lente alfa	VI	valva de Mytilus	AC 686	3780 ± 110	1090		ou			
	lente alfa	IV	hueso de pinnípedo	AC 705	5000 ± 120		impugnable	ou			
	7 D	VI	valva de Balanus	AC 695	5110 ± 130	- 520		ou			
	7 D	VI	hueso de guanaco	AC 703	5280 ± 100	-350		ou			
	7 D	VI	carbón	AC 683	5630 ± 120			ou	6320-6392	6176-6669	
	7 D	VI	valva de <i>Trophon</i>	AC 676	5720 ± 120	superponible		ou			
TÚNEL I	7 D	IV	valva de Mytilus	AC 694	6180 ± 120	550		no			
	7 D	VI	valva de <i>Nacella</i>	AC 693	6220 ± 120	290		ou			
	7 D	VI	hueso de A. australis	AC 698	6240 ± 140	610		no			
	7 D	VI	valva de Aulacomya	AC 696	6290 ± 120	099		ou			
	7 D	IV	valva de Fissurella	AC 697	6340 ± 130	710		no			
II IHVIII	В		carbón	AC 824	1120 ± 90			ou	963	786-1184	
I OINEL II	В		valva de Mytilus	AC 1046	1670 ± 90	550		ou			

(Tabla 5. Continuación)

Sitio	Capa	Cuadríc.	Elemento analizado	Código laborat.	Edad ¹⁴ C no cal.	Diferencia en años	Observaciones	Inmediatez a ríos	Puntos medios	Variaciones calibradas
1 7 1 2/11/2/17	D 80	Ш	carbón	AC 1580	3340 ± 150			sí	3479	3161-3922
IMI WALA I	D 80	Ш	valva de Mytilus	AC 1581	3620 ± 160	280		Sí		
	K 55	IV	valva de Mytilus	ENEA 872	5991 ± 31	compatible c	compatible con AA 86509 (carbón)	SÍ		
	K 60	IV	valva de <i>Voluta</i>	ENEA 874	5£ ± 8009	superponible	superponible a ENEA 872	Sí		
	K 55	IV	valva de Acanthina	ENEA 870	6019 ± 34	superponible	superponible a ENEA 872	sí		
IMIWAIA I	K 55	IV	valva de Balanus	ENEA 876	6035 ± 48	superponible	superponible a ENEA 872	Sí		
	K 60	IV	valva de <i>Trophon</i>	ENEA 871	98 = 36	107		Sí		
	K 56	IV	valva de almeja	ENEA 873	6110 ± 35	119		sí		
	K 55	IV	valva de Chiton	ENEA 875	6110 ± 55	119		Sí		
	K 55	IV	valva de <i>Nacella</i>	ENEA 869	6143 ± 35	152		sí		
Insilawwans	D techo	oapuos	carbón	AC 827	1220 ± 110			Sí	1063	905-1303
THEOMEMORIE	D techo	oapuos	valva de Mytilus	AC 878	1280 ± 100	09		Sí		
	D 290		valva de Mytilus	AC 1033	1320 ± 90			Sí		
SHAMAKUSHI			valva de Balanus	AC 1038	1350 ± 100	30		sí		
			valva de <i>Trophon</i>	AC 1037	1600 ± 100	280		sí		
п пыламары			carbón	AC 826	1100 ± 120			Sí	958	736-1186
HAMANOSH II			valva de Mytilus	AC 877	1320 ± 100	220		sí		
ШПЗИДАМИНЗ			carbón	AC 828	410 ± 700			sí	467	269-577
шнамамана			valva de <i>Mytilus</i>	AC 879	700 ± 100	290		sí		

(Tabla 5. Continuación)

Sitio	Capa	Cuadríc.	Elemento analizado	Código laborat.	Edad ¹⁴ C no cal.	Diferencia en años	Observaciones	Inmediatez a ríos	Puntos medios	Variaciones calibradas	
MIDSHAVIVVIDS			carbón	AC 829	310 ± 100			sí	310	135-502	
NI HEONEWELLS			valva de Mytilus	AC 880	450 ± 100	140		sí			
AI HSHAWWAHS			carbón	AC 830	940 ± 100			sí	792	542-894	
ALTIMATION			valva de Mytilus	AC 881	960 ± 100	20		Sí			
SHAMAKUSH			carbón	AC 1680	620 ± 60			sí	554	513-656	
ENTIERRO			hueso humano	AA 78556	681 ± 43	61		Sí			
	C superior		carbón	AC 1040	1210 ± 100			no	1058	911-1296	
HARBERTON GALPÓN	C superior		valva de Mytilus	AC 1042	1741 ± 100	531		ou			
	C superior		valva de <i>Patella</i>	AC 1041	5510 ± 120		impugnable	no			
	В	2	carbón	AC 1043	360 ± 90			no	329	143-533	
HARBERTON CEMENTERIO	В	2	valva de <i>Patella</i>	AC 1044	540 ± 110	180		ou			
	В	2	valva de Mytilus	AC 1045	06 ± 008	440		ou			

