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ABSTRACT 

We have studied the products of the controversial synthesis of HAuCl4 with Na2S, which 

include gold nanostructures (Au NSs) that absorb in the near/infrared (NIR) and are highly 

promising for photothermal therapies and other nanomedical applications. From high 

resolution transmission electron microscopy, X/ray absorption spectroscopy and small 

angle X/ray scattering we have found that only metallic gold nanostructures are formed as a 

result of this synthesis, with no detectable amount of gold sulfide or other oxidized gold 

species that could account for the NIR absorption. Different sulfur species are adsorbed on 

the Au NSs, mainly sulfides (monomeric sulfur) and polysulfides, similarly to what is 

found on planar gold surfaces, therefore precluding the idea that thiosulfate or other 

oxidized species are the actual reducing agents for Au(III) ions. The presence of strongly 

adsorbed S species, which are difficult to remove from the gold surface, is of great 

importance for their applications as regards toxicity and the use of post/functionalization 

strategies to anchor biomolecules and/or to increase circulation time after administration.  
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INTRODUCTION 

Over the last few decades gold nanostructures (Au NSs) have attracted increasing interest 

because of the phenomenon of localized surface plasmon resonance (LSPR), which can 

decay either radiatively by light scattering, a process that finds multiple applications in the 

fields of optics and imaging, or non/radiatively as a result of the conversion of absorbed 

light to heat, a mechanism of dissipation of importance in several growing areas in 

nanomedicine, mostly for photothermal therapies and controlled drug release.1/2 For many 

nanomedical applications of Au NSs, especially in vivo studies, it is desirable to work in the 

near/infrared (NIR) region of the spectrum (650/900 nm), as this light has small 

interference with tissue and interacts strongly with NSs that scatter and/or absorb in this 

region.3 

Therefore, the development of synthetic methods of Au NSs, such as nanorods, nanoshells, 

nanotriangles and other anisotropic nanostructures of more complex shape, like nanostars, 

all of whom have LPSR in the NIR region, is currently an area of increasing interest.4/5 

Moreover, some anisotropic Au NSs are excellent substrates for surface/enhanced Raman 

scattering,6 as they provide “hot spots” with no need to induce NS aggregation.7/8
 However, 

most syntheses are seed/mediated and as such involve multiple steps and use reagents and 

surfactants that are difficult to remove and are very toxic for cells, like CTAB.6 Thus, the 

development of alternative methods to produce anisotropic NSs with LSPR in the NIR in a 

straightforward way and in the absence of surfactants is an important goal to achieve.2 

In particular, the synthesis of Au NSs based on the reaction between Au(III) species 

(mostly AuCl4
/ ions) and sulfide ions has attracted considerable interest because it yields in 

an easy way a variety of structures from spherical particles to triangular nanoplates, some 

of which absorb in the NIR region.9/13 Different variations of the synthesis have been tried 
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and in all cases the same intriguing behavior has been observed: the peak in the NIR first 

shifts to higher wavelengths, while rapidly increasing in intensity, and then shifts to lower 

wavelengths.9, 13 

Despite the interest in the synthesis, the nature of the NIR/absorbing nanostructures, in 

particular concerning their shape and chemistry, has been a matter of debate. Indeed, while 

some authors have proposed that they have a spherical core/shell structure, with a thin gold 

shell of variable thickness that surrounds a Au2S core,3, 9/10 this model has been challenged 

by others. In fact, Norman et al. support the idea that the origin of the redshift is the 

formation of aggregates of gold nanoparticles, even though this model eventually fails to 

describe the blueshift.11,14 Also, it has been suggested that the NIR/absorbing 

nanostructures are made of amorphous Au2S well mixed with crystalline Au.15 A more 

plausible interpretation, however, is that non/spherical nanostructures (nanorods, 

nanotriangles, nanoplates, etc) are responsible for the NIR peak.12, 16 

Very recently we have demonstrated / by single particle spectroscopy correlated with 

scanning electron microscopy of laser printed nanostructures / that nanotriangles are indeed 

responsible for the observed NIR absorption, with no evidence of absorption by spherical 

structures in that wavelength range.13 Changes in the size and in the degree of truncation of 

the triangles can explain both their redshift and blueshift dynamics.13 Although several 

authors presently accept that anisotropic Au NSs do contribute to the extinction peak in the 

NIR, some authors still believe that other NIR absorbing species, like the mentioned core/

shell nanoparticles, can be formed from this synthesis or similar.17/18 Moreover, the 

formation of a Au2S phase has been reported by the same authors that supported the idea 

that nanotriangles were responsible for NIR absorption.19 
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It is thus clear that some unsolved questions remain in relation to this system. First, is gold 

sulfide really present in any of the structures produced in this synthesis, and if so, is it on 

the surface or in the bulk of the nanomaterials? Also, what are the sulfur species present on 

the surface of the Au NSs? Although some of these issues have been addressed in the past, 

we believe that some of the findings by other groups are not accurate. In particular, the 

possible formation of a Au2S phase, either crystalline9/10 or amorphous15 and the real 

chemical nature of the sulfur species in the NSs19 need to be further addressed.  

