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Abstract
Wepresent a combined analytical and numerical study of the entropy as a function ofmagnetization
for an orientable 2D spin-icemodel that exhibits a Kasteleyn transition. Themodel that we use is
related to thewell known six-vertexmodel but, aswe show, our representation of it ismore convenient
for constructing approximate expressions for the entropy atfixedmagnetization.We also discuss
directions for further work, including the possibility of deforming ourmodel into one exhibiting a
quantumKasteleyn transition.

1. Introduction

Apopular versionof the third lawof thermodynamics is that the entropydensity of aphysical system tends to zero in
theT→0 limit [1].However, there is a class of theoreticalmodels that violate this law [2–9]:models in this class
exhibit a ground-state degeneracywhichgrows exponentiallywith the systemsize, leading to anon-zero entropy
density even atT=0.Nor can thesebe easily dismissed as theorists’ abstractions, sinceone also sees ample evidence in
experiment [10–13] that there are systems inwhich the entropydensityplateaus at anon-zerovalueover a large range
of temperature. Inmany suchcases it is suspected that it eventually falls to zero at amuch lower temperature scale
[14, 15], though recent theoreticalworkon skyrmionmagnets suggests that thismightnot alwaysbe the case [16].

Whatever the ultimate low-temperature fate of thesematerials, it is clear that over a broad range of
temperatures they exhibit physics which is well captured bymodels with a non-zero residual entropy density.
One important class of these are so-called icemodels, inwhich the ground-statemanifold consists of all
configurationswhich satisfy a certain local ‘ice rule’ constraint [17].

Thefirst suchmodel was Pauling’smodel for the residual configurational entropy of water ice [3]. Here the
local constraint is that two of the four hydrogens neighboring any given oxygen should be chemically bonded to
it to form awatermolecule. Similarmodels were subsequently conjectured to apply to the orientations of spins
along local Ising axes inmagnetic pyrochlore lattices [11, 18], which by analogywere lately dubbed ‘spin ice’
compounds. Suchmodels develop power-law spin-spin correlations at low temperatures but they do not order.
Their low-temperature state is often referred to as a ‘co-operative paramagnet’ [19].

One interesting feature of such co-operative paramagnets is their response to an appliedmagnetic field. The
configurations thatmake up the ice-rulemanifold usually have differentmagnetizations; thus an appliedfield,
depending on its direction,may either reduce [20, 21] or entirely eliminate [22] the degeneracy. In the latter case,
further interesting physicsmay arise when the system is heated, especially if the ice-rule constraints do not
permit the thermal excitation of individual flipped spins. In such cases the lowest-free-energy excitationmay be
a string offlipped spins extending fromone side of the system to the other. A demagnetization transition
mediated by such excitations is known as aKasteleyn transition [22, 23].

An important quantity in such systems is the entropy density of the system as a function of itsmagnetisation
density.We present in this paper a version of a 2D spin icemodel [24–26] that is related to the six-vertexmodel,
but for which the calculation of the entropy densitymay be carried out in a physically transparent fashion in
terms of a ‘Kasteleyn line’ representation.We perform such a calculation, and check our formula against the
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results ofMonte Carlo simulations, showing good agreement up to an overall scaling factor, whichwe discuss.
This analysis paves theway for the extension of ourmodel to include a transversemagnetic field, thereby
allowing the exploration of quantumKasteleyn physics.

The remainder of this paper is structured as follows. In section 2, we present the spin icemodel that we shall
study, discuss its relationship to othermodels in the literature, and provide some analytical and numerical
results on its thermodynamic properties in the absence of an appliedmagnetic field. In section 3, we consider the
Kasteleyn transition that themodel exhibits in the presence of an applied longitudinal field, andwe introduce a
‘string representation’ in terms of which the relevant statesmay be easily described and counted. In section 4, we
employ this string representation to estimate themodel’s entropy density as a function of itsmagnetization
density analytically, comparing our results to those ofMonte Carlo simulations. Finally, in section 5, we
summarize ourfindings and discuss possible future lines of work.

