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Abstract 

Heat transfer during cooling and warming is difficult to measure in cryo-devices; mathematical 

modelling is an alternative method that can describe these processes. In this study, we tested the 

validity of one such model by assessing in-vitro development of vitrified and warmed bovine oocytes 

after parthenogenetic activation and culture. The viability of oocytes vitrified in four different cryo-

devices was assessed. Consistent with modelling predictions, oocytes vitrified using cryo-devices 

with the highest modelled cooling rates had significantly (P < 0.05) better cleavage and blastocyst 

formation rates. We then evaluated a two-step sample removal process, in which oocytes were held 

in nitrogen vapour for 15 s to simulate sample identification during clinical application, before being 

removed completely and warmed. Oocytes exposed to this procedure showed reduced 

developmental potential, according to the model, owing to thermodynamic instability and 

devitrification at relatively low temperatures. These findings suggest that cryodevice selection and 

handling, including method of removal from nitrogen storage, are critical to survival of vitrified 

oocytes. Limitations of the study include use of parthenogenetically activated rather than fertilized 

ova and lack of physical measurement of recrystallization. We suggest mathematical modelling 

could be used to predict the effect of critical steps in cryopreservation 
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Introduction  

Current advances in cryopreservation of human gametes have led to near-complete replacement of 

traditional slow cooling protocols by ultra-fast cooling methods (Boldt, 2011, Edgar and Gook, 2012; 



Kuleshova et al., 1999). Vitrification, described by Luyet (1937), refers to the solidification of a 

sample into an amorphous, glassy-state without intracellular and extracellular ice crystal formation. 

When applied to embryology, this process requires high concentrations of cryoprotectants, 

extremely rapid cooling rates and minimal handling volume (Jain and Paulson, 2006; Rall and Fahy, 

1985). Description of thermodynamic events during cryopreservation is of great importance to 

elucidate what type of phenomenon is occurring: freezing, cooling, vitrification, thawing of ice in the 

sample or devitrification (Mazur, 1984). Devitrification events have been previously defined (Shaw 

and Jones, 2003; Yavin and Arav, 2007) as ice nuclei or crystals forming during warming of a vitrified 

solution. Therefore, measurement of temperature histories is necessary to establish whether 

vitrification or phase change transition (ice formation) takes place during cooling, and whether a 

vitrified sample undergoes devitrification during warming. Direct temperature measurement in cryo-

devices is often difficult (Choi and Bischof, 2010). Both the minimal volumes and the minute size of 

the cryo-devices for loading, plunging and storage of mammalian oocytes and embryos present a 

challenge. Although experimental observations through modified cryostereoscopes of sample 

crystallization during cooling and recrystallization fractures during warming have been reported 

(Yavin and Arav, 2007), direct observation and measurement of these events is not feasible for most 

laboratories. A useful alternative to predict time-temperature curves is the use of numerical 

modelling of the heat-transfer process. In the past decade, an increasing number of engineers have 

collaborated with researchers in the biomedical, embryology or life sciences fields to solve complex 

problems related to thermodynamic processes and, ultimately, to be able to predict heat and mass 

transfer processes and other kinetic-driven phenomena (Lunardini, 1981; Arce et al., 1983; Pham, 

2008; Alexiades and Solomon, 1993; Diller, 1997; Baudot and Odagescu, 2004; Choi and Bischof, 

2010). This numerical simulation approach is useful for predicting temperature histories and other 

important heat-transfer parameters, such as surface heat-transfer coefficients (Cleland et al., 1984; 

Sansinena et al., 2010, 2011, 2012; Santos et al., 2012), but it also contributes to the validation of 

experimental results and reduces the number and scope of experiments needed when assessing 

cryopreservation protocols (Choi and Bischof, 2010). Previously, our laboratory applied the finite 

element method, a numerical solution to heat conduction problems, for the prediction of heat-

transfer performance of cryo-devices used in oocyte and embryo vitrification (Sansinena et al., 

2011). This mathematical approach was also used to describe thermodynamic conditions during 

storage and warming of vitrified oocytes and embryos in relation to their glass transition rubbery 

state and to predict sample devitrification thresholds (Sansinena et al., 2014). To validate these 

numerical models, however, it is important to relate numerical predictions with cell survival and 

embryo development. Therefore, the objective of this study was to find the relationship between 

previously reported numerical simulations with in-vitro performance during cooling and warming of 

samples in cryo-devices. The modelled cooling and warming conditions (Sansinena et al., 2011, 



2014) were replicated in vitro, followed by analysis of morphological oocyte survival and in-vitro 

embryo development after parthenogenetic activation in a bovine model. 

 

Materials and methods  

 

Selection of experimental conditions based on previous numerical models  

The experimental conditions for oocyte vitrification, sample storage and warming were selected on 

the basis of conditions previously modelled in theoretical analyses (Sansinena et al., 2011, 2014) 

for several cryo-devices, including Cryoloop, Cryotop, Miniflex and Open PulledStraw (OPS). 