In this work we have studied Au NS dispersions whose NIR peak lies at ≈ 850 nm, viz., the 

optimal region for hyperthermia applications, by using complementary techniques: high 

resolution transmission electron microscopy, X/ray absorption spectroscopy and small/

angle X/ray scattering. We have found that only metallic gold nanostructures are formed as 

a result of the synthesis, with no detectable amount of Au2S or other oxidized gold species. 

The S species appear only at the nanoparticle surface and consist of a mixture of adsorbed 

sulfides (monomeric S), polysulfides and some elemental sulfur, similarly to what is found 

on planar gold surfaces upon sulfide adsorption.20 The presence of strongly adsorbed 

reduced S species is of importance for nanomedical applications of these Au NSs as regards 

their toxicity3, 21/22 and also for the use of post/functionalization strategies to anchor 

biomolecules and/or to increase circulation time after administration.23/25 

 

EXPERIMENTAL SECTION 

Synthesis of NIR/absorbing gold nanostructures: 

Nanostructures were synthesized by reduction of HAuCl4 with Na2S following the two/step 

synthesis proposed by Zhou et al.
9
 Briefly, 10 mL of 2 mM HAuCl4 solution were quickly 
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mixed with 12 mL of freshly prepared 1mM Na2S solution (pH = 10) at room temperature 

and without stirring. Ten minutes later, 2 mL of the sulfide solution were added, giving a 

total S/Au molar ratio equal to 0.7. The reaction was allowed to evolve, typically for 30/60 

min, and was then arrested at different positions of the NIR peak by fast addition of 14 mL 

of the sulfide solution. In particular, for TEM, SAXS and XAS measurements this was 

done when the peak maximum reached a wavelength ≈ 850 nm during the blueshift. In 

some cases the arrested nanostructures were subsequently purified by centrifugation (10/30 

min at 7000 rpm), followed by the replacement of the supernatant with ultrapure water. The 

evolution of the synthesis and the stability of the nanostructures were studied by UV/vis 

spectroscopy by means of a Lambda 35 spectrophotometer (Perkin Elmer). 

 

Synthesis of S/capped gold nanoparticles:  

Gold nanoparticles about 20 nm in diameter were synthesized following the method of Ref. 

26. Briefly, 10 mL of a 38.8 mM sodium citrate solution were added to 100 mL of a boiling 

1 mM HAuCl4 solution and stirred for 30 minutes. The as/synthetized Au NPs were capped 

with S by addition of 8.4 mL of 6 mM Na2S solution, giving a S/Au molar ratio of 0.5. 

Purification was carried out as described for the gold nanostructures. 

 

Transmission electron microscopy:  

TEM specimens were prepared by dropping the samples on an ultrathin carbon film (Ted 

Pella, Inc). Selected area electron diffraction patterns and high resolution transmission 

electron microscopy (HRTEM) images were acquired using a Tecnai F20 G2 transmission 

electron microscope operated at room temperature and 200 kV. Images were analyzed 

using the Digital Micrograph program (Gatan Microscopy Suite). We have used the Fast 
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Fourier Transform of windowed regions for the local measurement of the spacings 

observed in the image. Spacings measured in the FFT are the reciprocal of those in the 

image. 

 

SAXS experiments: 

SAXS measurements were performed using a XEUSS 1.0 from XENOCS equipment 

equipped with a 2D photon counting pixel X/ray detector Pilatus 100k (DECTRIS, 

Switzerland). The scattering intensity, I(q), was recorded in the range of the momentum 

transfer 0.04 < q < 1.4 nm/1, where � = 4�
�� ��	(�),  2θ is the scattering angle and λ = 

0.15419 nm is the weighted average of X/ray wavelength of the Cu%Kα12 emission lines. All 

measurements were carried out using glass capillary as sample holder and all reported data 

were corrected for the solvent scattering and processed using standard procedures. 

