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ABSTRACT: The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the prop-
erties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that
employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air
Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric condi-
tions at the observatory need to be continuously monitored during data acquisition. In particular,
light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration
is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from
the Central Laser Facility, located near the center of the observatory site, having an optical signa-
ture comparable to that of the highest energy showers detected by the FD. This paper presents two
procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots.
Cross checks between the two methods demonstrate that results from both analyses are compati-
ble, and that the uncertainties are well understood. The measurements of the aerosol attenuation
provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct
air shower data.
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M. Will33, C. Williams86, T. Winchen37, B. Wundheiler7 , T. Yamamoto86 a, T. Yapici81, P. Younk79,39,
G. Yuan80, A. Yushkov71, B. Zamorano Garcia70, E. Zas71, D. Zavrtanik66,65 , M. Zavrtanik65,66 ,
I. Zaw82 d, A. Zepeda52 b, J. Zhou86, Y. Zhu34, M. Zimbres Silva32,16, M. Ziolkowski39

1 Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2 Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Argentina
3 Departamento de Física, FCEyN, Universidad de Buenos Aires y CONICET, Argentina
4 IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
5 Instituto de Astronomía y Física del Espacio (CONICET-UBA), Buenos Aires, Argentina
6 Instituto de Física de Rosario (IFIR) - CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas
U.N.R., Rosario, Argentina
7 Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
8 National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza, Argentina

– 3 –



9 Observatorio Pierre Auger, Malargüe, Argentina
10 Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
11 Universidad Tecnológica Nacional - Facultad Regional Buenos Aires, Buenos Aires, Argentina
12 University of Adelaide, Adelaide, S.A., Australia
13 Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
14 Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
15 Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
16 Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
17 Universidade Estadual de Feira de Santana, Brazil
18 Universidade Federal da Bahia, Salvador, BA, Brazil
19 Universidade Federal do ABC, Santo André, SP, Brazil
20 Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
21 Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
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1. Introduction1

Direct measurements of primary cosmic rays at ultra-high energies (above 1018 eV) above the at-2

mosphere are not feasible because of their extremely low flux. The properties of primary particles3

– energy, mass composition, arrival direction – are deduced from the study of cascades of sec-4

ondary particles of Extensive Air Showers (EAS), originating from the interaction of cosmic rays5

with air molecules. The Pierre Auger Observatory [1] in Argentina (mean altitude about 1400 m6

a.s.l.) combines two well-established techniques: the Surface Detector, used to measure photons7

and charged particles produced in the shower at ground level; the Fluorescence Detector, used to8

measure fluorescence light emitted by air molecules excited by secondary particles during shower9

development. The Fluorescence Detector (FD) [2] consists of 24 telescopes located at four sites10

around the perimeter of the Surface Detector (SD) array. It is only operated during clear nights11

with a low illuminated moon fraction. The field of view of a single telescope is 30◦ in azimuth,12

and 1.5◦ to 30◦ in elevation. Each FD site covers 180◦ in azimuth. The hybrid feature and the large13

area of 3000 km2 of the observatory enable the study of ultra-high energy cosmic rays with much14

better precision and much greater statistics than any previous experiment.15

The fluorescence technique to detect EAS makes use of the atmosphere as a giant calorimeter16

whose properties must be continuously monitored to ensure a reliable energy estimate. Atmo-17

spheric parameters influence both the production of fluorescence light and its attenuation towards18

the FD telescopes. The molecular and aerosol scattering processes that contribute to the overall19

attenuation of light in the atmosphere can be treated separately. In particular, aerosol attenuation of20

light is the largest time dependent correction applied during air shower reconstruction, as aerosols21

are subject to significant variations on time scales as little as one hour. If the aerosol attenuation is22

not taken into account, the shower energy reconstruction is biased by 8 to 25% in the energy range23

measured by the Pierre Auger Observatory [3]. On average, 20% of all showers have an energy24

correction larger than 20%, 7% of showers are corrected by more than 30% and 3% of showers are25

corrected by more than 40%. Dedicated instruments are used to monitor and measure the aerosol26

parameters of interest: the aerosol extinction coefficient αaer(h), the normalized differential cross27

section – or phase function – P(θ), and the wavelength dependence of the aerosol scattering, pa-28

rameterized by the Ångstrom coefficient γ .29

At the Pierre Auger Observatory, molecular and aerosol scattering in the near UV are measured30

using a collection of dedicated atmospheric monitors [3]. One of these is the Central Laser Facility31

(CLF) [4] positioned close to the center of the array, as shown in Fig. 1. A newly built second32

laser station, the eXtreme Laser Facility (XLF), positioned north of the CLF, has been providing an33

additional test beam since 2009. The two systems produce calibrated 355 nm vertical and inclined34

laser shots during FD data acquisition. These laser facilities are used as test beams for various35

applications: to calibrate the pointing direction of telescopes, for the determination of the FD/SD36

time offset, and for measuring the vertical aerosol optical depth τaer(h) and its differential αaer(h).37

An hourly aerosol characterization is provided in the FD field of view with two independent ap-38

proaches using the same CLF vertical laser events. In the near future, those approaches will be39

applied to XLF vertical events. The FRAM robotic telescope is used for a passive measurement of40

the total optical depth of the atmosphere, the horizontal attenuation monitors (HAM) at two of the41

FD sites are used to characterize the optical properties of the atmosphere close to the ground.42
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Figure 1: Map of the Pierre Auger Observatory in Argentina. Dots represent SD stations, which
are separated by 1.5 km. The green lines represent the field of view of the six telescopes of each
of the four fluorescence detectors at the periphery of the SD array. The position of the atmospheric
monitoring devices is shown.