 

Experiment: in-vitro oocyte survival and embryo development after vitrification in cryo-
devices previously simulated by numerical model 

 

Oocyte in-vitro maturation and vitrification. Bovine ovaries were recovered from selected 

abattoirs classified as ‘Exportation Accredited’ by Animal Health National Service (Servicio Nacional 

de Seguridad Animal, SENASA, Argentina), with all the regulatory, animal health and slaughter 

practice that such accreditation entails. Ovaries were collected and transported to the laboratory at 

30°C in saline solution supplemented with antibiotics within 2 h of slaughter (Blondin and Sirard, 

1995); cumulus–oocyte complexes were aspirated by follicular puncture. Classification of cumulus–

oocyte complex quality was conducted following International Embryo Technology Society 

guidelines (Grade 1 [excellent] to Grade 4 [poor]). Only those oocytes classified as grades 1 and 2 

were selected for in-vitro maturation. Cumulus–oocyte complexes were matured in Earl’sbased 

Medium 199 (Invitrogen 11150-059, MA, USA) supplemented with 10% v/v heat-inactivated fetal 

bovine serum (FBS) (Gibco 10082- 139, US-origin), 5 l/ml porcine FSH (Sigma F 2293, MO, USA), 

10 g/ ml luteinizing hormone releasing hormone (Sigma H 8008), 1 g/ml 17 beta-oestradiol (Sigma 

E 2758, MO, USA) and 1 g/ml cysteamine (Sigma M 9768, MO, USA) in 5% CO2 in humidified air 

incubator at 38.5°C for 22 h. After 22 h of in-vitro maturation, oocytes were partially denuded of 

cumulus by gentle pipetting in 0.1% v/v hyaluronidase (350 IU, Sigma H 3506, MO, USA) solution. 

Oocytes were then washed three times in holding medium consisting of Hank’s-base Medium 199 

(Invitrogen 12350-039, MA, USA), supplemented with 10% v/v fetal bovine serum (FBS) and 

randomly allocated to Cryoloop, Cryotop, OPS or Miniflex cryo-devices. Stepwise vitrification 

protocol consisting of ethylene glycol (Sigma 03747, MO, USA), dimethylsulphoxide (Me2SO) 

(Sigma C 6164, MO, USA) and trehalose (Sigma T 0167, MO, USA) was adapted from Lane et al. 

(1999a; 1999b). Oocytes were exposed for 45 s to vitrification solution 1 consisting of 0.7 M Me2SO 



plus 0.9 M ethylene glycol prepared in Hank’s-based Medium 199 (Invitrogen 12350-039), 

supplemented with 10% v/v FBS. Next, oocytes were moved for 45 s to vitrification solution 2, 

containing 1.4 M Me2SO plus 1.8 M ethylene glycol. Finally, oocytes were immersed in vitrification 

solution 3, consisting of 2.8 M Me2SO plus 3.6 M ethylene glycol plus 0.65 M trehalose for 20 s, 

immediately loaded onto cryo-device and then directly plunged into liquid nitrogen. Loading 

procedure of cryo-device was conducted as previously described for Cryoloop (Lane et al., 1999a, 

1999b), Cryotop (Kuwayama, 2007), Miniflex (Tominaga and Hamada, 2001) and OPS (Vajta et al., 

1998). 

Warming. In all cases, warming procedure consisted of immediate direct immersion of the cryo-

device into step-wise dilutions of 0.25 M, 0.19 M and 0.125 M trehalose in Hank’s-based Medium 

199 supplemented with 10% FBS at 37°C (Lane et al., 1999b). Oocytes were then transferred to 

Earl’s-based Medium 199 supplemented with 10% v/v FBS and allowed to equilibrate in a 5% CO2 

incubator for 1 h before evaluation and subsequent parthenogenetic activation. 

Assessment of oocyte survival, parthenogenetic activation and embryo culture. Oocytes were 

stored in liquid nitrogen for a minimum of 24 h and a maximum of 2 weeks before warming, survival 

assessment and parthenogenetic activation. Vitrified–warmed oocytes and non-vitrified, fresh 

control oocytes were stripped of remaining cumulus in 1 mg/ml hyaluronidase solution. 

Morphologically intact oocytes after warming were identified by presence of homogeneous ooplasm, 

continuous oolemic membrane and non-fractured zona pellucida, and were subjected to 

parthenogenetic activation protocol. Parthenogenesis was selected in lieu of IVF in this model to 

eliminate variability introduced by sperm co-incubation and failure of sperm penetration or 

fertilization caused by to zona hardening. Oocytes were parthenogenetically activated as previously 

described (Campbell et al., 1996). Briefly, chemical activation was conducted by 5-min exposure to 

5 M ionomycin (Sigma, I 0634) at room temperature followed by a 3-h incubation in 2.5 mM 6-

dimethylaminopurine prepared in SOFaaci culture medium (Holm et al., 1999). Oocytes were then 

cultured in 35-l droplets of SOFaaci medium (five presumptive activated oocytes/culture droplet) in 

a modular incubator chamber (Billups-Rothenberg, Del Mar, CA) at 38.5°C and 5% O2, 5%CO2 and 

90% N2 in a humidified atmosphere. Activated oocytes were evaluated for cleavage after 2 days of 

invitro culture and the medium was then replaced with SOFaai with 5% v/v FBS, and culture was 

continued for 7 more days. 

Experiment 2: in-vitro oocyte survival and embryo development after different warming 
conditions previously simulated by numerical model  

Oocytes were vitrified in OPS cryo-device as previously described in the section ‘Oocyte in-vitro 

maturation and vitrification’, and exposed to storage conditions in either LN2 immersion or nitrogen 

vapour suspension (10 cm above LN2). Measured storage temperature range (Testo 735-1 digital 



thermometer and copper-nickel probe, NJ, USA) was −165°C (corresponding to samples suspended 

in nitrogen vapour at 22 cm below neck of Dewar) to −196°C (corresponding to samples immersed 

in liquid nitrogen) in liquid nitrogen; this range corresponds to the temperature stratification occurring 

in an undisturbed vapour phase, with sample canister suspended 22 cm from neck of MVE XC20 

Dewar (vapour suspension condition) to temperature of LN2 (−196°C) (liquid nitrogen immersion. 