 

Au/L3 edge XANES experiments: 

XAFS experiments at the Au/L3 edge (11919 eV) were performed at the XAFS/2 beamline 

of the LNLS (Campinas, Brazil) which is equipped with a Si(111) double crystal 

monochromator. The X/ray beam is vertically collimated giving a spot at the sample of 

about 0.2 mm × 3 mm. All experiments where performed in transmission mode adjusting 

the gas mixtures in the chambers for the required energy range. The energy calibration was 

monitored by measuring a thin Au film simultaneously with the sample, through a third 

ionization chamber. XAFS data were processed by standard methods by using ATHENA 

software, which is part of the IFFEFIT package.27
 Samples were measured in solution using 
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a sample holder consisting of plastic pieces, about 1 cm thick, sealed with Kapton® 

windows. 

 

S/K edge XANES experiments: 

S/K edge XANES experiments were performed at the SXS beamline at the LNLS 

(Campinas, Brazil),28 which is equipped with a InSb(111) double crystal monochromator 

with slit aperture of 1 mm, giving an energy resolution of about 0.6 eV. Either sodium 

thiosulfate in solution or as a solid was used as reference, since both spectra are identical. 

The photon energy was calibrated by assigning the value 2481.5 eV to the highest 

maximum of Na2S2O3 (corresponding to the so/called inner sphere), in accordance with the 

criteria previously reported by Vairavamurthy.29 All liquid samples were prepared by drop 

casting on carbon disks (Ted Pella Inc). All reported experiments in the S K/edge were 

measured in ultra/high vacuum (10/7 torr). Absorption spectra for each sample was recorded 

in fluorescence mode following the intensity of S/Kα1,2 emission lines (2309.5 and 2308.4 

eV, respectively). 

 

RESULTS AND DISCUSSION 

Typical sequential UV/vis spectra of the reaction mixture (Figure 1a), acquired as the 

synthesis originally proposed by Zhou et al.
9
 (S/Au molar ratio = 0.7) proceeds, show two 

absorption peaks whose intensities increase with time, one that remains fixed at λ≈ 525 nm 

and a second one in the near/infrared (NIR) region, which first shifts to higher wavelengths 

(up to approximately 1000 nm) and then shifts to lower wavelengths. Sulfide/gold ratios > 

1 give spectra which lack completely from both absorption peaks.12
 The evolution of the 
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synthesis can be arrested at any time by quick incorporation of an additional aliquot of 

Na2S solution,30 as already described.13 These arrested samples are stable for months, in 

contrast to non/arrested ones, which generally aggregate irreversibly within a few days. 

Unless otherwise noted, all dispersions in this work were arrested at about 850 nm during 

the blueshift, as this is the wavelength region of interest for hyperthermal applications.  

Figure 1b shows a typical transmission electron microscopy (TEM) image of the arrested 

as/synthesized dispersion that contains all the observed nanostructures: nanotriangles with 

different degree of truncation (most with side length about 80 nm, see Fig. S1a) in the 

Supporting Information), nanoplates, large “spherical/like” nanoparticles (NPs) with typical 

sizes 15/40 nm (Figure S1b)) and small nanoparticles (diameter < 10 nm) which can be 

largely removed by purification. From the analysis of many TEM and atomic force 

microscopy (AFM) images it can be concluded that nanotriangles and nanoplates represent 

about 20% of the large nanostructure population (i.e., all the nanostructures excluding the 

small nanoparticles) (Figure S1c) and Ref.13). AFM height analysis (see Figure S2 in the 

Supporting Information) confirms that these Au NSs are plate/like (average height is ≈ 9 

nm) and that the large “spherical/like” nanoparticles termed are isotropic. Other authors 

have obtained similar structures and proportions with the same two/step synthesis9 and with 

a similar synthesis in one step.12,15 Also, we have recently shown that nanotriangles whose 

NIR peak appears at 800/850 nm have a higher degree of edge truncation compared to 

those at 1000/1100 nm.13 
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Figure 1. (a) Sequential UV visible spectra showing the evolution of the two absorption 

peaks. (b) TEM image of the as%synthesized dispersion arrested at 850 nm. The scale bar 

corresponds to 50 nm. (c) SAXS curves of an arrested Au NS sample (black) and of the 

supernatant obtained after centrifugation (blue).  

