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Abstract

We present a combined analytical and numerical study of the entropy as a function of magnetization
for an orientable 2D spin-ice model that exhibits a Kasteleyn transition. The model that we use is
related to the well known six-vertex model but, as we show, our representation of it is more convenient
for constructing approximate expressions for the entropy at fixed magnetization. We also discuss
directions for further work, including the possibility of deforming our model into one exhibiting a
quantum Kasteleyn transition.

1. Introduction

A popular version of the third law of thermodynamics is that the entropy density of a physical system tends to zero in
the T — 0limit [1]. However, there is a class of theoretical models that violate this law [2-9]: models in this class
exhibit a ground-state degeneracy which grows exponentially with the system size, leading to a non-zero entropy
density evenat T = 0. Nor can these be easily dismissed as theorists’ abstractions, since one also sees ample evidence in
experiment [ 10—13] that there are systems in which the entropy density plateaus at a non-zero value over alarge range
of temperature. In many such cases it is suspected that it eventually falls to zero at a much lower temperature scale

[14, 15], though recent theoretical work on skyrmion magnets suggests that this might not always be the case [16].

Whatever the ultimate low-temperature fate of these materials, it is clear that over a broad range of
temperatures they exhibit physics which is well captured by models with a non-zero residual entropy density.
One important class of these are so-called ice models, in which the ground-state manifold consists of all
configurations which satisfy a certain local ‘ice rule’ constraint [17].

The first such model was Pauling’s model for the residual configurational entropy of water ice [3]. Here the
local constraint is that two of the four hydrogens neighboring any given oxygen should be chemically bonded to
it to form a water molecule. Similar models were subsequently conjectured to apply to the orientations of spins
alonglocal Ising axes in magnetic pyrochlore lattices [ 11, 18], which by analogy were lately dubbed ‘spin ice’
compounds. Such models develop power-law spin-spin correlations at low temperatures but they do not order.
Their low-temperature state is often referred to as a ‘co-operative paramagnet’ [19].

One interesting feature of such co-operative paramagnets is their response to an applied magnetic field. The
configurations that make up the ice-rule manifold usually have different magnetizations; thus an applied field,
depending on its direction, may either reduce [20, 21] or entirely eliminate [22] the degeneracy. In the latter case,
further interesting physics may arise when the system is heated, especially if the ice-rule constraints do not
permit the thermal excitation of individual flipped spins. In such cases the lowest-free-energy excitation may be
astring of flipped spins extending from one side of the system to the other. A demagnetization transition
mediated by such excitations is known as a Kasteleyn transition [22, 23].

An important quantity in such systems is the entropy density of the system as a function of its magnetisation
density. We present in this paper a version of a 2D spin ice model [24-26] that is related to the six-vertex model,
but for which the calculation of the entropy density may be carried out in a physically transparent fashion in
terms of a ‘Kasteleyn line’ representation. We perform such a calculation, and check our formula against the
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results of Monte Carlo simulations, showing good agreement up to an overall scaling factor, which we discuss.
This analysis paves the way for the extension of our model to include a transverse magnetic field, thereby
allowing the exploration of quantum Kasteleyn physics.

The remainder of this paper is structured as follows. In section 2, we present the spin ice model that we shall
study, discuss its relationship to other models in the literature, and provide some analytical and numerical
results on its thermodynamic properties in the absence of an applied magnetic field. In section 3, we consider the
Kasteleyn transition that the model exhibits in the presence of an applied longitudinal field, and we introduce a
‘string representation’ in terms of which the relevant states may be easily described and counted. In section 4, we
employ this string representation to estimate the model’s entropy density as a function of its magnetization
density analytically, comparing our results to those of Monte Carlo simulations. Finally, in section 5, we
summarize our findings and discuss possible future lines of work.