Vitrified oocytes were stored under those conditions for a maximum of 1 month. Previously modelled 

(Sansinena et al., 2014) storage and sample removal conditions were replicated for the in- vitro 

study: one-step removal from LN2 immersion; one-step removal from N2-vapour phase suspension; 

and twostep removal from N2-vapour, with 15-s pause at neck of a 20-L Dewar (MVE XC20, 

Millenium 2000, Chart Biomedical, GA, USA), a condition simulating time required to read sample 

identification. The twostep protocol was applied only to vapour-suspended samples because it was 

hypothesized that these conditions were of highest thermodynamic instability. Two-step removal 

from LN2 immersion would have better simulated a clinical setting; however, it should be noted that 

no significant difference was found in samples stored immersed in LN2 or in the vapour phase. 

Sample removal conditions are presented in Figure 1. Warming, assessment of oocyte survival, 

parthenogenetic activation and embryo culture were conducted as previously described in the 

sections on ‘Warming’ and ‘Assessment of oocyte survival, parthenogenetic activation and embryo 

culture’. 

 

Statistical analysis 

In all experiments, parthenogenetically activated non-vitrified metaphase-II oocytes served as 

controls. Differences among treatment groups were compared using GraphPad Prism version 7.00 

for Windows, GraphPad Software, La Jolla California, USA. Categorical outcomes were tabulated 

and set up as contingency 2 × 2 tables; overall data were analysed using chi-squared followed by 

Bonferroni post-hoc adjustment for multiple pairwise comparisons. The level of significance was set 

at P < 0.05/number of pairwise tests performed. 

 

Results 

Experiment 1: in-vitro oocyte survival and embryo development after vitrification in cryo-
devices previously simulated by numerical model 

A total of 943 metaphase-II bovine oocytes were used in four separate experiments. Results are 

presented in Table 1; cooling rates (°C/ min, taken from Sansinena et al., 2011) were also included 

in this table for comparison. No significant difference was found in morphological oocyte survival 

between vitrified and non-vitrified groups. No significant differences were detected in the proportion 



of cleaved from oocytes vitrified in Cryoloop and Cryotop compared with non-vitrified control. 

Cleavage rate, however, was significantly higher for Cryotop and Cryoloop compared with Miniflex 

and OPS (67% and 70% versus 40% and 43%, respectively) (P < 0.05). In all cases, vitrified oocytes 

had significantly lower blastocyst formation and hatching rates than non-vitrified controls (P < 0.05). 

No significant difference was found in the proportion of oocytes reaching blastocyst stage when 

vitrified using Cryoloop or Cryotop cryodevices (17% versus 19%, respectively). Similarly, no 

significant 

 

 
 

Figure 1 – Storage and sample removal conditions in Experiment 2. 

 

difference was found in the proportion of oocytes reaching blastocyst stage when vitrified using Miniflex or 

OPS cryo-devices (8% versus 11%, respectively). A significant difference (P < 0.05) was, however, found in 

the proportion of vitrified oocytes reaching blastocyst stage when vitrified with Cryoloop or Cryotop versus 

Miniflex or OPS (17% and 19% versus 8 and 11%, respectively). The proportion of hatched embryos from 

oocytes vitrified in Cryotop, Cryoloop and OPS were not significantly different among treatments, but were 

all significantly lower (P < 0.05) than non-vitrified control. There were no hatched embryos produced from 

oocytes vitrified using Miniflex. 

 

In-vitro oocyte survival and embryo development after different warming conditions previously 
simulated by numerical model 

A total of 559 bovine oocytes vitrified in OPS cryo-device were used in three separate experiments. Results 

are presented in Table 2. All vitrified–warmed samples had significantly lower cleavage rate than non-vitrified 

controls (P < 0.05). A significant reduction in morphological oocyte survival was observed with two-step 

removal from Dewar when compared with either one-step removal treatment (samples completely immersed 

in LN2 or N2-vapour storage) and non-vitrified control (50% versus 98.5%, 91% and 100%, respectively; P < 

0.05). Embryo cleavage rate was significantly reduced in the two-step removal treatment compared with both 



one-step removal treatments (LN2 immersed and N2 vapour storage) (52% versus 70% and 68%, 

respectively; P < 0.05). Blastocyst rates in all vitrified–warmed groups were significantly lower than non-

vitrified control (17%, 17% and 9% versus 33%; P < 0.05). Blastocyst development was significantly reduced 

in two-step removal treatment versus both one-step removal treatments (LN2-immersed or N2-vapour-

storage) (9% versus 17% and 17%; P < 0.05). No significant difference was found between proportions of 

embryos reaching blastocyst stage between onestep removal treatments. 

 

Discussion 

 This study demonstrates experimentally that numerical modelling is a useful predictor of sample stability 

during vitrification, storage and warming. As predicted by the model, survival and development of vitrified 

parthenogenetically activated bovine oocytes was best in cryodevices with the highest modelled cooling 

rates. Furthermore, 

 

Table 1 – Oocyte survival and parthenogenetic embryo development of oocytes vitrified in cryo-devices. 

Cryo-device Predicted cooling rate 

(°C/min)b 

n vitrified/ 

activated 

Morphologically 

intact, n (%) 

Cleaved 

(day 2),a n (%) 

Blastocyst 

(day 7),a n (%) 

Hatched 

(day 9),a n (%) 

Cryoloop (180000) 

Cryotop (60000) 

Miniflex (8738) 

OPS (7826) 

Non-vitrified control n/a 

187 

189 

186 

191 

190 

185 (98.9) 

189 (100) 

158 (84.9) 

166 (86.9) 

190 (100) 

124 (67.0)c
 

132 (69.8)c
 

63 (39.9)d
 

71 (42.8)d
 

165 (86.8)c
 

31 (16.8)c
 

36 (19.0)c
 

13 (8.2)d
 

19 (11.4)d
 

69 (36.3)e
 

4 (2.2)c
 

6 (3.2)c
 

0 

2 (1.2)c
 

47 (24.7)d
 

a Values based on morphologically intact oocytes. 
b Adapted from Sansinena et al. (2011). The heat transfer coefficient, h, is taken as 2000 W/m2 K. 
c–e Values with different superscripts within a column are statistically different, P < 0.05. 