In addition to the CLF and XLF, four monostatic LIDARs [5] and four Infrared Cloud Cam-43

eras [6] – one at each FD site – are devoted to cloud and aerosol monitoring. During FD data44

acquisition, the LIDARs continuously operate outside the FD field of view and detect clouds and45

aerosols by analyzing the backscatter signal of a 351 nm pulsed laser beam. The cloud cameras use46

passive measurements of the infrared light and provide a picture of the field of view of every FD47

telescope every 5 minutes.48

To measure the Aerosol Phase Function (APF), a Xenon flash lamp at two of the FD sites49

fires a set of five shots with a repetition rate of 0.5 Hz once every hour [7]. The shots are fired50

horizontally across the field of view of five out of the six telescopes in each building. The resulting51

angular distribution of the signal gives the total scattering phase function P(θ) as a function of the52

scattering angle θ .53

In this paper, we will describe the analysis techniques used to estimate aerosol attenuation from54

CLF laser shots. In Sec. 2 we will review atmospheric attenuation due to aerosols and molecules.55

In Sec. 3, we will discuss the setup, operation and calibration of the CLF. Sec. 4 contains the56

description of the two analysis methods used to estimate the aerosol attenuation. Comparisons57

between the two methods and conclusions follow in Sec. 5 and 6.58

2. Atmospheric Attenuation59

Molecules in the atmosphere predominantly scatter, rather than absorb, fluorescence photons in the60
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UV range1. Molecular and aerosol scattering processes can be treated separately. In the following,61

the term “attenuation” is used to indicate photons that are scattered in such a way that they do not62

contribute to the light signal recorded by the FD. The molecular and aerosol attenuation processes63

can be described in terms of atmospheric transmission coefficients Tmol(λ ,s) and Taer(λ ,s), indi-64

cating the fraction of transmitted light intensity as a function of the wavelength λ and the path65

length s. The amount of fluorescence light recorded at the FD aperture I(λ ,s) can be expressed in66

terms of the light intensity at the source I0(λ ,s) as67

I(λ ,s) = I0(λ ,s) ·Tmol(λ ,s) ·Taer(λ ,s) · (1+H.O.) ·
dΩ
4π

, (2.1)

where H.O. are higher order corrections due to multiple scattering and dΩ is the solid angle sub-68

tended by the telescope aperture as seen from the light source.69

An accurate measurement of the transmission factors during data acquisition is necessary for70

a reliable reconstruction of the shower and for proper measurements of the physical properties71

of the primary particle (energy, mass composition, etc). While the molecular transmission factor72

Tmol(λ ,s) can be determined analytically once the vertical profiles of atmospheric temperature,73

pressure, and humidity are known, the aerosol transmission factor Taer(λ ,s) depends on the aerosol74

distribution naer(r,h), where r is the aerodynamic radius of the aerosols and h is the height above75

the ground.76

The molecular transmission factor Tmol(λ ,s) is a function of the total wavelength-dependent77

Rayleigh scattering cross section σmol(λ ) and of the density profile along the line of sight s in78

atmosphere nmol(s),79

Tmol(λ ,s) = exp
(

−

∫

σmol(λ )nmol(s)ds
)

. (2.2)

The Rayleigh scattering cross section σmol(λ ) is80

σmol(λ ) =
24π3

N2
s λ 4 ·

(

n2
air −1

n2
air +2

)

·Fair(λ ), (2.3)

where Ns is the atmospheric molecular density, measured in molecules per m−3, nair is the refrac-81

tive index of the air, and Fair is the King factor that accounts for the anisotropy in the scattering82

introduced by the non-spherical N2, O2 molecules [8].83

The atmospheric density profile along the line of sight nmol(s) is calculated using altitude-84

dependent temperature and pressure profiles,85

nmol(s) =
NA

R
·

p(h)
T (h)

, (2.4)

where NA is Avogadro’s number and R is the universal gas constant.86

Temperature, pressure and humidity vertical profiles of the atmosphere were recorded from87

August 2002 to December 2010 by performing an intensive campaign of radiosonde measurements88

above the site of the Pierre Auger Observatory [9]. A set of data was taken about every 20 m89

1The most absorbing atmospheric gases in the atmosphere are ozone and NO2. In the 300 to 400 nm range, the
contribution of their absorption to the transmission function is negligible [3].
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during the ascent. The balloons were able to reach altitudes of 25 km a.s.l. on average. Vertical90

profiles are complemented by temperature, pressure and humidity data from five ground-based91

weather stations. The measured profiles from these launches have been averaged to form monthly92

mean profiles (Malargüe Monthly Models) which can be used in the simulation and reconstruction93

of showers [9, 3]. Currently, the Global Data Assimilation System (GDAS) is used as a source94

for atmospheric profiles. GDAS combines measurements and forecasts from numerical weather95

prediction to provide data for the whole globe every three hours. For the location of the Pierre96

Auger Observatory, reasonable data have been available since June 2005. Comparisons with on-97

site measurements demonstrate the applicability of the data for air shower analyses [10].98

Aerosol scattering can be described by Mie scattering theory. However, it relies on the assump-99

tion of spherical scatterers, a condition that is not always fulfilled. Moreover, scattering depends100

on the nature of the particles. A program to measure the dimensions and nature of aerosols at101

the Pierre Auger Observatory is in progress and already produced first results, but more study is102

needed [11]. Therefore, the knowledge of the aerosol transmission factor Taer(λ ,s) depends on103

frequent field measurements of the vertical aerosol optical depth τaer(h), the integral of the aerosol104

extinction αaer(z) from the ground to a point at altitude h observed at an elevation angle ϕ2, assum-105

ing a horizontally uniform aerosol distribution (cf. Fig. 4),106

Taer(λ ,h) = exp
(

−

∫ h

0
αaer(z)dz/sinϕ2

)

= exp [−(τaer(h)/sinϕ2)]. (2.5)

Hourly measurements of τaer(h) are performed at each FD site using the data collected from the107

CLF.108
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Figure 2: The vertical profile of the molecular optical depth at 355 nm (dots), shown together with
the measured vertical profiles of the aerosol optical depth in case of high, average, and low aerosol
attenuation of the light. Height is measured above the ground.