2. Themodel

Themodel that we shall consider has the followingHamiltonian:

å ås s s= - ( )H J h . 1
ij

ij i j
i

i

Here i and j label the sites of a two-dimensional square lattice,σi=±1 is an Ising variable on lattice site i, and h
is an externally applied (longitudinal)magnetic field. The exchange interaction Jij is given by:
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where ri is the position vector of site i, x̂ and ŷ are the unit vectors of a Cartesian system in the two-dimensional
plane, and J is a positive constant. Inwords, this says that the interaction between the spins is antiferromagnetic
if the sites are nearest neighbors in the horizontal direction, ferromagnetic if they are nearest neighbors in the
vertical direction, ferromagnetic for certain next-nearest-neighbor pairs (those linked by the diagonal solid lines
in the upper left inset offigure 1), and zero otherwise.

In this paper, we shall always work in the limit  ∣ ∣J h k T, B . Furthermore, where necessarywe shall take the
number of sites in the lattice to beN, always assumingN to be large enough that edge effects can be neglected.
Whenwe refer to the density of something (e.g. the entropy density), we shall alwaysmean that quantity divided
by the number of spins—not, for example, by the number of plaquettes.

The lattice described by (2) is shown in the upper-left inset offigure 1, with ferromagnetic bonds represented
by solid lines and antiferromagnetic bonds represented by dotted lines. Onemay view this lattice asmade of
corner-sharing plaquettes, one of which is shown in the lower-right inset offigure 1. It is easy to see that the
bonds on this plaquette cannot all be satisfied at once:themodel (1) is thereforemagnetically frustrated.

The sixteen spin configurations of the elementary plaquette, togetherwith their energies, are shown in
table 1.When h=0, i.e. in the absence of an externalmagnetic field, there are six degenerate ground-state
configurations. They are shown in the left-hand inset offigure 3:we shall call them the ‘ice-rule configurations,’
and themanifold spanned by them the ‘ice-rulemanifold.’

Thismodel is related to others in the literature by various transformations of the spin variables. For example,
if we reverse the sign of each even-numbered rowof spins, and simultaneously reverse the sign of the exchange
integral on every vertical or diagonal bond, we obtain amodel with all antiferromagnetic bonds. The price we
pay is that themagnetic field is now staggered, changing sign fromone rowof spins to the next:thus the resulting
model is the antiferromagnetic checkerboardmodel in a staggeredmagnetic field. A furthermapping froma
global Ising axis to local easy axes [27]maps it to the six-vertexmodel in a vertical electric field [28]. However, the
advantage of our version of themodel lies in the especially simple picture it provides of the exponentiallymany
states in the ice-rulemanifold and of the associated Kasteleyn transition.

Because of these exponentiallymany ice-rule states, ourmodel does not order as the temperature is reduced.
Rather, it crosses over into a co-operative paramagnetic state in which every plaquette is in one of the ice-rule
configurations. The density of defects (ameasure of howmany plaquettes are not in an ice-rule configuration)
vanishes smoothly as the temperature tends to zero, and the specific heat shows a corresponding Schottky-like
peak at temperaturesT∼J/kB but no sharp features.

2
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Because the ground-state degeneracy is exponential in the system size, themodel has a non-zero entropy
density even at zero temperature. A naïve estimate would suggest a value of k ln 6B per plaquette, i.e.

»k kln 6 0.896B B
1

2
per spin, due to the six-fold ground-state degeneracy. This estimate, however, is too naïve,

since it ignores the important constraint that the ice-rule configurations chosen for two neighboring plaquettes
must agree on the orientation of the spin at their shared corner.

Wemay easily improve our estimate of the zero-temperature entropy density by taking this constraint into
account at a local level. Imagine ‘growing’ a spin configuration of the lattice from top to bottom. Each time a new
row is added, the orientations of spins 1 and 2 of each plaquette of the rowbeing added ( j)will befixed by the
(already chosen) configuration of the row above ( j−1). The ice rules for thismodel do not favor any particular
spin direction for any single site on the plaquette; hence the probabilities of the four configurations of this pair of
spins are simply = = = =   P P P P 1 4. The number of ice-rule configurations consistent with these
constraints is (seefigure 3) = = N N 1; = = N N 2. Thus half the plaquettes in the new rowhave no
choice of configuration, while the other halfmay choose between two. This gives an average entropy per

plaquette of k ln 2B
1

2
, which corresponds to an entropy density of »k kln 2 0.173B B

1

4
per spin.