Respecto de las dataciones de restos humanos, es indudable que la forma de alimentación de los antiguos habitantes de la región debió provocar distorsión de sus antigüedades a consecuencia del Efecto Reservorio. Pero las correcciones necesarias para dar un punto de partida más firme a las calibraciones chocan con inconvenientes aún mayores que los que presentan las dataciones obtenidas mediante análisis de restos de mariscos: como los seres humanos de la región no vivían permanentemente dependientes de la explotación de determinados conchales, habría que evaluar de alguna manera: 1) qué proporciones de su consumo de mariscos provenían de conchales próximos a la desembocadura de ríos o de otros más alejados; 2) más grave aún: qué proporción de su alimento satisfacía ese individuo con el consumo de carne y grasa de mamíferos marinos (también fuerte productora de Efecto Reservorio) y en cuánto hubo recurrido a la carne de animales terrestres (guanacos y otros) que no habrían producido tal efecto (un fechado radiocarbónico sugiere incluso reducción de la antigüedad, pero no es suficiente para afirmarlo). De hecho, los restos humanos de Shamakush I dan una fecha superior en solo sesenta años a la de carbón, en tanto los de Harberton Cementerio lo hacen en hasta 440 años (ver tabla 5). Esa corrección es imprescindible para estimar la medida en la que esa datación radiocarbónica inicial deba ser necesariamente modificada como base para la calibración, pero parece difícilmente realizable, y por consiguiente de nuevo habría que limitarse a estimaciones del tipo "no más de X años".

Otra dificultad es que los fechados radiocarbónicos tradicionales recibidos por nuestro proyecto mostraban con frecuencia márgenes de imprecisión altos, de más de 150 años y en algún caso más de 500 (en su mayoría fueron obtenidos en época en que el método de análisis todavía no había recibido los refinamientos y mejoras que llegaron después, y si se trataba de muestras pequeñas el laboratorio debía diluirlas con benceno). En el momento de recibir las dataciones, esos márgenes de variación no parecían plantear problemas serios, y ellas fueron productivamente utilizadas en publicaciones anteriores. Sin embargo, al usar para las calibraciones variaciones de dos sigmas de amplitud, tales márgenes se duplican, triplican o a veces más. Para datar sucesos ocurridos hace algunos milenios, la imprecisión se torna grande y por lo tanto el fechado pierde utilidad. Por lo tanto, en la tabla 1 hemos indicado los resultados de la calibración únicamente cuando los márgenes de variación no superan los quinientos años, o sea mil en total.

Por lo tanto, no es fácil calcular en qué medida cada caso particular ha sido afectado por el Efecto Reservorio. Como tampoco es conveniente seguir manteniendo la validez de la estimación pre-calibración, consideramos que sería prudente limitarnos en tales casos a expresar que su antigüedad debería oscilar alrededor de tal o cual fecha, que sería la central calibrada, dejando en suspenso la cantidad de años que pueda ser cubierta por la variación en dos sigmas, y recordando el lector que tampoco en este caso es forzoso que tal fecha "central" sea la que más se aproxime a la antigüedad real del acontecimiento en cuestión.

CONCLUSIÓN

Estas calibraciones permitirán evaluar con mayor exactitud el proceso de poblamiento humano desarrollado a través del tiempo en la región del canal Beagle. La presencia humana en la región se inició ya alrededor del límite entre Holoceno inicial y medio (fijado por Walker *et al.* 2012 en 8200 AP), no en el Holoceno medio como se pensaba; la adaptación al ambiente litoral se habría hecho notoria ya a principios del Holoceno medio, no en sus momentos finales.