Similar to the aerosol transmission factor, the molecular transmission factor for UV light at109
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355 nm can be calculated using the same geometry,110

Tmol(h) = exp [−(τmol(h)/sinϕ2)]. (2.6)

In Fig. 2, the vertical profile of the molecular optical depth τmol(h) is compared with measured111

aerosol profiles τaer(h) (Eq. 2.5) in case of high, average and low aerosols attenuation of light112

in the air. We define “high” aerosol attenuation when τaer(5km) > 0.1, “average” when 0.04 <113

τaer(5km) < 0.05 and “low” when τaer(5km) < 0.01. Considering an emission point P1 at an al-114

titude of 5 km and a distance on ground of 30 km from the FD, the quoted high, average and low115

values correspond to transmission factors of Taer < 0.54, 0.73 < Taer < 0.78 and Taer > 0.94, respec-116

tively. The steps seen in the τaer profiles are due to multiple aerosol layers at different altitudes.117

For the calculation of the molecular optical depth profile, monthly averaged temperature, pressure,118

and humidity profiles for the location of the Observatory were used. The 12 resulting τmol profiles119

were averaged, the fluctuations introduced by the varying atmospheric state variables throughout120

the year are very small, comparable to the size of the points in Fig 2. On the other hand, the aerosol121

attenuation can vary between clear and hazy conditions within a few days, making the constant122

monitoring of the aerosol optical depth necessary.123

3. The Central Laser Facility124

The Central Laser Facility, described in detail elsewhere [4], generates an atmospheric “test beam”.125

Briefly, the CLF uses a frequency tripled Nd:YAG laser, control hardware and optics to direct a126

calibrated pulsed UV beam into the sky. Its wavelength of 355 nm is near the center of the main127

part of the nitrogen fluorescence spectrum [12]. The spectral purity of the beam delivered to the128

sky is better than 99%. Light scattered from this beam produces tracks in the FD telescopes. The129

CLF is located near the middle of the array, nearly equidistant from three out of four of the FD130

sites, at an altitude of 1416 m above sea level. The distances to the Los Leones (located 1416.2 m131

above sea level), Los Morados (1416.4 m), Loma Amarilla (1476.7 m) and Coihueco (1712.3 m)132

FD sites are 26.0 km, 29.6 km, 40 km, and 30.3 km, respectively. In Fig. 3, a picture (left) of the133

CLF is shown. The CLF is solar-powered and operated remotely.134

Figure 3: Left: The Central Laser Facility. Right: A schematic of the Central Laser Facility.
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Figure 4: Laser-FD geometry. The light is scattered out of the laser beam at a height h at an
angle θ .

The laser is mounted on an optical table that also houses most of the other optical components.135

The arrangement is shown in Fig. 3 (right). Two selectable beam configurations – vertical and136

steerable – are available. The steering mechanism consists of two mirrors on rotating, orthogonal137

axes which can direct the beam in any direction above the horizon. The inclined laser shots can138

be used to calibrate the pointing and time offsets of the fluorescence telescopes. For the aerosol139

analyses described in this paper, only the vertical beam is used. For this configuration, the beam140

direction is maintained within 0.04◦ of vertical with full-width beam divergence of less than 0.05◦.141

The Nd:YAG laser emits linearly polarized light. To perform the aerosol measurements de-142

scribed in this paper, it is convenient, for reasons of symmetry, to use a vertical beam that has no143

net polarization. In this case equal amounts of light are scattered in the azimuthal directions of144

each FD site. Therefore, the optical configuration includes depolarizing elements that randomize145

the polarization by introducing a varying phase shift across the beam spot. The net polarization of146

the fixed-direction vertical beam is maintained within 3% of random.147

The nominal energy per pulse is 6.5 mJ and the pulse width is 7 ns. Variations in beam148

energy are tracked to an estimated accuracy of 3%. The relative energy of each vertical laser shot149

is independently measured by a photodiode and a pyroelectric probe. The CLF laser energy is150

periodically calibrated and optics are cleaned. For each of these periods a new coherent data set is151

defined and the corresponding period referred to as a CLF epoch. The length of an epoch varies152

between a few months and one year.153

The CLF fires 50 vertical shots at 0.5 Hz repetition rate every 15 minutes during the FD154

data acquisition. Specific GPS timing is used to distinguish laser from air shower events. The155

direction, time, and relative energy of each laser pulse is recorded at the CLF and later matched to156

the corresponding laser event in the FD data.157

An upgrade [13] to the CLF is planned for the near future. This upgrade will add a backscatter158

Raman LIDAR receiver, a robotic calibration system, and replace the current flash lamp pumped159

laser by a diode pumped laser.160
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4. CLF Data Analysis161

The light scattered out of the CLF laser beam is recorded by the FD (see Fig. 4 for the laser-FD162

geometry layout). The angles from the beam to the FD for vertical shots are in the range of 90◦163

to 120◦. As the differential scattering cross section of aerosol scattering is much smaller than the164

Rayleigh scattering cross section in this range, the scattering of light is dominated by well-known165

molecular processes. Laser tracks are recorded by the telescopes in the same format used for air166

shower measurements. In Fig. 5, a single 7 mJ CLF vertical shot as recorded from the Los Leones167

FD site is shown. In the left panel of Fig. 6, the corresponding light flux profile for the same event168

is shown. In Fig. 6, right panel, an average profile of 50 shots is shown.169
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Figure 5: A 7 mJ CLF vertical event as recorded by the Los Leones FD site (distance 26 km). Left
panel: ADC counts vs. time (100 ns bins). The displayed data are for the marked pixels in the right
panel. Right panel: Camera trace. The color code indicates the sequence in which the pixels were
triggered.
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Figure 6: Left: The light flux profile of a single CLF vertical shot seen from the Los Leones FD
site. The same event as shown in Fig. 5 is used. Right: 50 shots average profile.