OPS, Open Pulled-Straw. 

 

Table 2 – Effect of storage and sample removal conditions on in-vitro embryo development of parthenogenetically activated vitrified– 
warmed oocytes. 

 Temperature 
(°C) 
exposure 

Sample storage 
temperature 
T versus Tga 

n vitrified/ 
activated 

Intact, 
n (%) 

Cleaved 
(day 2),b 
n (%) 

Blastocyst 
(day 7),b 
n (%) 

Hatched 

(day 9),b 

n (%) 

One-step removal-LN2 
immersed storagec 

One-step removal-LN2 
vapour storaged 

Two-step removal LN2 
vapour storagee 

 
 

Non-vitrified, control oocytes 

−196 (LN2) 
 

−165 to −196 
(LN2 vapor) 
−165 to −196 
(LN2 vapor) 
−17 °C 
(Dewar neck) NA 

T < Tg 
non-devitrification condition T 
< Tg 
non-devitrification condition T 
> Tg 
devitrification condition 

 
 

NA 

135 
 

140 
 

135 
 
 
 

149 

133 (98.5)f 

 
127 (90.7)f 

 
67 (49.6)g 

 
 
 

149 (100)f 

93 (69.9)f 

 
86 (67.7)f 

 
35 (52.2)g 

 
 
 

123 (82.6)h 

23 (17.3)f 

 
22 (17.3)f 

 
6 (9.0)g 

 
 
 

49 (32.9)h 

4 (3.0)f
 

 
3 (2.4)f

 

 
0 

 

 

 
29 (19.5)g

 

NA, not applicable. 
a Glass transition (Tg) and devitrification thresholds reported by Sansinena et al. (2014) from calorimetry measurements and finite element simulation. 
b Values calculated from morphologically intact oocytes. 
c One-step sample removal: sample lifting without pause at Dewar neck; samples were stored completely immersed in LN2. 
d Same as above, but samples were stored in LN2 vapour phase. 
e Two-step sample removal: sample lifting with 15-s pause at Dewar neck (8 cm from top, −17°C, simulating pause needed to read sample identification); samples were 

stored in LN2 vapour phase. 
f–h Values with different superscripts within a column are statistically different; P < 0.05. 

 

exposure to a short delay before complete removal from nitrogen vapour during warming (two-step removal) 

reduced development potential, according to the model, owing to thermodynamic instability and devitrification 



at relatively low temperatures. The experimental system in this study consisted of activated bovine oocytes. 

Bovine oocytes can be activated by exposure to ionomycin, ionophore, ethanol, or electric stimuli, among 

others (Graham, 1974). These chemical activation protocols have been shown to consistently support embryo 

development to blastocyst or hatched blastocyst stages in rates comparable to those of in vitro-derived 

counterparts (De La Fuente and King, 1998; Graham, 1974; Wang et al., 2008); the use of this model for 

evaluating vitrified oocyte competence and cryosurvival has been extensively documented in several species, 

including pigs (Somfai et al., 2006; Wu et al., 2017), cattle (Hou et al., 2009; Kubota et al., 1998), goat (Begin 

et al., 2003), sheep (Asgari et al., 2011), mice (Endoh et al., 2007; Huang et al., 2008; Yan et al., 2010) and 

humans (Imesch et al., 2013; Paffoni et al., 2007, 2008). The three reasons for considering chemical 

activation instead of conventional IVF as a model for this study were as follows: parthenogenesis by chemical 

activation has been used to study pre-implantation embryonic development in domestic species and humans 

and has been proposed to be a useful model for evaluating oocyte competence; parthenogenesis has been 

previously used to evaluate vitrified oocyte developmental competence; and parthenogenesis addresses 

concerns about introducing confounding variables related to sperm co-incubation and vitrificationrelated zona 

hardening. The reduced ability of spermatozoa to penetrate zona pellucida after vitrification has been 

reported in several species (Rusciano et al., 2017; Wiesak et al., 2017) and may, in part, explain why oocyte 

vitrification seems to have better results when it is followed by intracytoplasmic sperm injection instead of IVF 

(Kazem et al., 1995). Nonetheless, because in-vitro development of parthenotes may differ from that of 

zygotes, owing to differences in gene expression profiles (Gomez et al., 2009; Winger et al., 1997; Labrecque 

and Sirard, 2011), this may be considered a weakness of our study, and further research should include 

validation in murine IVF models. Results obtained in the present study are consistent with previous reports 

of decreased in-vitro developmental potential of embryos derived from vitrified oocytes. In the bovine species, 

several reports have indicated reduced cleavage and blastocyst development rates of vitrified oocytes 

following IVF or parthenogenetic chemical activation, when compared with non-vitrified controls (Dinnyés et 

al., 2000; Punyawai et al., 2015). This decreased developmental potential has been reported extensively for 

IVF or parthenogenetically derived embryos and not for vitrified oocytes used for intracytoplasmic sperm 

injection (Maavrides and Morroll, 2002) or nuclear transfer (Park et al., 2015). Previous reports have 

suggested spindle depolymerization caused by cryoprotectants (Caamaño et al., 2013; Martino et al., 1996; 

Parks and Ruffing, 1992; Vincent et al., 1987), compromised cytoskeletal microtubules, and chromosome 

mis-alignment (Caamaño et al., 2013; Coticchio et al., 2009) may explain why parthenogenetically activated 



and in vitro-fertilized vitrified oocytes seem to be more negatively affected than those used for nuclear transfer 

procedures. We previously reported the development of a mathematical model for predicting cooling rates 

achieved by several cryo-devices (Sansinena et al., 2011). The model showed that Cryoloop achieved the 

highest cooling rate, followed by Cryotop, Miniflex and OPS. In this study, invitro embryo cleavage and 

blastocyst development of oocytes vitrified in cryo-devices with higher heat transfer rates (Cryoloop and 

Cryotop) was significantly superior to that of cryo-devices with lower heat transfer performance (Miniflex and 

OPS). Although an identical comparison of the same four vitrification cryo-devices has not been conducted, 

results are consistent with those reported recently by Tsai et al. (2016), in which Cryotop was shown to have 

highest heat transfer rate and in-vitro performance compared with OPS and Fibreplugs. In addition, other 

investigators (Li et al., 2012, 2013; Liebermann and Tucker, 2002; Mandawala et al., 2016) have suggested 

that heat transfer during cooling is a crucially influential factor in the outcome of the vitrification procedure. 