 

In order to analyze the proportion of large Au NSs (nanotriangles, nanoplates and large 

isotropic NPs) compared to that of small NPs we have performed small angle X/ray 

scattering (SAXS) experiments over samples of arrested Au NSs and also of the 

corresponding supernatants obtained after centrifugation. TEM images and UV/vis spectra 

(data not shown) suggested that most large NSs remain in the pellet, while the supernatant 

is mainly composed of small Au NPs. 

Figure 1c shows a significant difference between both samples (the “whole” sample and the 

supernatant), as evidenced by the intensity and the slope at smaller q values (q → 0). 

Keeping in mind that the intensity extrapolated at q = 0 is proportional to the number of 

objects, and to the square of the volume of the illuminated objects, it is possible to conclude 

that the population of larger particles is notoriously diminished in the supernatant due to the 

smaller intensity at q = 0 in the original solution compared to the supernatant. Additionally, 

the decrease in the slope value at smaller q values (q → 0), reveals the presence of a 
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population of much smaller particles in average size in the supernatant and confirms that 

most large Au NSs (nanotriangles, nanoplates and large isotropic nanoparticles) are 

retained in the pellet. To obtain a quantitative estimation of the average size of the particles, 

we have analyzed the SAXS scattering curve at very small scattering angles following a 

standard formalism derived by Guinier,31 which gives an estimation of the average radius of 

gyration (Rg) (see Figure 1c and Figure S3 and Table S1 in the Supporting Information). 

Moreover, the Gaussian shape of the curves in the small q region precludes the possibility 

of agglomeration for all the studied samples under analysis, further discarding nanoparticle 

agglomerates as responsible for the NIR LSPR peak, in contrast to the model proposed by 

some authors.11,14 

In order to determine the relative fraction of small nanoparticles in each sample, we have 

made use of the Q invariant that can be obtained from a SAXS curve and which gives an 

estimation of the volume fraction occupied by the nano/object in solution (see the 

Supporting Information). From the comparison of the Q values of both samples we can 

conclude that the fraction in volume of the small Au NPs is below 5% (see Figure S4 and 

Table S2 in SI). As it is possible to see from TEM and SAXS results, these small 

nanoparticles contribute in a negligible fraction in volume thus assuring that the analyses of 

gold and sulfur species from X/ray absorption spectroscopy (XAS) experiments (see 

below) are representative of their chemical state in large Au NSs (at least 95% of the atoms 

in all the analyzed samples correspond to these NSs). 

To get more insight into the structure of the different NSs obtained in the synthesis, and to 

avoid average results, we have made an extensive analysis of the HRTEM images by means 

of the Fast Fourier Transform (FFT) of each whole single particle and smaller regions of 

each particle, as indicated in Figure 2. This local analysis, in contrast to average diffraction 
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techniques, is particularly convenient in the case of nanotriangles because of their scale. In 

this way we attempt to detect if a crystalline Au2S phase (or any other oxidized phase) is 

present in any of the different nanostructures, as previously reported by some authors.9, 32 

The images in Figure 2a and 2b show two triangular nanoplates with different degree of 

truncation. In both cases the FFT showed the allowed {220} reflections and the forbidden 

1/3{422} reflections of metallic gold already reported for this type of structures in a <111> 

incidence (see corresponding panels in Figure 2),16 the latter arising from the formation of 

stacking faults of the fcc lattice.33 

 

Figure 2. High resolution TEM images of the different typical Au NSs obtained in the 

synthesis with the corresponding FFT pattern for the region indicated by the box: (a) 

nanoplate; (b) truncated nanotriangle; (c) typical icosahedrical nanoparticle; (d) typical 

decahedrical nanoparticle. In all the images the scale bar corresponds to 20 nm. 

 

On the other hand, large isotropic nanoparticles show multiple twinning (Figure 2c and 2d). 

Some of them have a close to hexagonal shape, presumably because of an icosahedral 

morphology, and exhibit six twin planes (Fig 2c). Also, a small number of the large 
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nanoparticles have a 5/fold axis and can be regarded as decahedra (Figure 2d).34 A similar 

analysis based on the FFT of regions indicated by dash squares in Figure 2c and 2d show a 

quasi/ hexagonal array of spots that corresponds to the (111) and (200) plane distances for a 

gold fcc structure. Although these particles have been considered as the candidates to Au2S 

core/Au shell nanoparticles by those authors who claim that these are the structures 

responsible for NIR peak,9/10 the spots in the FFT can be accounted for only in terms of 

reflections of metallic gold, with no contribution from Au2S or other phases.35 

Finally, small nanoparticles also show typical Au reflections (see Figure S5 in the 

Supporting Information). Thus, for all the analyzed nanostructures we have found 

reflections that correspond only to gold and some additional forbidden reflections due to 

growth defects (twin planes). In other words, HRTEM results indicate that all the structures 

formed are composed of metallic gold, with no significant traces of crystalline Au2S or 

other oxidized gold species, which in fact would be thermodynamically unstable in water at 

the low pH of the synthesis (between 2 and 3).  