Laser light is attenuated in the same way as fluorescence light as it propagates towards the170

FD. Therefore, the analysis of the amount of CLF light that reaches the FD can be used to infer171

the attenuation due to aerosols. The amount of light scattered out of a 6.5 mJ laser beam by the172

atmosphere is roughly equivalent to the amount of UV fluorescence light produced by an EAS of173
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5× 1019 eV at a distance to the telescope of about 16 km, as shown in Fig. 7. Also shown is the174

more attenuated light profile of an almost identical shower at a larger distance.175

Besides determining the optical properties of the atmosphere, the identification of clouds is176

a fundamental task in the analysis of CLF laser shots. Clouds can have a significant impact on177

shower reconstruction.178
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Figure 7: Comparison between a 50 shot average of vertical 6.5 mJ UV laser shot from the CLF and
near-vertical cosmic ray showers measured with the FD. The cosmic ray profile has been flipped in
time so that in both cases the left edge of the profile corresponds to the bottom of the FD field of
view.

In Fig. 8, examples of various hourly profiles affected by different atmospheric conditions are179

shown. The modulation of the profile is due to the FD camera structure, in which adjacent pixels are180

complemented by light collectors. A profile measured on a night in which the aerosol attenuation181

is negligible is shown in panel (a). Profiles measured on nights in which the aerosol attenuation182

is low, average and high, are respectively shown in panels (b), (c) and (d). As conditions become183

hazier, the integral photon count decreases. The two bottom profiles (e) and (f) represent cloudy184

conditions. Clouds appear in CLF light profiles as peaks or holes depending on their position. A185

cloud positioned between the CLF and the FD can block the transmission of light in its travel from186

the emission point towards the fluorescence telescopes, appearing as a hole in the profile (e). The187

cloud could be positioned anywhere between the CLF and the FD site, therefore its altitude cannot188

be determined unambiguously. A cloud directly above the CLF appears as a peak in the profile,189

since multiple scattering in the cloud enhances the amount of light scattered towards the FD (f).190

In this case, it is possible to directly derive the altitude of the cloud from the peak in the photon191

profile since the laser-detector geometry is known.192

Two independent analyses have been developed to provide hourly aerosol characterization in193

the FD field of view using CLF laser shots from the fixed-direction vertical configuration. To194

minimize fluctuations, both analyses make use of average light flux profiles normalized to a fixed195
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Figure 8: Examples of light profiles measured with the FD at Coihueco under various atmospheric
conditions. The height is given above the FD. The number of photons at the aperture of the FD is
normalized per mJ of laser energy. Shown are a reference clear night (a); low (b), average (c) and
high aerosol attenuation (d); cloud between FD and laser (e); laser beam passing through cloud (f).

reference laser energy.196

• The Data Normalized Analysis is based on the comparison of measured profiles with a refer-197

ence clear night profile in which the light attenuation is dominated by molecular scattering.198

• The Laser Simulation Analysis is based on the comparison of measured light flux profiles to199

simulations generated in various atmospheres in which the aerosol attenuation is described200

by a parametric model.201
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Measured profiles are affected by unavoidable systematics related to the FD and laser calibra-202

tions. Simulated profiles are also affected by systematics related to the simulation procedure. Using203

measurements recorded on extremely clear nights where molecular Rayleigh scattering dominates,204

CLF observations can be properly normalized without the need for absolute photometric calibra-205

tions of the FD or laser. We will refer to these nights as reference clear nights. At present multiple206

scattering effects are not included in the laser simulation code, however the aforementioned nor-207

malization includes this effect for Rayleigh scattering, allowing to take it into account in the Laser208

Simulation Analysis.209

4.1 Reference clear nights210

In reference clear nights, the attenuation due to aerosols is minimal compared to the uncertainty211

of total attenuation, the scattering is dominated by the molecular part. In such a clear night, the212

measured light profiles are larger than profiles affected by aerosol attenuation, indicating maximum213

photon transmission. Those profiles have shapes that are compatible with a profile simulated under214

atmospheric conditions in which only molecular scattering of the light is used. Reference clear215

night profiles are found by comparing measured profiles to simulated average profiles of 50 CLF216

shots in a purely molecular atmosphere at an energy of 6.5 mJ. Using the Malargüe Monthly Models217

described in section 2, the procedure is repeated 12 times using the appropriate atmospheric density218

profiles.219

The method chosen for the comparison is the unnormalized Kolmogorov-Smirnov test. This220

test returns a pseudo-probability2 PKS that the analyzed profile is compatible with the clear one on221

the basis of shape only, without taking into account the normalization. For each profile, PKS and222

the ratio R between the total number of photons of the measured profile and the simulated clear223

one is calculated. In each CLF epoch, the search for the reference clear night is performed among224

profiles having high values of PKS and R. A search region is defined by extracting the mean values225

µPKS , µR and the RMS σPKS ,σR of the distribution of each parameter. Both parameters are required226

to be above their average µ +σ . Profiles belonging to the search region are grouped by night,227

and nightly averages for the two parameters are computed 〈PKS〉 and 〈R〉. A list of candidate clear228

nights with associated pseudo-probabilities and number of profiles is produced. The night with the229

highest 〈PKS〉 is selected and – if available – at least 4 candidate profiles are averaged to smooth230

fluctuations. Once identified, the associated 〈R〉 is the normalization constant that fixes the energy231

scale between real and simulated profiles needed in the Laser Simulation Analysis. We estimated232

the uncertainty introduced by the method chosen to identify the reference clear night by varying233

the cuts that determine the list of candidate clear nights and the selection criteria that identify the234

chosen reference night in the list. The normalization constant used to fix the energy scale between235

real and simulated CLF profiles changes by less than 3%.236

As a final check to verify that the chosen nights are reference clear nights we analyze the237

measurement of the aerosol phase function (APF) [7] for that night, measured by the APF monitor238

(see Sec. 1). The molecular part of the phase function Pmol(θ) can be calculated analytically from239

temperature, pressure and humidity at ground provided by weather stations. After subtraction of the240