2. The model

The model that we shall consider has the following Hamiltonian:
H:Z];jmaj—hzg,-. (1)
ij i

Here i and jlabel the sites of a two-dimensional square lattice, o; = %1 is an Ising variable on lattice site i, and h
is an externally applied (longitudinal) magnetic field. The exchange interaction Jj; is given by:

J =1 +X%;
-7 =1 +7Y;
—J ri = nx + my (n + m odd)
Ji =3 andrj =1 + X + ¥; 2
—J r; = nX + my (n + m even)
andrj=1,— X+ ¥;
0 otherwise,

\

where r;is the position vector of site 7, X and ¥ are the unit vectors of a Cartesian system in the two-dimensional
plane, and J is a positive constant. In words, this says that the interaction between the spins is antiferromagnetic
if the sites are nearest neighbors in the horizontal direction, ferromagnetic if they are nearest neighbors in the
vertical direction, ferromagnetic for certain next-nearest-neighbor pairs (those linked by the diagonal solid lines
in the upper left inset of figure 1), and zero otherwise.

In this paper, we shall always work in the limit ] >> |h|, kg T Furthermore, where necessary we shall take the
number of sites in the lattice to be N, always assuming N to be large enough that edge effects can be neglected.
When we refer to the density of something (e.g. the entropy density), we shall always mean that quantity divided
by the number of spins—not, for example, by the number of plaquettes.

The lattice described by (2) is shown in the upper-left inset of figure 1, with ferromagnetic bonds represented
by solid lines and antiferromagnetic bonds represented by dotted lines. One may view this lattice as made of
corner-sharing plaquettes, one of which is shown in the lower-right inset of figure 1. It is easy to see that the
bonds on this plaquette cannot all be satisfied at once: the model (1) is therefore magnetically frustrated.

The sixteen spin configurations of the elementary plaquette, together with their energies, are shown in
table 1. When h = 0, i.e. in the absence of an external magnetic field, there are six degenerate ground-state
configurations. They are shown in the left-hand inset of figure 3: we shall call them the ‘ice-rule configurations,’
and the manifold spanned by them the ‘ice-rule manifold.’

This model is related to others in the literature by various transformations of the spin variables. For example,
if we reverse the sign of each even-numbered row of spins, and simultaneously reverse the sign of the exchange
integral on every vertical or diagonal bond, we obtain a model with all antiferromagnetic bonds. The price we
pay is that the magnetic field is now staggered, changing sign from one row of spins to the next: thus the resulting
model is the antiferromagnetic checkerboard model in a staggered magnetic field. A further mapping froma
global Ising axis to local easy axes [27] maps it to the six-vertex model in a vertical electric field [28]. However, the
advantage of our version of the model lies in the especially simple picture it provides of the exponentially many
states in the ice-rule manifold and of the associated Kasteleyn transition.

Because of these exponentially many ice-rule states, our model does not order as the temperature is reduced.
Rather, it crosses over into a co-operative paramagnetic state in which every plaquette is in one of the ice-rule
configurations. The density of defects (a measure of how many plaquettes are not in an ice-rule configuration)
vanishes smoothly as the temperature tends to zero, and the specific heat shows a corresponding Schottky-like
peak at temperatures T ~ J/kgbut no sharp features.
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p defects

k, T/

Figure 1. The density of defects, pgefects> as a function of scaled temperature, kg T/, for alattice of 8192 spins and in the absence of an
applied magnetic field. The number of defects on a plaquette is defined as the number of single spin-flips by which it differs from the
nearest ice-rule configuration. Thus each state in the ground-state manifold of the system has pgefects = 0. The dotted line marks the
high-temperature asymptotic value of 3/8 (see text). Inset (top left): a portion of the lattice, with ferromagnetic bonds represented by
solid lines and antiferromagnetic bonds by dotted lines. Inset (bottom right): the unit cell of the lattice, including the numbering
convention we use for the spins on a single plaquette.

Table 1. The energies of the sixteen spin configurations of the elementary plaquette. Each configuration is specified by listing the orientations
of the four plaquette spins in the order corresponding to the numbering in figure 1. The first six configurations listed are those that, in the
absence of an external magnetic field, constitute the sixfold-degenerate ground-state (or ‘ice rule’) manifold.

Configuration T T Tt N U RN

Energy —2] — 4h 2] 2] 2] 2] —2] + 4h

Configuration Tl T Tt U LT LT LTl T

Energy —2h —2h —2h —2h 2h 2h 2h 2h
Configuration 1Ll PETT
Energy 6] 6]

Because the ground-state degeneracy is exponential in the system size, the model has a non-zero entropy
density even at zero temperature. A naive estimate would suggest a value of kg In 6 per plaquette, i.e.