Noteworthy, recent reports (Mazur and Paredes, 2016; Paredes and Mazur, 2016) have indicated that low 

cooling rates during vitrification might be ultimately associated with risks during warming resulting from 

potential sample devitrification and recrystallization; this recent evidence clearly indicates cooling and 

warming rates are thermodynamically linked and should be evaluated simultaneously in future studies. 

Devitrification, defined as ice nuclei crystal formation during warming of a vitrified solution (Shaw and Jones, 

2003), can result in irreversible damage during the warming of vitrified mammalian cells (Macfarlane, 1986; 

Macfarlane et al., 1981). In addition, recrystallization, described as growth of nucleated crystals in a formerly 

vitrified sample is also likely to occur during warming (Shaw and Jones, 2003). Although liquid nitrogen 

Dewars used for storing reproductive cells are filled to full capacity, evaporative loss may result in samples 

being partially suspended in nitrogen vapour, although this should not be a common occurrence. In addition, 

samples are also exposed to a vertical temperature gradient at the neck of the containers upon removal. 

Although this is generally not a matter of concern (as long as samples remains below glass transition for 

cytoplasm) in the cryostorage of frozen material such as semen straws and other cell suspensions (Gao and 

Critser, 2012), it becomes a risk when samples are cryopreserved in a more thermodynamically unstable 

condition such as vitrification. Several reports have indicated that, above the glass transition temperature of 

the cytoplasm, vitrified oocytes and embryos enter a liquid transition, promoting devitrification, followed by 

immediate ice nucleation and re-crystallization (Jin et al., 2010; Karlsson, 2001; Mazur, 1990). Our group 

(Sansinena et al., 2014) applied numerical modelling to predict events during sample handling and storage 

in liquid nitrogen Dewars. We determined the glass transition temperature for the vitrification solution using 



differential scanning calorimetry, and later solved heat conduction equations of the warming and 

devitrification thresholds during storage and upon sample removal of an OPS cryo-device, shown by 

modelling to demonstrate lower heat transfer efficiency (cryo-device least likely to be affected by sample 

removal conditions). The glass transition of samples stored in the vitrification solution ranged from −126 to 

−121°C, and the devitrification process under these conditions was initiated at −109°C. These findings also 

suggested the existence of a thermodynamically unstable rubbery state at −121°C, indicating that 

temperatures above this value could initiate devitrification, with adverse effects on cell survival. In the present 

study, the storage and sample removal under the conditions described were replicated experimentally. No 

significant differences were observed in the in-vitro development of chemically activated vitrified–warmed 

oocytes after one-step removal conditions, either with samples submerged in LN2 or stored in N2 vapour; 

these results are in agreement with recommendations previously proposed in numerical modelling studies 

that temperature of the sample must remain below the transition temperature of the cryoprotectant solution 

(Karlsson, 2001). By contrast, the two-step removal condition, which clearly surpasses the transition 

temperature of the vitrification solution, resulted in a significant reduction of morphologically intact vitrified–

warmed oocytes, as well as reduced in-vitro embryo development after activation. Under this condition, 

samples were exposed to temperatures shown to be in the range of rubbery and devitrification thresholds, 

which in turn resulted in decreased in-vitro developmental competence. These results reinforce the 

importance of exercising extreme cautions while handling vitrified material during routine laboratory 

procedures such as identification confirmation and inventory keeping, owing to their inherent thermodynamic 

instability. Cryostorage recommendations have been generally based on cells cryopreserved under 

equilibrium freezing conditions, and they do not necessarily apply to vitrified material, which are at risk of 

irreversible devitrification and cryodamage under subzero temperatures. Our findings suggest that cryo-

device selection, handling, identification and removal from storage are critical aspects of in-vitro outcome; 

results also indicate numerical modelling could be used as a tool to predict the effects of these potentially 

critical steps. 

 

Acknowledgement 

This study was funded in part by Facultad de Ingeniería y Ciencias Agrarias, Universidad Católica Argentina; 

Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET); Universidad 



Nacional de La Plata; CONICET; Agencia Nacional de Promoción Científica y Tecnológica, Argentina. 

Authors have expressed no conflict of interest or financial affiliation with any commercial cryopreservation 

cryo-devices compared in the study. 

References 

Alexiades, V., Solomon, A.D., 1993. Mathematical Modelling of Melting and Freezing Processes. Hemisphere 

Publishing Corp., Taylor and Francis Publishing Office, Washington DC, USA. 

Arce, J.A., Potluri, P.L., Schneider, K.C., Sweat, V.E., Dutson, T.R., 1983. 

Modelling Beef carcass cooling using finite element technique. Trans. ASAE 26, 950–954. 

Asgari, V., Hosseini, S.M., Ostadhosseini, S., Hajian, M., Nasr-Esfahani, M.H., 2011. Time dependent 

effect of post warming interval on microtubule organization, meiotic status, and parthenogenetic activation 

of vitrified in vitro matured sheep oocytes. Theriogenology 75, 904–910. 

Baudot, A., Odagescu, V., 2004. Thermal properties of ethylene glycol aqueous solutions. Cryobiology 48, 

283–294. 