2the Kolmogorov-Smirnov test calculates probabilities for histograms containing counts, therefore here the returned
value is defined as a pseudo-probability.
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molecular phase function, the aerosol phase function remains. In a reference clear night, the total241

phase function is dominated by the molecular part with almost no contribution from aerosols. Since242

the APF light source only fires approximately horizontally, this method to find the reference nights243

is insensitive to clouds, so it can only be used as a verification of reference nights that were found244

using the procedure described in this section. After verification, the reference night is assumed to245

be valid for the complete CLF epoch. In Fig. 8, panel (a), an averaged light profile of a reference246

night is shown.247

4.2 Data Normalized Analysis248

4.2.1 Building hourly laser profiles and cloud identification249

Using the timing of the event, the time bins of the FD data are converted to height at the laser250

track using the known positions of the FD and CLF. The difference in altitude between telescope251

and laser station and the curvature of the Earth, which causes a height difference on the order of252

50 m, are taken into account. The number of photons is scaled to the number of photons of a253

1 mJ laser beam (the normalization energy is an arbitrary choice that has no implications on the254

measurements). The CLF fires sets of 50 vertical shots every 15 minutes. For each set, an average255

profile is built.256

Clouds are then marked by comparing the photon transmission Taer (see Eq. 2.5) of the quarter257

hour profiles Tquarter to the clear profile Tclear bin by bin. A ratio Tquarter/Tclear of less than 0.1258

indicates a hole in the profile that is caused by a cloud between the laser beam and the FD. A259

ratio larger than 1.3 indicates that the laser beam passed through a cloud directly above the CLF260

causing a spike in the profile. In both cases, the minimum cloud height hcloud is set to the height261

corresponding to the lower edge of the anomaly. Only bins corresponding to heights lower than this262

cloud height are used for the optical depth analysis. Hours are marked as cloudy only if clouds are263

found in at least two quarter hour sets, see Fig. 9. If there are no such discontinuities, then hcloud is264

set to the height corresponding to the top of the FD camera field of view.265

After hcloud is determined, a preliminary full hour profile is made by averaging all the available266

quarter hour profiles. One or more quarter hour profiles can be missing due to the start or stop of FD267

data taking, heavy fog, or problems at the CLF. Only one quarter hour profile is required to make268

a full hour profile. Outlying pixels that triggered randomly during the laser event are rejected and269

a new full hour profile is calculated. To eliminate outliers in single bins that can cause problems270

in the optical depth analysis, the quarter hour profiles are subjected to a smoothing procedure by271

comparing the current profile to the preliminary full hour profile. After multiple iterations of this272

procedure, the final full hour profile is constructed.273

The maximum valid height hvalid of the profile is then determined. If there is a hole in the274

profile of two bins or more due to the rejection of outliers or clouds, hvalid is marked at that point.275

As with hcloud, if no such holes exist, then hvalid is set to the height corresponding to the top of the276

FD camera field of view. If hvalid is lower than hcloud, the minimum cloud height is set to be the277

maximum valid height. Points above hvalid are not usable for data analysis.278

4.2.2 Aerosol optical depth calculation279

Using the laser-FD viewing geometry shown in Fig. 4, and assuming that the atmosphere is hori-280
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zontally uniform, it can be shown [14] that the vertical aerosol optical depth is281

τaer(h) =−
sinϕ1 sinϕ2

sinϕ1 + sinϕ2

(

ln
(

Nobs(h)
Nmol(h)

)

− ln
(

1+
Saer(θ ,h)
Smol(θ ,h)

))

, (4.1)

where Nmol(h) is the number of photons from the reference clear profile as a function of height,282

Nobs(h) is the number of photons from the observed hourly profile as a function of height and283

θ is defined in Fig. 4. Saer(θ ,h) and Smol(θ ,h) are the fraction of photons scattered out of the284

laser beam per unit height by aerosols and air molecules, respectively. S(θ ,h) is the product of285

the differential cross section for scattering towards the FD multiplied by the number density of286

scattering centers. For vertical laser shots (ϕ1 = π/2), Saer(θ ,h) is small compared to Smol(θ ,h)287

because typical aerosols scatter predominately in the forward direction. Thus the second term in288

Eq. 4.1 can be neglected to first order and Eq. 4.1 becomes289

τaer(h) =
lnNmol(h)− lnNobs(h)

1+ cosecϕ2
. (4.2)

With these simplifications, the CLF optical depth measurements depend only on the elevation angle290

of each laser track segment and the number of photons from the observed track and the reference291

clear profile. The aerosol optical depth may be calculated directly from Eq. 4.2.292

τaer is calculated for each bin in the hourly profile. The optical depth at the altitude of the293

telescope is set to zero and is interpolated linearly between the ground and the beginning of τmeas
aer294

corresponding to the bottom of the field of view of the telescope. This calculation provides a295

first guess of the measured optical depth τmeas
aer , assuming that aerosol scattering from the beam296

does not contribute to the track profile. While this is true for regions of the atmosphere with low297

aerosol content, τmeas
aer is only an approximation of the true τaer if aerosols are present. To overcome298

this, τmeas
aer is differentiated to obtain an estimate of the aerosol extinction αaer(h) in an iterative299

procedure.300

It is possible to find negative values of αaer. They are most likely due to statistical uncertainties301

in the fit procedure, or can be due to systematic effects. As the laser is far from the FD site, the302

brightest measured laser light profile, after accounting for relative calibrations of the FD and the303

laser, occurs during a clear reference night. However, there are uncertainties (see Sec. 4.2.3) in304

the calibrations that track the FD PMT gains and the CLF laser energy relative to the reference305

period. Therefore, in some cases it is possible that parts of a laser light profile recorded during a306

period of interest can slightly exceed the corresponding profile recorded during a reference period.307