Las calibraciones no han modificado de manera igual todas las dataciones radiocarbónicas obtenidas por los métodos iniciales. En las relacionadas con procesos arqueológicos ocurridos en la región del canal Beagle e islas más meridionales, si tomamos como guía los fechados centrales de los diversos márgenes de variación, las 157 antigüedades menores a 2200 años AP deben ser reducidas hasta en 220 años o aumentadas hasta solo 27 años, con una sola excepción de 124

años; el promedio de estas 157 dataciones es una reducción de antigüedades de 87,18 años. En cambio, las calibraciones de 64 fechados originariamente comprendidos entre 2480 y 7842 años AP aumentan entre menos nueve años (un único caso) y 920 años, con un promedio de 614,10 años.

Esto no significa que una datación pueda ser modificada automáticamente aplicando tales promedios de reducción o incremento, pues dentro de uno y otro paquete temporal hay variantes progresivas. En los fechados del primer grupo, los comprendidos entre 300 y 500 años AP se da una fuerte tendencia a no ser alterados en más de 32 o 33 años, cifras que aumentan bastante en los demás. Algo semejante ocurre en el segundo grupo: las dataciones que antes de ser calibradas se ubicaban entre 2480 y 3000 años varían al ser calibradas solo entre el recién citado caso de reducción en nueve años hasta incrementos de hasta 110 años (en la mayoría de los casos, mucho menores), en tanto en las muestras de antigüedad mayor a 3000 años las calibraciones las hacen trepar rápidamente a aumentos de varios cientos de años (como también ya se dijo, de hasta 920 años); sin embargo, también hay que indicar que las dataciones más remotas, correspondientes al limo subyacente a los conchales, muestran un leve descenso y quedan entre 699 y 769 años (alrededor de estos carbones recuperados de la capa basal no se vieron indicios de que hubieran penetrado desde capas más recientes).

En este trabajo hemos presentado los fechados radiocarbónicos de materiales arqueológicos hallados en la región del canal Beagle e islas más al sur que consideramos confiables por la concordancia que tienen con las estructuras estratigráfica y cronológica para los diferentes sitios. Esos fechados han sido obtenidos en doce laboratorios distintos, lo que es un elemento más de confiabilidad en el conjunto. No hemos incorporado a este texto las dataciones que sopesamos como inseguras: las que por algún motivo resultan incoherentes con dichas estructuras estratigráfica y cronológica general, o que quedaron inmersas en márgenes de variación excesivamente grandes como para que con ellas se puedan obtener precisiones temporales útiles, o que por la índole de los materiales analizados quedaron afectadas por el Efecto Reservorio (cuya calibración se dificulta mucho por las razones más arriba expuestas). No podíamos incluirlas en el texto principal, porque habría parecido que las creemos válidas, pero también es posible que algún otro investigador quiera controlarlas, y por ello las colocamos en dos anexos consultables por Internet.

AGRADECIMIENTOS

Al CONICET, por la ayuda que constantemente nos brindó desde 1984. Al Centro Austral de Investigaciones Científicas (CADIC) por el amistoso trato con que desde entonces recibió a quienes viajábamos desde Buenos Aires y a quienes se instalaron en él como investigadores o becarios. A los geólogos, biólogos y otros integrantes de esa institución, por la paciencia y espíritu colaborativo con que atendieron nuestras continuas consultas, y en especial a Adrián Schiavini por su estudio sobre los pinnípedos. A los investigadores nacionales o extranjeros que se acercaron como observadores científicos, como colaboradores de este proyecto o como participantes puntualmente relacionados con nuestra investigación. A los más de doscientos estudiantes y egresados de carreras de Antropología que colaboraron en las excavaciones y que luego, junto al personal de apoyo técnico del CADIC y a algunas otras personas rotularon y acondicionaron los materiales hallados; a quienes entre los primeros –como becarios o no– se encargaron luego de estudios analíticos de las colecciones. Finalmente, agradecemos a *Relaciones de la Sociedad Argentina de Antropología* por las muchas veces que publicó artículos nuestros y a los evaluadores por las sugerencias que nos hicieron para mejorar esta nota.

BIBLIOGRAFÍA

Albero, M. C., F. E. Angiolini y E. L. Piana

- 1986. Discordant ages related to Reservoir Effect of associated archaeological remains from Tunel site (Beagle Channel, Argentine Republic). *Radiocarbon* 28 (2): 748-753.
- 1988. Holocene ¹⁴C Reservoir Effects at Beagle Channel (Tierra del Fuego, Argentine Republic). *Quaternary of South America and Antarctic Peninsula* 5: 59-71, Rotterdam.