For a more detailed understanding on the bulk structure of the synthesized species, we have 

performed XAS experiments, which yield chemically selective information (in our case for 

Au and S) not only from the surface of the material but also from the bulk. Au/L3 X/ray 

near edge structure (XANES) measurements of the arrested Au NS dispersions were 

performed in a liquid cell in order to analyze the oxidation state(s) of gold in the 

nanomaterials. A general inspection of the main features of the spectrum in Figure 3a (blue 

line) indicates the predominant metallic state of Au in the gold nanostructures. Indeed, it 

clearly shows the similarity between the Au NS sample and a gold metallic foil used as 

Au(0) reference (black line) and the remarkable differences with the Au(I) (red line) and 

Au(III) (green line) reference compounds. A more detailed comparison of both spectra 
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(Figure 3b) confirms the complete agreement between the spectrum of the sample and that 

of the metallic reference. Additionally, Au(I) or Au(III) oxidation states can be ruled out 

based on the absence of the white line at about 11923 eV (see red and green lines in Figure 

3a). Only a slight variation in the difference spectrum can be observed around 11496 eV 

(see inset in Figure 3b) that corresponds to the maximum resonance peak at the region of 

multiple scattering process and which can be attributed to size and/or surface effects due to 

the interaction between Au and S atoms, the latter belonging to the capping molecules. This 

is in good agreement with our TEM results, further confirming the absence of a Au2S 

phase, either crystalline9 or amorphous,15, 36 and thus precluding the existence of core/shell 

nanoparticles. Moreover, it confirms that no Au2O3 or any other Au(III) species are formed, 

as expected from their low thermodynamic stability in aqueous solutions.37/38 

 

 

Figure 3.(a) Au%L3 XANES spectra of as%prepared, arrested sample recorded in solution 

(blue line); metallic Au foil (black line). Reference compounds were also measured for 

comparison: Au(III) chloride (green line) and Au(I) chloride (red line). (b) Detail of the 

Au%L3 XANES spectra corresponding to metallic Au foil (black line) and Au NS sample 

(blue circles). The inset shows the difference spectrum. The small deviation can be 

attributed to the S%Au interaction at the Au NS surface. (c) Experimental Fourier 
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Transform of EXAFS oscillation of the arrested Au NS sample (dotted line) and the 

corresponding fitting (full grey line). Blue and red full lines represent the Au%Au and Au%S 

contributions, respectively. 

 

In order to analyze the interaction between Au and S elements, we have performed 

extended X/ray absorption fine structure (EXAFS) experiments at the Au L3/edge. Figure 

3c shows the fitted Fourier Transform corresponding to the EXAFS signal of the same Au 

NS sample considered for XANES. Even if there is high polydispersity of the sample, both 

in size and in shape, and the S content is very low in comparison to Au, this experiment 

allows a tentative quantification of the Au/S ratio and the determination of possible Au/S 

species. Thus, from the fitted average coordination values N (Table 1), we can infer that 

only 3% of the atoms around Au, in average, are S atoms (i.e. NAu%Au/NAu%S). This percentage 

indicates that, if any AuxSy species were present, they would represent a negligible 

proportion. A more reasonable hypothesis is that S atoms are only located at the surface of 

the Au NSs and do not form any type of gold sulfide, in agreement with Au/L3 XANES 

results. The Au/S fitted distance of 0.224(5) nm (Table 1) is somewhat lower than the 0.233 

nm value reported, for instance, for adsorbed alkanethiols on Au NPs.39 The origin of this 

lower value is probably due to the effect of the variety of Au/S bond lengths present in the 

different sulfur species adsorbed on Au, as it will be shown below.  

Samples with similar S/Au ratio (0.6/0.7) had already been studied by EXAFS by others,19 

although the fitting strategy did not include Au/S coordination in their analysis. Because 

they did not indicate the anti/transformed region, it was not possible to compare both 

experimental results and the probable inclusion of the corresponding Au/S coordination 
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sphere in their results (that could be observed also in their experimental data as a small 

contribution in the Fourier Transform below 2 Å).  