Begin, I., Bhatia, B., Baldassarre, H., Dinnyes, A., Keefer, C.L., 2003. Cryopreservation of goat oocytes 

and in vivo derived 2-to 4-cell embryos using the cryoloop (CLV) and solid-surface vitrification (SSV) 

methods. Theriogenology 59, 1839–1850. 

Blondin, P., Sirard, M.-A., 1995. Oocyte and follicular morphology as determining characteristics for 

developmental competence in bovine oocytes. Mol. Reprod. Dev. 41, 54–62. 

Boldt, J., 2011. Current results with slow freezing and vitrification of the human oocyte. Reprod. Biom. 

Online 23, 314–322. 

Caamaño, J.N., Díez, C., Trigal, B., Muñoz, M., Morató, R., Martín, D., Carrocera, S., Mogas, T., Gómez, E., 

2013. Assessment of meiotic spindle configuration and post-warming bovine oocyte viability using polarized 

light microscopy. Reprod. Domest. Anim. 48, 470–476. 

Campbell, K.H., Loi, P., Otaegui, P.J., Wilmut, I., 1996. Cell cycle co- ordination in embryo cloning by nuclear 

transfer. Reproduction 1, 40–46. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0010
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0010
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0010
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0010
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0015
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0015
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0015
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0020
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0025
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0025
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0025
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0030
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0035
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0035
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0035
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0035
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0040
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0040
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0040
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0045
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0050
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0050
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0050
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0050


Choi, J., Bischof, J.C., 2010. Review of biomaterial thermal property measurements in the cryogenic regime 

and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. 

Cryobiology 60, 52–70. 

Cleland, D.J., Cleland, A.C., Earle, R.L., Byrne, S.J., 1984. Prediction of rates of freezing, thawing or cooling 

in solids of arbitrary shape using the finite element method. Int. J. Refrig. 7, 6–13. 

Coticchio, G., Bromfield, J.J., Sciajno, R., Gambardella, A., Scaravelli, G., Borini, A., Albertini, D.F., 2009. 

Vitrification may increase the rate of chromosome misalignement in the metaphase II spindle of human 

mature oocytes. Reprod. Biomed. Online 19, 29–34. 

De La Fuente, R., King, W.A., 1998. Developmental consequences of karyokinesis without cytokinesis during 

the first mitotic cell cycle of bovine parthenotes. Biol. Reprod. 58, 952–962. 

Diller, K.R., 1997. Engineering-based contributions in cryobiology. 

Cryobiology 34, 304–314. 

Dinnyés, A., Dai, Y., Jiang, S., Yang, X., 2000. High developmental rates of vitrified bovine oocytes following 

parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol. Reprod. 63, 513–518. 

Edgar, D.H., Gook, D.A., 2012. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human 

oocytes and embryos. Human Reprod. Update 18, 536. 

Endoh, K., Mochida, K., Ogonuki, N., Ohkawa, M., Shinmen, A., Ito, M., Kashiwazaki, N., Ogura, A., 2007. The 

developmental ability of vitrified oocytes from different mouse strains assessed by parthenogenetic 

activation and intracytoplasmic sperm injection. J. Reprod. Dev. 53, 1199–1206. 

Gao, D., Critser, J.K., 2012. Mechanisms of cryoinjury in living cells. In: Standards for Tissue Banking, 13th 

ed. American Association of Tissue Banking, pp. 187–196. 

Gomez, E., Caamano, J.N., Bermejo-Alvarez, P., Carmen, D.Í.E.Z., Munoz, M., Martin, D., Carrocera, S., 

Gutierrez-Adan, A., 2009. Gene expression in early expanded parthenogenetic and in vitro fertilized bovine 

blastocysts. J. Reprod. Dev. 55, 607–614. 

Graham, C.F., 1974. The production of parthenogenetic mammalian embryos and their use in biological 

research. Biol. Rev. 49, 399–422. 

GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0055
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0060
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0060
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0060
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0060
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0065
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0065
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0065
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0065
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0065
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0070
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0070
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0070
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0070
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0075
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0075
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0080
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0080
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0080
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0080
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0080
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0085
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0085
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0085
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0085
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0090
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0095
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0095
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0095
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0095
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0100
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0105
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0105
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0105
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0110
http://www.graphpad.com/


Holm, P., Booth, P.J., Scmidt, M.H., Greve, T., Callesen, H., 1999. High bovine blastocyst development in a 

static in vitro production system using SOFaa medium supplemented with sodium citrate and 

myo-inositol with or without serum proteins. Theriogenology 52, 683–700. 

Hou, Y.P., Liu, Y., Dai, Y.P., Li, R., Shi, W.Q., Wang, H.P., Wang, L.L., Li, 

N., Zhu, S.E., 2009. Improved parthenogenetic development of vitrified-warmed bovine oocytes activated 

with 9% ethanol plus 6-DMAP. Theriogenology 72, 643–649. 

Huang, J.Y., Chen, H.Y., Park, J.Y.S., Tan, S.L., Chian, R.C., 2008. 

Comparison of spindle and chromosome configuration in in vitro- and in vivo-matured mouse oocytes after 

vitrification. Fertil. Steril. 90, 1424–1432. 

Imesch, P., Scheiner, D., Xie, M., Fink, D., Macas, E., Dubey, R., Imthurn, B., 2013. Developmental potential of 

human oocytes matured in vitro followed by vitrification and activation. J. Ovarian Res. 6, 30. 

Stringfellow, D., Seidel, S., 1998. International Embryo Transfer Manual, 4th ed. IETS Publishing, Champaign, 

IL, USA, pp. 87–90. 

Jain, J.K., Paulson, R.P., 2006. Oocyte cryopreservation. Fertil. Steril. 

86, 1037–1046. 