Aspillaga, E., C. Ocampo Ercilla y P. Rivas Hurtado

1999. Restos óseos humanos de contextos arqueológicos del área de isla Navarino: indicadores de estilos de vida en indígenas canoeros. *Anales del Instituto de la Patagonia* 27: 123-137.

Álvarez, M. R., M. M. Vázquez y E. L. Piana

2008. Prácticas mortuorias entre los cazadores recolectores del canal Beagle: el caso de Shamakush Entierro. *Magallania* 36 (2): 105-121.

Bird, J. B.

- 1938. Antíquity and migrations of the early inhabitants of Patagonia, *Geographical Review*, XXVIII: 250-275.
- 1946. The archaeology of Patagonia. En J. Steward (comp.), *Handbook of South American indians*, Boletín 143, tomo I: 17-24. Washington, Smithsonian Institution, Bureau of American Ethnology.

Chapman, A.

1987. La Isla de los Estados en la Protohistoria: primeros datos arqueológicos. Buenos Aires. Eudeba.

Emperaire, J. y A. Laming

1961. Les gisements des îles Englefield et Vivían dans la mer d'Otway (Patagonie australe), *Journal de la Société des Américanistes* 50: 7 -77.

Estévez Escalera, J. y A. Vila Mitja (comps.)

1995. Encuentros en los conchales fueguinos. *Treballs d'Etnoarqueologia* nº 1. Barcelona, CSIC y Universidad Autónoma de Barcelona.

Figuerero Torres, M. J. y G. Mengoni Goñalons

1986. Excavaciones arqueológicas en la isla El Salmón (Parque Nacional de Tierra del Fuego). *PREP Informes de Investigación* 4. Buenos Aires.

Goldstein, L.

1987. Current Research. American Antiquity 52 (1): 175-183.

Hogg, A. G., Q. Hua, P. Blackwell, M. Niu, C. Buck, T. Grilderson, T. Heaton, J. Paalmer, P. Reimer, R. Reimer, C. Turney y S. Zimmermann

2013. SHCal₁₃ Southern Hemisphere calibration, 0-50,000 years cal. BP. Radiocarbon 55 (4): 1889-1903.

Horwitz, V.

1993. Maritime settlement patterns: Isla de los Estados. En L. Lanata (comp.): *Explotación de recursos faunísticos en sistemas adaptativos americanos*. *Arqueología Contemporánea 4*: 149-161.

Horwitz, V. y V. G. Scheinsohn

1996. Los instrumentos óseos del sitio Bahía Crossley I (Isla de los Estados). Comparación con otros conjuntos de la Isla Grande de Tierra del Fuego. En J. Gómez Otero (comp.), *Arqueología sólo Patagonia (ponencias de las Segundas Jornadas de Arqueología de la Patagonia*): 359-368. Centro Nacional Patagónico (CONICET).

- Lara, A., R. Villalba, R. Urrutia-Jalabert, A. González-Reyes, J. C. Aravena, B. H. Luckman, E. Cuo, C. Rodríguez y A. Wolodarsky-Franke
 - 2020. A 5680-year tree-ring temperature record for southern South America. *Quaternary Science Reviews*, 228, 106087.

Legoupil, D.

- 1989. Ethno-archéologie dans les archipels de Patagonie: les nómades marines de Punta Baja. Éditions Recherche sur les Civilisations, memoire n° 84, París.
- 1993-94. El archipiélago del Cabo de Hornos y la costa sur de la isla Navarino: poblamiento y modelos económicos. *Anales del Instituto de la Patagonia* 22: 101-121.
- 1997. Bahía Colorada (île d'Englefield): les premiers chasseurs de mammifères marines de Patagonie australe. París, Editions Recherche sur les Civilisations,
- 2000. El sistema económico de los nómades del Mar de Skyring (Archipiélago de Patagonia). *Anales del Instituto de la Patagonia* 25: 81-119.
- 2003. Cazadores-recolectores de Ponsonby (Patagonia austral) y su paleoambiente desde el VI al III milenio A. C. *Magallania* 31.

Legoupil, D. y N. Pigeot

2009. Les grandes pointes foliacées du type "Ponsonby". Un traceur culturel en Patagonie australe. *Journal de la Société des Américanistes* 95 (2):7-32.

Makewski, T.

1991. Current Research. American Antiquity 56 (1): 143-160.

McCormac, F. G., A. G. Hogg, P. G. Blackwell, C. E. Buck, T. F. Higham y P. J. Reimer 2004. Shcal 04 Southern Hemisphere calibration, 0-11.0 cal. KYR BP. *Radiocarbon* 46 (3): 1087-1092.