 

 

Coordination 
shell 

N D / nm σ
2 / nm2 E0 / eV 

Au/Au 8.5 (9) 0.284 (4) 0.000072 (9) 4.2 (6) 

Au/S 0.3 (2) 0.224 (5) 0.00001 (5) 4.2 (6) 

 

Table 1: Fitted parameters for EXAFS signal detailing each of the coordination shells 

showed in Figure 3c. N is the average coordination number, D the interatomic distance, σ
2
 

the Debye%Waller factor and E0 the energy shift. Errors are between brackets. 

Because EXAFS fitted parameters represent an average signal over all illuminated atoms 

that may be part of different species, it is difficult to assign univocally the origin of the 

obtained values. Previous studies of similar Au NS samples were not conclusive as regards 

the origin of Au/S bonds. The absence of Au/S distances characteristic of a Au2S phase 

(0.231 nm) (see for example Ref. 40) is in agreement with previous data,11 although these 

authors concluded that gold nanoparticle aggregates were responsible for NIR absorption, a 

model that is not consistent with the observed shifts in UV/vis spectra and which can be 

further discarded from our SAXS results. Another work proposed the existence of Au2S 

into Au particles;15 however their analysis was based on an incorrect comparison with 

reference samples, as their S/K XANES reference spectra do not agree with those reported 

in the literature for the different S species present in the sample. 
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In summary, the existence of a Au2S phase, either crystalline or amorphous, can be ruled 

out in our samples from Au/L3 XANES and EXAFS experiments, and it is clear that S 

species are located on the surface of the nanostructures. This result is also of relevance in 

relation to the discussion of whether a gold sulfide phase is feasible as a result of the 

reaction of sulfur species with Au(111) surfaces.41 The fact that, even if we put sulfide 

/polysulfide ions in contact with Au(III) ions, only metallic gold nanostructures are formed 

clearly shows the thermodynamic instability of oxidized gold in contact with reduced S 

species, as already reported.20 

The next point to address is the chemical nature of these adsorbed S species, an issue that 

has received relatively little attention in the past. It has been pointed out by some authors 

that the actual reducing agent of the Au(III) ions in the present synthesis are S/O species, 

most probably thiosulfate ions, which are formed as a result of polysulfide ion oxidation in 

air, as sulfide ions easily form polysulfides in aqueous solutions.42 This statement was 

supported by the fact that the synthesis is improved, i.e., the ratio of the NIR to 520 nm 

LSPR peaks is enhanced, when aged Na2S solutions are used.14 However, in our case we 

have found that replacing freshly prepared sulfide solutions by aged ones does not enhance 

the NIR peak. In line with the model of Ref. 14, several groups have performed the 

synthesis directly using Na2S2O3 as the reducer and have obtained similar nanostructures.14, 

17/18 The oxidation product of thiosulfate upon Au(III) reduction would be either sulfate or 

sulfite species.2, 17 

In order to shed light on the nature of the adsorbed S species on the gold nanostructures 

produced in the present synthesis, we have performed XANES spectroscopy experiments at 

the S K/edge on different Au NS samples (Figure 4). We have studied the Au NSs 

produced by the synthesis in different conditions: (1) non/arrested; (2) arrested without 
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purification by centrifugation and (3) arrested and then purified. We have also included for 

comparison the spectrum of a sample consisting of purified S/capped Au NPs, viz. 

nanoparticles that were post/functionalized with sulfide.26 As mentioned above, SAXS 

results imply that about 95% of the XAFS signal corresponds to nanotriangles and large Au 

NPs. In all cases the samples were prepared by drop casting and then rinsed with water to 

remove free S species present in the reaction mixture.  

We have chosen sodium thiosulfate as reference compound because it has two well/defined 

peaks at 2472.4 eV and 2481.5 eV (see Figure 4) that correspond to the outer and inner S 

atoms of the molecule, respectively.43 All the samples present two main features: a broad 

peak in the region of low oxidation states centered about 2473 eV, and another one in the 

region corresponding to oxidized S species, centered about 2483 eV. Taking into account 

the spectrum of thiosulfate used as reference and different S/K XANES studies reported 

elsewhere,29, 43/44 we can assign the region at 2470/2475 eV to different reduced S species 

(sulfide, polysulfide species and elemental sulfur) and that at E > 2482 eV to sulfates.  