Jin, B., Mochida, K., Ogura, A., Hotta, E., Kobayashi, Y., 2010. Equilibrium vitrification of mouse embryos. Biol. 

Reprod. 82, 444–450. 

Karlsson, J.O., 2001. A theoretical model of intracellular devitrification. 

Cryobiology 42, 154–169. 

Kazem, R., Thompson, L.A., Srikantharajah, A., Laing, M.A., Hamilton, M.P.R., 1995. Cryopreservation 

of human oocytes and fertilization by two techniques: in-vitro fertilization and intracytoplasmic sperm 

injection. Hum. Reprod. 10, 2650–2654. 

Kubota, C., Yang, X., Dinnyes, A., Todoroki, J., Yamakuchi, H., Mizoshita, K., Inohae, S., Tabara, N., 1998. In 

vitro and in vivo survival of frozen- thawed bovine oocytes after IVF, nuclear transfer, and 

parthenogenetic activation. Mol. Reprod. Dev. 51, 281–286. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0115
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0120
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0120
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0120
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0120
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0120
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0125
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0125
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0125
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0125
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0125
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0130
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0130
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0130
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0130
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr1215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr1215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr1215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0135
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0135
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0140
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0140
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0140
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0145
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0145
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0150
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0150
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0150
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0150
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0150
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0155
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0155
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0155
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0155
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0155


Kuleshova, L., Gianaroli, L., Magli, C., Ferraretti, A., Trounson, A., 1999. Birth following vitrification of a 

small number of human oocytes: a case report. Human Reprod. 14, 3077–3079. 

Kuwayama, M., 2007. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the 

Cryotop method. Theriogenology 67, 73–80. 

Labrecque, R., Sirard, M.A., 2011. Gene expression analysis of bovine blastocysts produced by parthenogenic 

activation or fertilisation. Reprod. Fertil. Dev. 23, 591–602. 

Lane, M., Bavister, B., Lyons, E., Forest, K., 1999a. Container-less vitrification of mammalian oocytes 

and embryos. Nat. Biotech. 17, 1234–1236. 

Lane, M., Schoolcraft, W.B., Gardner, D.K., 1999b. Vitrification of mouse and human blastocysts using a 

novel cryoloop container-less technique. Fertil. Steril. 72, 1073–1078. 

Li, W., Zhou, X., Wang, H., Liu, B., 2012. Numerical analysis to determine the performance of different 

oocyte vitrification devices for cryopreservation. CryoLetters 33, 144–150. 

Li, W., Zhou, X.L., Wang, H.S., Liu, B.L., Dai, J.J., 2013. Heat transfer coefficient of cryotop during 

freezing. CryoLetters 34, 255–260. 

Liebermann, J., Tucker, M.K., 2002. Effect of carrier system on the yield of human oocytes and embryos 

as assessed by survival and developmental potential after vitrification. Reproduction 124, 483– 489. 

Lunardini, V.J., 1981. Heat Transfer in Cold Climates. Van Nostrand Reinhold Company, New York. 

Luyet, B., 1937. The vitrification of organic colloids and of protoplasm. 

Biodynamica 1, 1–14. 

Maavrides, A., Morroll, D., 2002. Cryopreservation of bovine oocytes: is cryoloop vitrification the future to 

preserving the female gamete? Reprod. Nutr. Dev. 42, 73–80. 

Macfarlane, D.R., 1986. Devitrification in glass-forming aqueous solutions. Cryobiology 23, 230–244. 

Macfarlane, D.R., Angell, C.A., Fahy, G.M., 1981. Homogenous nucleation and glass formation in 

cryoprotective systems at high pressures. CryoLetters 2, 353–358. 

Mandawala, A.A., Harvey, S.C., Roy, T.K., Fowler, K.E., 2016. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0160
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0160
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0160
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0160
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0165
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0165
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0165
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0165
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0170
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0170
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0170
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0170
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0175
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0175
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0175
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0175
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0180
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0180
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0180
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0180
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0190
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0190
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0190
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0190
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0195
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0195
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0195
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0200
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0200
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0200
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0200
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0200
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0205
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0205
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0210
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0210
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0215
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0220
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0220
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0225
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0225
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0225
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0225
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0230


Cryopreservation of animal oocytes and embryos: current progress and future prospects. Theriogenology 

86, 1637–1644. 

Martino, A., Pollard, J., Leibo, S.P., 1996. Effect of chilling bovine oocytes on their developmental 

competence. Mol. Reprod. Dev. 45, 503–512. 

Mazur, P., 1984. Freezing of living cells: mechanisms and implications. 

Am. J. Physiol. 247, 125–142. 

Mazur, P., 1990. Equilibrium, quasi-equilibrium, and non-equilibrium freezing of mammalian embryos. Cell 

Biophys. 17, 53–92. 

Mazur, P., Paredes, E., 2016. Roles of intracellular ice formation, vitrification of cell water, and 

recrystallisation of intracellular ice on the survival of mouse embryos and oocytes. Reprod. Fertil. Dev. 28, 

1088–1091. 

Paffoni, A., Brevini, T.A., Somigliana, E., Restelli, L., Gandolfi, F., Ragni, G., 2007. In vitro development 

of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. 

Fertil. Steril. 87, 77–82. 

Paffoni, A., Brevini, T.A.L., Gandolfi, F., Ragni, G., 2008. Parthenogenetic activation: biology and applications in 

the ART laboratory. Placenta 29, 121–125. 

Paredes, E., Mazur, P., 2016. Dehydration preparation of mouse sperm for vitrification and rapid laser 

warming. CryoLetters 37, 335–345. 

 

Park, M.J., Lee, S.E., Kim, E.Y., Lee, J.B., Jeong, C.J., Park, S.P., 2015. 

Effective oocyte vitrification and survival techniques for bovine somatic cell nuclear transfer. Cell 

Reprogram 17, 199–210. 