Menghin, O. F. A.

- 1956. ¿Existe en Tierra del Fuego la auténtica casa-pozo? Runa VII (1): 107-112.
- 1960. Urgeschichte der Kanuindianern des sudlischsten Amerika. En Steinzeitfragen der Alten und Neuen Welt (Festschrift fur Lothar F. Zotz): 343-375. Bonn. Las citas están tomadas de la traducción al castellano como Prehistoria de los indios canoeros del extremo sur de América, Anales de Arqueología y Etnología XXVI (1972): 5-51.

Ocampo Ercilla, C. y P. Rivas Hurtado

- 2000. Nuevos fechados ¹⁴C de la costa norte de la isla Navarino, costa sur del canal Beagle, Provincia Antártica Chilena, Región de Magallanes. *Anales del Instituto de la Patagonia* 28: 197-214.
- 2004. Poblamiento temprano de los extremos geográficos de los canales patagónicos: Chiloé e isla Navarino. *Chungará (Arica)*, volumen especial: 317-331.
- 2005. El poblamiento marítimo de los canales occidentales de la Patagonia desde Chiloé hasta el Cabo de Hornos. En Badd, G., et al.: Chile, país oceánico: 57-69. Santiago de Chile, Ocho libros editores.

Orquera, L. A. y E. L. Piana

- 1988. Composición tipológica y datos tecnomorfológicos y tecnofuncionales de los distintos conjuntos arqueológicos del sitio Túnel I (Tierra del Fuego). *Relaciones de la Sociedad Argentina de Antropología* XVII, nº 1 (1986-1987): 201-239.
- 1995. Lancha Packewaia: actualización y rectificaciones. *Relaciones de la Sociedad Argentina de Antropología* XIX (1993-1994): 325-362.
- 1996. El sitio Shamakush I (Tierra del Fuego, República Argentina). *Relaciones de la Sociedad Argentina de Antropología* XXI: 215-265.
- 1999. Arqueología de la región del canal Beagle (Tierra del Fuego, República Argentina). Sociedad Argentina de Antropología, Buenos Aires, 146 págs.
- 2005. La adaptación al litoral sudamericano sudoccidental: qué es y quiénes, cuándo y dónde se adaptaron. *Relaciones de la Sociedad Argentina de Antropología*, vol. XXX (2005), págs. 11-32.
- 2006. El poblamiento inicial del área litoral sudamericana occidental. Magallania 34 (2): 21-36.

Orquera, L. A., D. Legoupil y E. L. Piana

2011. The littoral adaptation to the southern end of America. Quaternary International 239: 61-69.

Orquera, L. A., E. L. Piana, M. R. Àlvarez, D. Fiore, M. M. Vázquez, A. F. J. Zangrando, A. Tessone y A. M. Tivoli

2008. El proyecto arqueológico canal Beagle. En Cruz, I. y M. S. Caracotche (comps.): *Arqueología de la costa patagónica. Perspectivas para la conservación*: 266-290. Río Gallegos, Universidad Nacional de la Patagonia Austral.

Ortiz Troncoso, R.

1979. Punta Santa Ana y Bahía Buena: deux gisements sur une ancienne ligne de rivage dans le Détroit de Magellan. *Journal de la Société des Américanistes* 56: 133-204.

Piana, E. L.

1984. Arrinconamiento o adaptación en Tierra del Fuego. *Antropología Argentina 1984*: 7-116. Buenos Aires, Editorial de Belgrano.

Piana, E. L. y G. Canale

1995. Túnel II: un yacimiento de la Fase Reciente del Canal Beagle. *Relaciones de la Sociedad Argentina de Antropología* XIX (1993-1994): 363-389.

Piana, E. L., J. Estévez Escalera y A. Vila Mitjà

2000. Lanashuaia: un sitio de canoeros del siglo pasado en la costa norte del canal Beagle. En *Desde el País de los Gigantes*, actas de las Cuartas Jornadas de Arqueología de la Patagonia: 455-467. Río Gallegos.

Piana, E. L. y L. A. Orquera

2007. Diferencias regionales y temporales en el litoral sudoccidental de Sudamérica. En F. Morello, M. Martinic, A. Prieto y G. Bahamonde (comps.): *Arqueología de Patagonia. Levantando piedras, desenterrando huesos ... y develando arcanos*: 311-323. Punta Arenas, Ediciones Cequa.