As regards the presence of sulfate in the samples, this could in principle be generated either 

as a result of the oxidation of sulfide upon reduction of the Au(III) species, as proposed for 

a very similar synthesis,19 or as the product of thiosulfate oxidation.2, 17 However, sulfate is 

also present in the S/capped Au NP samples, where no reaction between sulfide and gold 

ions takes place. Therefore, we propose that in our case sulfate species are produced by 

oxidation of the reduced sulfur species during the long time exposure of the Au NS samples 

to the ambient conditions as a result of the drop casting procedure. Interestingly, the sulfate 

peak markedly decreases as Au NS dispersions are successively purified, thus indicating 

that sulfate ions are mostly present in solution and also possibly physisorbed on the gold 
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nanostructures. In contrast, the intensity of the reduced S region remains almost constant 

after purification, suggesting that most of these species are chemisorbed on gold. 

In order to gain more insight into the chemical nature of the S species present in the 

different samples, we have fitted the region of the XANES spectra that corresponds to the 

reduced S species (with a maximum at about 2473 eV). Figure 5 shows this region for the 

different samples considered in Figure 4. In all cases the background was fitted by an arctg 

function and the peaks were represented by Gaussian functions (details of the results of the 

fitting are shown in Table S3 in the Supporting Information); spectra were adjusted with 

three components. The peak of the sodium thiosulfate sample, that appears at lower energy 

(Figure 5a), was used as a reference for the component assigned to sulfide species (peak 1), 

which are adsorbed on Au as monomeric S. The remainder of the area corresponds to two 

additional curves at higher energies (peaks 2 and 3), which we have assigned to polysulfide 

species and elemental sulfur, respectively.29, 45 It is worth to mention that this assignation is 

in agreement with the components in X/ray photoelectron spectra for the same S/capped 

Au NPs used as reference46 and, in turn, with S self/assembled monolayers on Au(111) 

prepared from sulfide solutions.20
 

In this perspective, we can also better understand the somehow low value for the Au/S 

distance obtained from EXAFS data for the arrested sample (Figure 3c) from the presence 

of the different reduced S species on the gold surface, mostly monomeric S and adsorbed 

polysulfides, in addition to some elemental S, as found on planar Au substrates.20 The Au/S 

bond length distances for monomeric S adsorbed at 3/fold hollow sites is about 2.28 Å,47/48 

close to the average value obtained from the fitting of the EXAFS curves. 

From the fitting and the analysis of the peak area ratio of sulfide (peak 1) to the total 

reduced S species (sum of the areas of peaks 1, 2 and 3) we can estimate the relative 
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concentration of sulfide species for the different samples (Figure 5f). In the first place, the 

spectrum of the S/capped Au NP sample used for comparison has about 40% of sulfide 

species (Figure 5b and 5f) adsorbed as monomeric S, in line with previous XPS results for 

these nanoparticles,46 which also coincide with those for S SAMs on Au(111) (although in 

the case of planar surfaces the elemental S component can be generally removed by 

thorough rinsing).20 This is in agreement with the fact that the adsorption of sulfides is 

stronger than that of polysulfides on gold surfaces.20, 49 

For non/arrested Au NS dispersions both peaks 2 and 3 increase with respect to peak 1, 

giving a lower proportion of sulfides (about 20%) (see Figures 5c and 5f). This fact can be 

explained by considering that elemental S is formed through the reaction already proposed 

for the same synthesis10 

2 AuCl4
/ + 3 HS/

→ 2 Au + 3 S + 3 H+ + 8 Cl/                     [1] 

Then, some of the elemental S can react with sulfide ions to yield polysulfides on the Au 

NS surface.50/51 On the other hand, for sulfide/arrested, non/purified Au NS samples there 

is about 50% of sulfide (Figures 5d and 5f): this can be accounted for by the higher affinity 

of sulfide for metallic gold, therefore possibly displacing some of the polysulfides and 

elemental S from the nanostructure surface. Also, it is possible that some of the sulfide ions 

are not adsorbed on the gold surface. Finally, for purified arrested samples (Figures 5e and 

5f) the polysulfide peak has increased while the other two decrease (the proportion of 

sulfide is about 25%), thus confirming that some sulfide species in the non/purified sample 

were not adsorbed. More important, this spectrum is very similar to that for S/capped 

AuNPs, and leads us to conclude that practically all reduced S species in the purified Au 

NS samples are chemisorbed.  
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Figure 4: S%K XANES spectra of the different samples: reference thiosulfate solution 

(black); non%arrested Au NSs (green); non%purified arrested Au NSs (red); purified 

arrested Au NSs (blue) and purified S%covered Au NPs used as a reference (violet). 
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Figure 5. (a)%(e) XANES fitting of the region of reduced S species of the samples in Figure 

4: a) thiosulfate solution; b) purified S%capped Au NPs; c) non%arrested Au NSs; d) non%

purified arrested Au NSs, e) purified arrested Au NSs. Peak 1: sulfides (red); peak 2: 

polysulfides (blue); peak 3: elemental S (green). f) Sulfide proportion calculated as the 

area of peak 1 divided by the sum of the areas of peaks 1, 2 and 3 for samples in b), c), d) 

and e).  