Typically, these artifacts occur during relatively clear conditions when the aerosol concentration is308

low. The effect could also happen if a localized scattering region, for example a small cloud that309

was optically too thin to be tagged as a cloud, remained over the laser and scattered more light out310

of the beam. However, since negative values of αaer are unphysical, they are set to zero. Since the311

integrated αaer values are renormalized to the measured τmeas
aer profile, this procedure does not bias312

the aerosol profile towards larger values. The remaining values of αaer are numerically integrated313

to get the fit optical depth τfit
aer. The final values for αaer and τfit

aer can be used for corrections in light314

transmission during air shower reconstruction.315

In Fig. 9, examples of laser and τaer profiles are displayed from an average night and from316
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Figure 9: Examples of light profiles and vertical aerosol optical depth τaer measured with the FD
at Los Morados during an average night (top) and with the laser passing through a cloud (bottom).
The height is given above the FD, the light profile was normalized to a laser shot of 1 mJ. The
black traces in left panels represent the hourly profiles, the red traces the reference clear nights. In
the right panels, the thick black line represents τmeas

aer , the red line τfit
aer. The upper and lower traces

correspond to the uncertainties. In the bottom right panel, the estimated cloud height is indicated
by the vertical blue dotted line.

a cloudy night when the laser pulse passed through a cloud. In the left panels the black traces317

represent the hourly profiles and the red traces represent the reference clear nights. In the right318

panels τmeas
aer and τfit

aer measurements as a function of height are shown. The black curve is τmeas
aer319

and τfit
aer is overlaid in red. The upper and lower traces correspond to the uncertainties. In the320

cloudy night, a large amount of light is scattered by a cloud starting from a height of approximately321

7000 m. In the bottom right panel, the minimum height at which a cloud was detected is indicated322

by a vertical blue line.323

4.2.3 Determination of Uncertainties324

Systematic uncertainties are due to uncertainty in the relative calibration of the FD (σcal), the rela-325

tive calibration of the laser (σlas), and the relative uncertainty in determination of the reference clear326

profile (σref). A conservative estimate for each of these is 3%. These uncertainties are propagated327

in quadrature for both the hourly profile (σsyst,hour) and the clear profile (σsyst,clear). The systematic328

uncertainty strongly depends on the height. Thus, the viewing angle from the FD to the laser must329

be taken into account. The final systematic uncertainty on τmeas
aer is calculated by adding σsyst,hour330
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and σsyst,clear in quadrature, along with the height correction,331

σsyst =
1

1+ cscϕ2

√

(σsyst,hour)2 +(σsyst,clear)2. (4.3)

Two separate profiles are then generated corresponding to the values of τmeas
aer ±σsyst, as shown on332

the right panels of Fig. 9.333

The statistical uncertainty σstat is due to fluctuations in the quarter hour profiles and is consid-334

ered by dividing the RMS by the mean of all quarter hour profiles at each height. These statistical335

uncertainties are assigned to each bin of the τmeas
aer ±σsyst profiles. These two profiles are then pro-336

cessed through the same slope fit procedure and integration as τmeas
aer (see Sec. 4.2.2) to obtain the337

final upper and lower bounds on τfit
aer.338

4.3 Laser Simulation Analysis339

4.3.1 Atmospheric Model Description340

The atmospheric aerosol model adopted in this analysis is based on the assumption that the aerosol341

distribution in the atmosphere is horizontally uniform. The aerosol attenuation is described by342

two parameters, the aerosol horizontal attenuation length Laer and the aerosol scale height Haer.343

The former describes the light attenuation due to aerosols at ground level, the latter accounts for344

its dependence on the height. With this parameterization, the expression of the aerosol extinction345

αaer(h) and the vertical aerosol optical depth τaer(h) are given by346

αaer(h) =
1

Laer

[

exp
(

−
h

Haer

)]

, (4.4)

347

τaer(h2 −h1) =
∫ h2

h1

αaer(h)dh =−
Haer

Laer

[

exp
(

−
h2

Haer

)

− exp
(

−
h1

Haer

)]

. (4.5)

Using Eq. 2.5, the aerosol transmission factor along the path s can be written as348

Taer(s) = exp
(

Haer

Laer sinϕ2

[

exp
(

−
h2

Haer

)

− exp
(

−
h1

Haer

)])

, (4.6)

where h1 and h2 are the altitudes above sea level of the first and second observation levels and ϕ2349

is the elevation angle of the light path s (cf. Fig. 4).350

The Planetary Boundary Layer (PBL) is the lower part of the atmosphere directly in contact351

with the ground, it is variable in height and the aerosol attenuation of light can be assumed as352

constant. The PBL is neglected in this two parameters approach. In the near future, the mixing layer353

height will be introduced as a third parameter to take into account the PBL. In the Data Normalized354

Analysis, τaer(h) is calculated per height bin in the hourly profile, therefore this analysis is sensible355

to the PBL and takes it into account.356

4.3.2 Building quarter-hour CLF profiles and generating a grid of simulations357

As described in section 3, the CLF fires 50 vertical shots every 15 minutes. The profile of each358

individual event of the set is normalized to a reference energy Eref, to compute an average profile359
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equivalent to Eref for each group of 50 shots. In the following, this average light profile will be360

referred to simply as “profile”. A grid of simulations at the reference energy Eref is generated,361

fixing the initial number of photons emitted by the simulated vertical laser source. While energy362

and geometry of the simulated laser event are fixed, the atmospheric conditions, defined by aerosol363

and air density profiles, are variable and described by means of a two parameters models. The364

aerosol attenuation profile in the atmosphere, according to the model adopted, is determined setting365

values for Laer and Haer. For this analysis, the grid is generated by varying Laer from 5 to 150 km366

in steps of 2.5 km and Haer from 0.5 km to 5 km in steps of 0.25 km, corresponding to a total of367

1121 profiles. The air density profiles are provided by the Malargüe Monthly Models, as discussed368

in Sec 2. Therefore, a total of 13 452 profiles are simulated to reproduce the wide range of possible369

atmospheric conditions on site. In the left panel of Fig. 10, a measured CLF profile (in blue) is370

shown together with four out of the 1 121 monthly CLF simulated profiles (in red) used for the371

comparison procedure. In the right panel, the four aerosol profiles τaer(h) corresponding to the372

simulated CLF profiles are shown.373
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Figure 10: Left: Four out of the 1 121 simulated profiles of a monthly grid (red), superimposed
to a measured profile (blue). Right: The four aerosol profiles corresponding to the simulated CLF
profiles. In order, from top to bottom, τaer(h) profiles on the right correspond to CLF profiles on
the left from bottom to top.