Piana, E. L., A. Tessone y A. F. J. Zangrando

2006. Contextos mortuorios en la región del canal Beagle: del hallazgo fortuito a la búsqueda sistemática. *Magallania* 34 (1): 103-117.

Piana, E. L., M. M. Vázquez y M. Álvarez

2008. Nuevos resultados del estudio del sitio Ajej I: un aporte a la variabilidad de estrategias de los canoeros fueguinos. *Runa* 29:101-121.

Piana, E. L., M. M. Vázquez y N. S. Rúa

2004. Mischiuen I. Primeros resultados de una excavación de rescate en la costa norte del canal Beagle. En M. T. Civalero, P. M. Fernández y A. G. Guráieb (comps.): Contra viento y marea. Arqueología de Patagonia: 815-832. INAPL y Sociedad Argentina de Antropología, Buenos Aires.

Piana, E. L., A. F. J. Zangrando y L. A. Orquera

2012. Early occupations in Tierra del Fuego and the evidences from S layer in Imiwaia I site (Beagle Channel, Argentina). En L. Miotti, M. Salemme, N. Flegenheimer y T. Goebel (comps.): Southbound: Late Pleistocene peoples of Latin America: 171-175. Texas A&M University, Center for the Study of the First Americans, College Station.

San Román Bontes, M.

2010. La explotación de recursos faunísticos en el sitio Punta Santa Ana I: estrategias de subsistencia de grupos de cazadores marinos de Patagonia meridional. *Magallania* 38 (1): 183-198.

Stuiver, M., P. J. Reimer y R. Reimer

2013. CALIB radiocarbon calibration. En CALIB 14C calibration program, Queen's University, Belfast.

Vázquez, M. F., A. F. J. Zangrando, A Tessone, A. Ceraso y L. Sosa

2007. Arqueología de bahía Valentín (Península Mitre, Tierra del Fuego): nuevos resultados y perspectivas. En F. Morello, M. Martinic, A. Prieto y G. Bahamonde (comps.): *Arqueología de Fuego-Patagonia: levantando piedras, desenterrando huesos... y develando arcanos*: 755-766. Punta Arenas. Ediciones CEOUA.

Vidal, H. J

1988. Bahía Valentín: seis mil años de ocupaciones humanas en el oriente fueguino. *Libro de Resúmenes del IX Congreso Nacional de Arqueología Argentina*: 77. Facultad de Filosofía y Letras, Universidad Nacional de Buenos Aires.

Walker, M. J., M. Berkelhammer, S. Björck, L. C. Cwynar, D. A. Fischer, A. J. Long, J. J. Lowe, R. Mewhan, S. O. Rasmussen y H. Weiss

2012. Formal subdivisions of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of the ice-core, marine and terrestrial records) in the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). *Journal of Quaternary Science* 27 (7): 649-659.

Yesner, D. R.

1990. Fuegians and other hunter-gatherers of the Subantarctic Region: cultural development reconsidered. En B. Meehan y N. White (comps.): *Hunter-gatherer demography: past and present*, Oceania Monograph n° 39: 1-22. Sidney.

Zangrando, A. F. J.

2009. Historia evolutiva y subsistencia de cazadores-recolectores marítimos de Tierra del Fuego. Buenos Aires, Sociedad Argentina de Antropología.

Zangrando, A. F. J., H. Bjerck, E. L. Piana, H. Breivik, A. M. Tivoli y J. Negre Pérez

2018. Patrones espaciales y dinámica de ocupación durante el Holoceno temprano de un sitio arqueológico en la costa sur de Tierra del Fuego: Binushmuka I. *Estudios Atacameños* 60: 31-49.

Zangrando, A. F. J., K. Borrazzo, A. M. Tivoli, D. Alunni y M. P. Martinoli

2014. El sitio Heshkaia 35: nuevos datos sobre la arqueología de Moat (Tierra del Fuego, Argentina). *Revista del Museo Antropológico* 7 (1): 11-24.

Zangrando, A. F. J., L. A. Orquera y E. L. Piana

2009. Diversificación e intensificación de recursos animales en la secuencia arqueológica del canal Beagle (Tierra del Fuego, Argentina). En M. Gutiérrez, M. De Nigris, P. Fernández, M. Giardina, A. Gil, A. Izeta, G. Neme y H. Yacobaccio (comps.): Zooarqueología a principios del siglo XXI: aportes teóricos, metodológicos y casos de estudio: 359-369. Buenos Aires, Ediciones del Espinillo.