%kB In6 = 0.896 kg per spin, due to the six-fold ground-state degeneracy. This estimate, however, is too naive,
since it ignores the important constraint that the ice-rule configurations chosen for two neighboring plaquettes
must agree on the orientation of the spin at their shared corner.

We may easily improve our estimate of the zero-temperature entropy density by taking this constraint into
account atalocal level. Imagine ‘growing’ a spin configuration of the lattice from top to bottom. Each time a new
row is added, the orientations of spins 1 and 2 of each plaquette of the row being added ( j) will be fixed by the
(already chosen) configuration of the row above (j — 1). The ice rules for this model do not favor any particular
spin direction for any single site on the plaquette; hence the probabilities of the four configurations of this pair of
spinsaresimply Pyy = P;| = P|; = P|| = 1/4. The number of ice-rule configurations consistent with these
constraints is (see figure 3) N;; = Nj| = 1; N;| = Nj; = 2. Thus halfthe plaquettes in the new row have no
choice of configuration, while the other half may choose between two. This gives an average entropy per
plaquette of %kB In 2, which corresponds to an entropy density of ikB In2 & 0.173 kg per spin.

This estimate is still rather crude, since it neglects correlations between the configurations of neighboring
plaquettes in rowj — 1, which will be induced by their connections to a common plaquette in row;j — 2.
However, it was shown by Lieb [5] that such correlation corrections may be resummed to yield an exact result for
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Figure 2. The dimensionless entropy density of the system, s/kp, as a function of scaled temperature, k5 T/J, for a lattice of 8192 spins
and in the absence of an applied magnetic field, calculated using the Wang-Landau method. At high temperatures the entropy density
is that of an Ising paramagnet, kg In 2 per spin. The zero-temperature residual entropy density is consistent with Lieb’s exact result for

two-dimensional ice models, soLieb = %kg In (g) ~ 0.216 kg.

0.3 1 .

0.2 1
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0 2 4 6 8 10
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Figure 3. The dimensionless heat capacity per spin, C/kg, as a function of scaled temperature, kg T/J, in the absence of an applied
magnetic field, calculated using the Wang-Landau method. Inset (left): the six degenerate zero-field ground states for a single
plaquette. Inset (right): the same states in the string representation.

the ground-state entropy density of such ‘square ice’ models: s = So/N = %kB In (%) ~ 0.216 kg. We shall call
this value the ‘Lieb entropy density,” and denote it s <.

All of the above expectations are borne out by Monte Carlo simulations of the model, the results of which are
shown in figures 1-3.

First, we demonstrate the increasing predominance of ice-rule configurations as the temperature is lowered.
For this it is useful to define the number of defects on a plaquette as the number of single spin-flips by which the
spin configuration deviates from the closest ice-rule configuration. By this measure, the states in the top line of
table 1 have zero defects, those in the second line have one, and those in the third line have two. Figure 1 shows
the density of defects as a function of temperature.

The asymptotic high-temperature value of this quantity can be easily calculated. In the infinite-temperature
limitall configurations of a plaquette are equally probable, i.e. each has a probability %. From table 1, we see that

there are six configurations with no defects, eight configurations with one, and two configurations with two.
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2 3

Hence the average number of defects per plaquette at infinite temperatureis 0 x % +1x % +2x =7

Since there are twice as many spins as plaquettes, the defect density is simply half of this, i.e. g .ocrs — % = 0.375
askgT /] — oo.

Second, we calculate the entropy density of the system as a function of temperature, using the Wang-Landau
method [29]. The results are shown in figure 2. At high temperatures the entropy density tends to kg In 2, the
Ising paramagnetic value. At low temperatures it tends to a non-zero constant value which is in good agreement
with the Lieb entropy density s-** given above. In between there are no sharp features, confirming that the
model exhibits only a crossover from high-temperature paramagnetic to low-temperature cooperative-
paramagnetic behavior.

Third, we obtain the specific heat capacity as a function of temperature, also using the Wang-Landau
method. The results are shown in figure 3. In keeping with our results for the entropy density in figure 2, we see
that although there is abroad Schottky-like peak at temperatures of order J/kp there are no sharp features,
supporting our expectation that this model would not exhibit a phase transition.