The relative energy scale between measured and simulated laser profiles has to be fixed. The374

amplitude of CLF light profiles from laser shots fired at the same energy depends on the aerosol375

attenuation in the atmosphere and on absolute FD and CLF calibrations, that are known within376

10% and 7%, respectively. The ratio of the amplitudes of the simulated clear night to the measured377

reference clear night R as defined in Sec. 4.1 returns the normalization constant that fixes the378

relative energy scale between measured and simulated laser profiles. Using this normalization379

procedure, the dependence on FD or CLF absolute calibrations is avoided and only the relative380

uncertainty (daily fluctuations) of the laser probes (3%) and FD calibration constants (3%) must381

be taken into account. This procedure is repeated for each CLF epoch data set. Average measured382

profiles are scaled by dividing the number of photons in each bin by the normalization constant of383

the corresponding epoch before measuring the aerosol attenuation.384

– 20 –



4.3.3 Optical depth determination and cloud identification385

For each quarter hour average profile, the aerosol attenuation is determined obtaining the pair386

Lbest
aer , Hbest

aer corresponding to the profile in the simulated grid closest to the analyzed event. The387

quantification of the difference between measured and simulated profiles and the method to iden-388

tify the closest simulation are the crucial points of this analysis. After validation tests on sim-389

ulations of different methods, finally the pair Lbest
aer and Hbest

aer chosen is the one that minimizes390

the square difference D2 between measured and simulated profiles computed for each bin, where391

D2 = [∑i(Φmeas
i −Φsim

i )2] and Φi are reconstructed photon numbers at the FD aperture in each392

time bin. In Fig. 11, an average measured profile as seen from Los Leones compared to the sim-393

ulated chosen profile is shown. The small discrepancy between measured and simulated profiles,394

corresponding to boundaries between pixels, has no effect on the measurements.395
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Figure 11: A measured CLF profile (blue) together with the chosen simulated (red).

Before the aerosol optical depth is determined, the average profile is checked for integrity and396

for clouds in the field of view in order to establish the maximum altitude of the corresponding397

aerosol profile. The procedure for the identification of clouds works on the profile of the difference398

in photons for each bin between the measured profile under study and the closest simulated profile399

chosen from the grid. With this choice, the baseline is close to zero and peaks or holes in the400

difference profile are clearly recognizable. The algorithm developed uses the bin with the highest401

or lowest signal and the signal-to-noise ratio to establish the presence of a cloud and therefore402

determines its altitude. The quarter hour information on the minimum cloud layer height needed in403

the aerosol attenuation characterization is then stored.404

If the average profile under study shows any anomaly or if a cloud is detected between the laser405

track and the FD, it is rejected. If a cloud is detected above the laser track, the profile is truncated406

at the cloud base height and this lower part of the profile is reanalyzed, since the first search for407
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clouds only identifies the optically thicker cloud layer. If a lower layer of clouds is detected in the408

truncated profile, or the cloud height is lower than 5500 m a.s.l., the profile is rejected.409

If no clouds are detected (either in the whole average profile or in the lower part), the pair Lbest
aer ,410

Hbest
aer , together with the maximum height of the profile are stored and the procedure is completed.411

The quarter hour τaer(h) profile is calculated according to Eq. 4.5 together with the associated412

statistical and systematic uncertainties. The information is stored, and the quarter hour τaer(h)413

profiles are averaged to obtain the hourly vertical aerosol optical depth profile and the aerosol414

extinction profile αaer(h).415

4.3.4 Determination of Uncertainties416

Uncertainties on the vertical aerosol optical depth τaer(h) are due to the choice of the reference clear417

night, to the assumption that a parametric model can be adopted to describe the aerosol attenuation,418

to the relative uncertainty of nightly FD calibration constants – converting ADC counts to photon419

numbers – and CLF calibration constants – converting laser probe measurements to laser energy,420

and to the method used to choose the best matching simulated profile.421

To estimate the total uncertainty, the different contributions mentioned above are evaluated and422

summed in quadrature. The uncertainty on the choice of the reference clear night and the relative423

FD and CLF calibrations directly affect the light profile, therefore they are summed in quadrature to424

estimate their total contribution to the uncertainty on the photon profile, which is then propagated425

to the aerosol profile. The uncertainty introduced by the method used to identify the reference clear426

night is quoted at 3% as described in Sec. 4.1; the contributions arising from the daily variations427

on the FD and CLF calibration constants are both quoted at 3% level [4, 2]. Therefore, the total428

uncertainty of the number of photons in the profile is less than 5.2%. The effect on the aerosol429

profile τaer(h) of this total uncertainty on the light profile is evaluated by increasing and decreasing430

the number of photons in the current CLF profile by 5.2% and searching for the corresponding431

τmin(h) and τmax(h) profiles. At each height, the error bars are given by τbest(h)− τmin(h) and432

τmax(h)− τbest(h).433

The contribution due to the parametric description of the aerosol attenuation of light was de-434

termined comparing the hourly vertical aerosol optical depth profiles obtained with the Laser Sim-435

ulation Analysis to the corresponding profiles obtained with the Data Normalized Analysis, which436

is not using a parametric model for the aerosol attenuation. This comparison for each height shows437

that aerosol profiles are compatible within 2% at each altitude.438

The uncertainty related to the method defined to choose the best matching simulated profile439

as a function of the altitude is also estimated. As described in Sec. 4.3.3, the parameters Lbest
aer and440