Parks, J.E., Ruffing, N.A., 1992. Factors affecting low temperature survival of mammalian oocytes. 

Theriogenology 37, 59–73. 

Pham, Q.T., 2008. Modelling of freezing processes. In: Evans, J.M. (Ed.), Frozen Food Science and 

Technology. pps. Blackwell Publishing, Oxford, pp. 51–80. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0230
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0230
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0230
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0235
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0235
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0235
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0235
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0240
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0240
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0245
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0245
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0245
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0250
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0250
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0250
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0250
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0250
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0255
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0255
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0255
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0255
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0255
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0260
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0260
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0260
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0260
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0265
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0265
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0265
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0270
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0270
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0270
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0270
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0275
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0275
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0275
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0280
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0280
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0280
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0280


Punyawai, K., Anakkul, N., Srirattana, K., Aikawa, Y., Sangsritavong, S., Nagai, T., Imai, K., Parnpai, R., 

2015. Comparison of cryotop and micro volume air cooling methods for cryopreservation of bovine matured 

oocytes and blastocysts. J. Reprod. Dev. 61, 431–437. 

Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. 

Nature 313, 573–575. 

Rusciano, G., De Canditiis, C., Zito, G., Rubessa, M., Roca, M.S., Carotenuto, R., Sasso, A., Gasparrini, 

B., 2017. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine 

oocytes. PLoS ONE 12, e0177677. 

Sansinena, M., Santos, M.V., Zaritzky, N., Baeza, R., Chirife, J., 2010. Theoretical prediction of the effect of 

heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of 

spermatozoa. CryoLetters 31, 120–129. 

Sansinena, M., Santos, M.V., Zaritzky, N., Chirife, J., 2011. Numerical simulation of cooling rates in 

vitrification systems used for oocyte cryopreservation. Cryobiology 63, 32–37. 

Sansinena, M., Santos, M.V., Zaritzky, N., Chirife, J., 2012. Comparison of heat transfer in liquid and slush 

nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation. 

Theriogenology 77, 1717–1721. 

Sansinena, M., Santos, M.V., Taminelli, G., Zaritzky, N., 2014. 

Implications of storage and handling conditions on glass transition and potential devitrification of oocytes and 

embryos. Theriogenology 82, 373–378. 

Santos, M.V., Sansinena, M., Zaritzky, N., Chirife, J., 2012. Assessment of the heat transfer coefficient 

during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling 

rates. CryoLetters 33, 31–40. 

Shaw, J.M., Jones, G.M., 2003. Terminology associated with vitrification and other cryopreservation procedures 

for oocytes and embryos. Hum. Reprod. Update 9, 583–605. 

Somfai, T., Dinnyés, A., Sage, D., Marosán, M., Carnwath, J.W., Ozawa, M., Kikuchi, K., Niemann, H., 

2006. Development to the blastocyst stage of parthenogenetically activated in vitro matured porcine 

oocytes after solid surface vitrification (SSV). Theriogenology 66, 415–422. 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0285
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0290
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0290
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0290
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0295
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0300
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0305
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0305
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0305
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0305
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0310
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0310
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0310
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0310
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0310
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0315
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0315
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0315
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0315
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0315
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0320
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0325
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0325
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0325
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0325
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0330


Tominaga, K., Hamada, Y., 2001. Gel loading tip as container for vitrification of in vitro produced bovine 

embryos. J. Reprod. Dev. 47, 267–273. 

Tsai, S., Yang, V., Lin, C., 2016. Comparison of the cryo-tolerance of vitrified gorgonian oocytes. Sci. 

Rep. 6. 

Vajta, G., Holm, P., Kuwayama, M., Booth, P.J., Jacobsen, H., Greve, T., Callesen, H., 1998. Open pulled straw 

(OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–

58. 

Vincent, J.-P., Scharf, S.R., Gerhart, J.C., 1987. Subcortical rotation in Xenopus eggs: a preliminary study of 

its mechanochemical basis. Cell Motil. Cytoskel. 8, 143–154. 

Wang, Z.G., Wang, W., Yu, S.D., Xu, Z.R., 2008. Effects of different activation protocols on preimplantation 

development, apoptosis and ploidy of bovine parthenogenetic embryos. Anim. Reprod. Sci. 105, 292–301. 

Wiesak, T., Wasielak, M., Złotkowska, A., Milewski, R., 2017. Effect of vitrification on the zona pellucida 

hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured 

bovine oocytes. Cryobiology 76, 18–23. in press. 

Winger, Q.A., De La Fuente, R., King, W.A., Armstrong, D.T., Watson, A.J., 1997. Bovine 

parthenogenesis is characterized by abnormal chromosomal complements: implications for maternal and 

paternal co-dependence during early bovine development. Dev. Genet. 21, 160. 

Wu, G., Jia, B., Quan, G., Xiang, D., Zhang, B., Shao, Q., Hong, Q., 2017. 

Vitrification of porcine immature oocytes: association of equilibration manners with warming procedures, 

and permeating cryoprotectants effects under two temperatures. Cryobiology 75, 21–27. 

Yan, C.L., Fu, X.W., Zhou, G.B., Zhao, X.M., Suo, L., Zhu, S.E., 2010. 

Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol 

pretreatment and relationship to competence. Fertil. Steril. 93, 959–966. 

Yavin, S., Arav, A., 2007. Measurement of essential physical properties of vitrification solutions. 

Theriogenology 67, 81–89. 

 

 

http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0335
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0335
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0335
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0335
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0340
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0340
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0340
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0345
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0350
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0350
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0350
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0350
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0355
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0355
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0355
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0355
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0355
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0360
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0365
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0370
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0375
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0375
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0375
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0375
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0375
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0380
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0380
http://refhub.elsevier.com/S1472-6483(18)30008-7/sr0380