3. String representation

The particular magnetization distribution of the states in our model’s ice-rule manifold gives it an unusual
response to an externally applied longitudinal magnetic field. In this section, we discuss the Kasteleyn transition
that results from this, and use it to motivate a ‘string representation’ of the ice-rule states that will be useful in
calculating an approximate expression for the entropy as a function of magnetization.

We call the longitudinal magnetic field 4, and in the following we shall take it to be positive. As shown in the
firstline of table 1, the degeneracy between the six ice-rule configurations is lifted as soon as the field h is applied.
Indeed, for any non-zero h (and remembering that we always work in the i < Jlimit) the ground state of a
plaquette is the unique ‘all up’ configuration. It follows that, at T = 0, the entire lattice simply has o; = +1 for
all sites .

Now let us consider what happens to this fully magnetized state as the temperature is increased. One might
expect the appearance of a dilute set of ‘down’ spins. However, a feature of this model is that a single spin-flip
takes the system out of the ice-rule manifold, and at i, kg T < J this will not occur. To understand what will
happen instead, let us introduce a representation of the states in the ice-rule manifold in terms of strings.

We begin with a single plaquette. If we take as our reference state the one in which all the spins are up, we may
represent the six ice-rule configurations in terms of lines joining the spins that are down. This is shown in the
right-hand inset of figure 3. Representing the ‘all down’ configuration as two vertical lines rather than two
horizontal ones is in principle arbitrary, but it has the advantage of yielding a model in which these lines of down
spins can neither cross each other nor form closed loops.

To make an ice-rule-obeying configuration of the entire lattice, we must put these plaquettes together in
such a way that any string that leaves one plaquette enters its neighbor. Thus there is a one-to-one mapping
between ice-rule-obeying configurations of the spins ¢; and configurations of these strings. Each string must
extend all the way across the lattice. An example of such a mapping is shown in figure 4, where panel (a) shows a
portion of the lattice in a particular ice-rule spin configuration, and panel (b) shows the same configuration
represented in terms of strings of ‘down’ spins. Notice that the strings cannot loop back on themselves: there is
no plaquette in the right-hand inset of figure 3 for which the string is horizontal, and the two types of diagonal
line cannot join into a ‘V’ shape because plaquettes on the same row of the lattice do not share corners. Notice
also that the strings cannot cross: a plaquette containing all ‘down’ spins is always to be interpreted as a pair of
vertical strings, not as a pair of diagonally crossing ones, in order to preserve the one-to-one nature of the
mapping.

To proceed further, let us suppose that the lattice consists of L, sites in the horizontal direction and L, sites in
the vertical direction, so that N = L, L,. Each string, irrespective of its configuration, contains precisely L, spins,
so that a configuration with N strings has N, L, down spins and thus an energy of 2hN; L, relative to the fully
magnetized state (or ‘string vacuum’). Such a string is the minimal demagnetizing excitation of the system that is
consistent with the ice rule.

Since a single string has an energy cost proportional to the linear size of the system, it might appear that such
strings cannot be thermally excited. This is not true, however, because a single string also has two choices about
which way to go every time it enters a new plaquette, meaning that its entropy of kgL, In 2 is also proportional to
L,. Thus the free-energy cost of introducing a single string into the fully magnetized state is

F = E—TS=(h — ksTIn2)L,. 3)
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(a) (b)

Figure 4. An example of the mapping between ice-rule configurations of the spins and the string picture. (a) A particular ice-rule spin
configuration. (b) The same configuration in the string representation, obtained by mapping each plaquette as shown in the right-
hand inset of figure 3.

M/Mat

0.16

0.
ksT/J

045 ™7

Figure 5. The ratio of the magnetization to its saturated value, M/ M, as a function of scaled temperature, kg T/J, and scaled
longitudinal field, /1/]. The solid black line shows the theoretical prediction for the Kasteleyn transition temperature,
T. = 2h/(kgIn2).

When the temperature reaches the critical value T, = 2h/ (kg In 2), this free-energy cost flips sign, and the system
becomes unstable to the proliferation of strings. (This is somewhat similar to what happens in a Berezinskii-
Kosterlitz-Thouless transition [30, 31], except that in our model we do not have ‘positive’ and ‘negative’ strings,
so the physics of screening plays no réle.)