The knowledge of the nature of the species that are formed and which remain adsorbed on 

the gold nanostructures is relevant for several reasons.52 First, for any in vitro or in vivo 

biomedical applications it is essential that the surface coating of the nanostructures is 

biocompatible and non/toxic.21/22, 53 In addition, for in vivo applications it is necessary that 

Au NSs are not easily eliminated from the systemic circulation by the mononuclear 

phagocyte system and this is achieved by the use of hydrophilic coatings, like polyethylene 
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glycol.54 Functionalization with PEG is usually performed by addition of thiolated PEG, as 

thiols chemisorb on gold through the S atoms. Also, the same strategy is used to anchor a 

drug, a vector biomolecule, or a dye label on the gold surface.23, 55/56 Thus, it is important to 

know if the initial surface coating of the nanostructures can be effectively exchanged by 

thiol molecules. 

In this sense, it is important to assess the role of the S coating on the extinction spectra of 

the nanotriangles if this has to be removed for biocompatibility or postfunctionalization 

purposes. The quantitative effect of a particular coating, or adsorbed species, on the 

intensity and position of the LSPR peaks of nanostructures is not easy to predict because it 

depends on the refractive index of the coating, its thickness and also on the LSPR strength 

and its wavelength.57/59 In order to address this point we performed electrodynamical 

simulations using a finite/difference time/domain (FDTD) method (see details and Figure 

S6 in the Supporting Information). Our results clearly show that the absorption, scattering 

and extinction cross sections are not affected by a S monolayer, and thus the plasmonic 

properties of the nanotriangles will not be significantly modified as a result of the removal 

of the S coating. 

Finally, for hyperthermia and other applications that require illumination with laser light, it 

is important that the chosen Au NS coating resists the temperature increase upon heating, as 

this can cause the undesired release of the species of interest, or can even induce changes in 

nanostructure shape as a result of surface diffusion.13, 60/62 

SUMMARY AND CONCLUSIONS 

Our combined HRTEM, XAS and SAXS studies shows that the synthesis of Au NSs by 

reaction of Au(III) with sulfide produces only metallic gold nanostructures, with no 
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detectable amount of Au2S or any other oxidized gold species. As previously 

demonstrated,13 nanotriangles with different degree of truncation and nanoplates (even if 

present in a lesser proportion) are the only structures responsible for the LSPR peak in the 

NIR. More importantly, we have found that the S species adsorbed on all Au NSs are 

mostly polysulfides and monomeric S, with some elemental S that is formed in the 

reduction of the Au(III) species. Thiosulfate species are not formed on the nanostructure 

surface, and some sulfate species appear as a result of the preparation of the samples, but 

mostly correspond to the oxidation of reduced S species in the solution. Thus, the interface 

in these Au NSs is similar to that in S self/assembled monolayers of S on planar gold 

surfaces.  

These findings have implications for the use of these NIR/absorbing Au NSs for 

nanomedical applications if post/functionalization of their surface is to be carried out in 

order to increase their biocompatibility and/or to anchor a drug, a vector biomolecule or a 

dye label. Certainly, the presence of strongly adsorbed S species, like sulfides and 

polysulfides, should be carefully considered as they are difficult to remove by simple ligand 

exchange methods.63/64 Also, this knowledge can contribute to shed light on some 

controversial aspects about the nature of the interface of self/assembled monolayers of S 

and S/bearing molecules (especially thiols), both on gold planar surfaces and gold 

nanoparticles.41, 46, 65 

 

ASSOCIATED CONTENT 

Supporting Information. The following material is included: size and shape histograms of 

the nanostructures; AFM image of the Au nanostructures; Guinier and Kratky plots of the 
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SAXS data, together with details on the analysis and the obtained data; HRTEM image of 

small Au nanoparticles; S K/edge XANES data for the different samples; FDTD 

calculations for a gold nanotriangle with and without S capping. This material is available 

free of charge via the Internet at http://pubs.acs.org. 
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