Hbest
aer minimize the quantity D2 = [∑i(Φreal

i −Φsim
i )2]. The method is repeated a second time in441

order to find the couple Lerr
aer and Herr

aer corresponding to the quantity D2′ nearest to D2. This profile442

is used to estimate τerr(h), the uncertainty of the aerosol profile. Therefore, the uncertainty related443

to the method σmethod(h) associated with τaer(h) for each height bin is given by the difference444

τbest(h)− τerr(h). This uncertainty is negligible with respect to the previous contributions.445

The Laser Simulation Analysis extrapolates the aerosol attenuation for each quarter hour CLF446

profile; then the four measured aerosol profiles are averaged to obtain the hourly information447

needed for the air shower reconstruction. The same procedure is adopted to obtain the uncer-448
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tainties related to the hourly aerosol attenuation profile. As a final step, the hourly uncertainty on449

τaer(h) is propagated to the aerosol extinction αaer(h).450

5. Comparison of the two analyses451

The two analyses described in this paper independently produce hourly aerosol profiles. In the Data452

Normalized Analysis, measured laser light profiles are compared with an averaged light profile of453

a reference clear night. The Laser Simulation Analysis is a procedure based on the comparison of454

CLF laser light profiles with those obtained by a grid of simulated profiles in different parameter-455

ized atmospheric conditions.456

Both analyses have been applied to the whole data set of CLF laser shots. A systematic com-457

parison of the results shows excellent agreement. Since aerosols are concentrated in the lower458

part of the troposphere, we compare the total vertical aerosol optical depth at 5 km above the FD459

which includes most of the aerosols. The correlation of τaer(5 km) results of the Data Normalized460

Analysis and the results of the Laser Simulation Analysis is shown in Fig. 12. The dashed line is461

a diagonal indicating perfect agreement between the analyses. The solid line is an actual fit to the462

data. It is compatible with the diagonal. The reliability of the parametric aerosol model adopted463

and the validity of both methods can be concluded. In high aerosol attenuation conditions, com-464

patible with the presence of a high Planetary Boundary Layer, that the Laser Simulation Analysis465

does not take into account, the difference between the measured τaer(5 km) is within the quoted466

systematic uncertainties. Also shown in Fig. 12 are examples for the τaer(h) profiles estimated with467

the two analyses for conditions with low, average and high aerosol attenuation, respectively.468

The high compatibility of the two analyses guarantees a reliable shower reconstruction using469

aerosol attenuation for the highest possible number of hours. Nearly six years of data have been470

collected and analyzed (from January 2005 to September 2010). Long term results are shown in the471

following figures. In the left column of Fig. 13, the time profile of the vertical aerosol optical depth472

measured 5 km above ground using the Los Leones, Los Morados and Coihueco FD sites is shown.473

The Loma Amarilla FD site is too far from the CLF to obtain fully reliable results. The XLF is474

closer and will produce aerosol attenuation measurements for Loma Amarilla in the near future.475

Values of τaer(5 km) measured during austral winter are systematically lower than in summer.476

In the right column of Fig. 13, the τaer(5 km) distribution over six years is shown for aerosol477

attenuation measurements using the FD sites at Los Leones, Los Morados and Coihueco. More478

than 5000 hours of aerosol profiles have been measured with each FD. The average τaer(5 km)479

measured with different FD sites are compatible. The average value measured above Coihueco is480

slightly smaller due to the higher position (∼ 300 m) of the Coihueco FD site with respect to Los481

Leones and Los Morados.482

6. Conclusions483

Aerosols cause the largest time-varying corrections applied during the reconstruction of extensive484

air showers measured with the fluorescence technique. They are highly variable on a time scale485

of one hour. Neglecting the aerosol attenuation leads to a bias in the energy reconstruction of air486
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Figure 12: Correlation between τaer(5 km) obtained with the Laser Simulation and the Data Nor-
malized procedures (a) for the year 2008 (compatibility of results is equivalent in the other years).
The dashed line is a diagonal indicating perfect agreement, the solid line is a fit to the data. Also
shown is the vertical aerosol optical depth profile τaer(h) above ground from Laser Simulation
(blue) and Data Normalized (red) analyses in atmospheric conditions with a low (b), average (c),
and high (d) aerosol concentration together with the corresponding uncertainties. The laser data
was recorded with the FD at Los Leones on July 8th, 2008 between 8 and 9 a.m., April 4th, 2008
between 4 and 5 a.m., and January 5th, 2008 between 3 and 4 a.m. local time, respectively.

showers by 8 to 25% in the energy range measured by the Pierre Auger Observatory. This includes487

a tail of 7% of all showers with an energy correction larger than 30%.488

To determine the vertical aerosol optical depth profiles for the Pierre Auger Observatory, verti-489

cal laser shots from a Central Laser Facility in the center of the SD array are analyzed. The Central490

Laser Facility fires 50 vertical shots every 15 minutes during the FD data acquisition, covering491

the whole FD data taking period. Two methods were developed to analyze the CLF laser shots.492

The Data Normalized method compares the measured laser light profile to a reference clear night,493

the Laser Simulation method compares the measured profile with a set of simulated profiles. In494

addition, the minimum cloud heights over the central part of the array are extracted from the laser495

data. The two methods are compared and a very good agreement was found. Nearly six years of496
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Figure 13: Vertical aerosol optical depth τaer 5 km above the ground, measured with the Los Leones
(top), Los Morados (middle) and Coihueco (bottom) FD sites. Left column: Hourly measurements
of τaer versus time. Right column: Distribution of hourly measurements of τaer. Average values are
very similar.

data have been analyzed with both methods (from January 2005 to September 2010). In air shower497

reconstructions, mainly the results of the Data Normalized method are used. The data from the498

Laser Simulation method is used to fill holes in the data set where the Data Normalized method is499

not able to produce a result.500
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