In fact the increase in the string density from zero for T > T,—which corresponds directly to the decrease in
the magnetization from its saturated value—is continuous. This is because the above argument applies strictly
only to a single string introduced into the fully magnetized state. Once a finite density of strings has been created
the entropy associated with new ones is reduced, and thus the temperature at which it becomes free-energetically
favorable to create them goes up.

This kind of transition, in which the elementary thermal excitations are system-spanning strings, is called a
Kasteleyn transition. It was first described by Kasteleyn in the context of dimer models [23].

The above predictions are again borne out by our Monte Carlo simulations, the results of which are shown in
figures 5-7.

Figure 5 shows a three-dimensional plot of the equilibrium value of the magnetization, M, as a function of
the temperature and the applied magnetic field. At all temperatures below T,(h) the magnetization takes its
saturated value; above T (h) it decreases smoothly with increasing temperature, tending to zero onlyas T — oo.
This may be understood in the string representation of the problem. As more and more strings are introduced,
the entropy density of each new one decreases; in the limit where half the lattice sites are populated by strings it
tends to zero, meaning that this will occur only in the infinite-temperature limit.
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ke T/J

Figure 6. The magnetic susceptibility, ¥, as a function of scaled temperature, kg T/J, for a lattice of 8192 spins with three different
values of the scaled magnetic field i1/J: 0.017 (black symbols, leftmost peak), 0.034 (red symbols, middle peak), and 0.051 (blue
symbols, rightmost peak). The inset shows the reduced magnetization, y, as a function of the reduced temperature, t, for an applied
field h/] = 0.017 (grey filled circles). The solid red line corresponds to p ~ /2,

0.4 ' ' '
k,T.(h)/J,

0.3-
Strings

0.2 1

k, Tl

0.1+

0.0 : .
0.00 0.05 0.10 0.15

h/J

Figure 7. The phase diagram of our model as a function of scaled temperature, k3 T/J, and scaled magnetic field, i/]. The red dots
show the Kasteleyn temperature as determined from the magnetization curves, i.e. the temperature at which the magnetization first
departs from its saturated value. The black line is the theoretical prediction T, (h) = 2h/ (kg In 2). As expected, the simulation results
depart from the theoretical prediction at temperatures where the condition that the spin configuration remain strictly in the ice-rule
manifold, h, kg T < J,is nolonger fulfilled (pink area).

Figure 6 shows the magnetic susceptibility, determined at three different values of the applied field. In each
case, one seesat T = T.(h) the asymmetric peak characteristic of a Kasteleyn transition. This highlights an
intriguing consequence of the physics of the Kasteleyn strings: below T.(h) the linear susceptibility is strictly
zero, while as T,(h) is approached from above the susceptibility diverges.

For a two-dimensional Kasteleyn transition one expects to find 5 = 1/2 on the high-temperature side
[21,32], that s,

o~ tl/z, 4

where pt = (Mg — M) /Mg, is the reduced magnetizationand t = (T — T;) /T, is the reduced temperature.
This is indeed the case in our simulations: the inset of figure 6 is alog-log plot of 1 as a function of ¢, calculated
for a system of 8192 spins and with an applied field of /] = 0.017 (grey filled circles), compared with the
expected t' /2 behavior (solid red line). Similar behavior is found for all simulated fields below 0.14/].
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® From W-L (512 spins)
- = = = s,(m)/k,=(1-m)/2 In((3+m)/2)
s,(m)/k,=(1-m)/2 (In((3+m)/2)+0.028)
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O Lieb

0.0 : : .
0.0 0.5 1.0
m

Figure 8. The residual dimensionless entropy per site, so/kg, as a function of the scaled magnetization per site, m = M/ Mg, The black
filled circles show the values obtained numerically using the Wang-Landau method for a lattice of 512 spins. The dashed red line is the free-
string result §, (1) (see text); note that it tends to Pauling’s entropy at m = 0 (filled red square). The solid blue line is the curve obtained by
multiplying the number of microstates by a constant factor, chosen to rescale §,(0) to match Lieb’s exact result (open blue circle).

In figure 7 we collect our data into a phase diagram. The filled red circles show the temperature of the
Kasteleyn transition, determined from the data in figure 5 as the temperature at which the magnetization departs
from its saturated value. The thick black line is the prediction T;(h) = 2h/ (kg In 2) derived above. The departure
of the red points from this line at larger fields and temperatures is due to the violation of the condition
h, kg T < J.Inthe pink region the thermal excitations are not full strings, but instead string fragments
extending from one ice-rule-violating plaquette to another. The physics of such string fragments, and their
signatures in neutron scattering, were discussed by Wan and Tchernyshyov [26].

4. Entropy as a function of magnetization

In this section, we come to the main point of our paper: to use the string representation to calculate the entropy
density of the system, s, at a fixed value of the magnetization density, m = M/Mj,,. Clearly s(m) is an even
function of m, so we may restrict our calculation to the case m > 0. The magnetization density may equivalently
be expressed as the density of strings, 7, via the formulan, = (1 — m)/2.

To determine the entropy density corresponding to a given value of 7, consider propagating the string
configuration downwards from the top of the lattice. We shall assume that this propagation has reached a certain
row j, and concentrate on a single string in that row. As it enters a new plaquette inrowj + 1, this string has in
principle two choices: to continue vertically downwards, or to cross the plaquette diagonally. However, if
another string is entering the same plaquette, it has only one choice, since the strings cannot cross (see figure 3).

The probability that a second string enters the same plaquette in rowj + 1 as the first is simply 7. Thus the
average number of choices available to the first string upon entering the new plaquette is
n, X 1+ (1 —n) x 2 =2 — n,.This means that each string has a total entropy S; ~ kgL, In(2 — 7,); witha
total number of strings 7), Ly, it follows that the total entropyis S ~ kzL.L,7,In(2 — 7,). Dividing by the
number of spins N = L, L,,and usingn, = (1 — m)/2, we obtain

so(m) ~ 35y(m) = kB(l ;m)ln(

3+m). )

2

In figure 8 we compare this approximation with numerical results for the entropy density obtained using the
Wang-Landau method. The filled black circles are the numerical results, while the dashed red curve is our
analytical approximation (5). Itis clear that these were never going to coincide, since the 1 — 0 limit of §, (1) is

the Pauling entropy density, %kB In (%), while the m — 0limit of the actual entropy density is the Lieb entropy
.3 4
density, ZkB In (3)
The origin of the difference between Lieb’s exact result and Pauling’s approximation lies in positive

correlation of closed loops [4, 5], which increases by a small factor the number of possible configurations
obeying the ice rule. If one makes the crude assumption that this factor is independent of m, this results in a

8
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constant additive change to the logarithmin (5):

So(m) — kB(1 _2 m)[ln(3 —; m) + a]. (6)

If we choose the constant o to match the known result at m = 0, the resulting curve (shown in blue) gives a very
reasonable fit to the numerical data points over the wholerange 0 < m < 1.

5. Summary and future work

In this paper, we have presented a spin-ice model defined on a two-dimensional lattice of mixed ferro- and
antiferromagnetic bonds. We have used its Kasteleyn transition (a known feature of the six-vertex model to
which it can be mapped) to motivate the introduction of a ‘string representation’ of the ice-rule manifold, and
we have demonstrated that this representation is well adapted to the task of making an analytical estimate of the
entropy density as a function of the magnetization density.

One appealing feature of models in this class is that, unlike full three-dimensional spin ices, the Ising
quantization axis is the same on each lattice site. This makes it natural to consider adding to the model a spatially
uniform transverse magnetic field, I'. The results of this should be particularly interestingin the h, T, kg T < J
regime, where the applied field is expected to stabilize the string phase at low temperatures, leading to a line of
quantum Kasteleyn transitions in the zero-temperature (h, I') plane. This extension of the model (1) is the
subject of a forthcoming work [33].
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Appendix. Numerical methods

We performed Monte Carlo simulations using the Metropolis [34] and Wang-Landau [29, 35] algorithms. In
both cases we used a single-spin flip algorithm on systems of L x L unit cells (see inset of figure 1) ranging from
L = 8(128 spins) to L = 64 (8192 spins). For our Metropolis algorithm, we used 5 x 10> Monte Carlo steps for
equilibrationand L2 x 108 for averaging. In order to calculate the entropy of the system we used the Wang-
Landau algorithm to determine the density of states, 5. We labeled the states according to their energy, E;, and
magnetization, M;. For normalization we used the condition 3= ,, 6 (E;, M;) = 2N where N is the total
number of spins of the system. The modification factor changed from In(f)) = 1to In(f; ) = 107°.
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