This estimate is still rather crude, since it neglects correlations between the configurations of neighboring
plaquettes in row j−1, whichwill be induced by their connections to a commonplaquette in row j−2.
However, it was shownby Lieb [5] that such correlation correctionsmay be resummed to yield an exact result for

Figure 1.The density of defects, ρdefects, as a function of scaled temperature, kB T/J, for a lattice of 8192 spins and in the absence of an
appliedmagnetic field. The number of defects on a plaquette is defined as the number of single spin-flips bywhich it differs from the
nearest ice-rule configuration. Thus each state in the ground-statemanifold of the systemhas ρdefects=0. The dotted linemarks the
high-temperature asymptotic value of 3/8 (see text). Inset (top left): a portion of the lattice, with ferromagnetic bonds represented by
solid lines and antiferromagnetic bonds by dotted lines. Inset (bottom right): the unit cell of the lattice, including the numbering
conventionwe use for the spins on a single plaquette.

Table 1.The energies of the sixteen spin configurations of the elementary plaquette. Each configuration is specified by listing the orientations
of the four plaquette spins in the order corresponding to the numbering infigure 1. The first six configurations listed are those that, in the
absence of an externalmagnetic field, constitute the sixfold-degenerate ground-state (or ‘ice rule’)manifold.

Configuration                        

Energy - -J h2 4 - J2 - J2 - J2 - J2 - +J h2 4

Configuration                                

Energy - h2 - h2 - h2 - h2 h2 h2 h2 h2

Configuration        

Energy J6 J6

3
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the ground-state entropy density of such ‘square ice’models: º = »( )s S N k kln 0.216B B0 0
3

4

4

3
.We shall call

this value the ‘Lieb entropy density,’ and denote it s0
Lieb.

All of the above expectations are borne out byMonte Carlo simulations of themodel, the results of which are
shown infigures 1–3.

First, we demonstrate the increasing predominance of ice-rule configurations as the temperature is lowered.
For this it is useful to define the number of defects on a plaquette as the number of single spin-flips bywhich the
spin configuration deviates from the closest ice-rule configuration. By thismeasure, the states in the top line of
table 1 have zero defects, those in the second line have one, and those in the third line have two. Figure 1 shows
the density of defects as a function of temperature.

The asymptotic high-temperature value of this quantity can be easily calculated. In the infinite-temperature

limit all configurations of a plaquette are equally probable, i.e. each has a probability 1

16
. From table 1, we see that

there are six configurationswith no defects, eight configurationswith one, and two configurationswith two.

Figure 2.The dimensionless entropy density of the system, s/kB, as a function of scaled temperature, kB T/J, for a lattice of 8192 spins
and in the absence of an appliedmagnetic field, calculated using theWang-Landaumethod. At high temperatures the entropy density
is that of an Ising paramagnet, k ln 2B per spin. The zero-temperature residual entropy density is consistent with Lieb’s exact result for

two-dimensional icemodels, = »( )s k kln 0.216B B0
Lieb 3

4

4

3
.

Figure 3.The dimensionless heat capacity per spin,C/kB, as a function of scaled temperature, kB T/J, in the absence of an applied
magnetic field, calculated using theWang-Landaumethod. Inset (left):the six degenerate zero-field ground states for a single
plaquette. Inset (right):the same states in the string representation.
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Hence the average number of defects per plaquette at infinite temperature is ´ + ´ + ´ =0 1 26

16

8

16

2

16

3

4
.

Since there are twice asmany spins as plaquettes, the defect density is simply half of this, i.e. r  = 0.375defects
3

8
as  ¥k T JB .

Second, we calculate the entropy density of the system as a function of temperature, using theWang-Landau
method [29]. The results are shown infigure 2. At high temperatures the entropy density tends to k ln 2B , the
Ising paramagnetic value. At low temperatures it tends to a non-zero constant valuewhich is in good agreement
with the Lieb entropy density s0

Lieb given above. In between there are no sharp features, confirming that the
model exhibits only a crossover fromhigh-temperature paramagnetic to low-temperature cooperative-
paramagnetic behavior.

Third, we obtain the specific heat capacity as a function of temperature, also using theWang-Landau
method. The results are shown infigure 3. In keepingwith our results for the entropy density infigure 2, we see
that although there is a broad Schottky-like peak at temperatures of order J/kB there are no sharp features,
supporting our expectation that thismodel would not exhibit a phase transition.

3. String representation

The particularmagnetization distribution of the states in ourmodel’s ice-rulemanifold gives it an unusual
response to an externally applied longitudinalmagneticfield. In this section, we discuss theKasteleyn transition
that results from this, and use it tomotivate a ‘string representation’ of the ice-rule states that will be useful in
calculating an approximate expression for the entropy as a function ofmagnetization.

We call the longitudinalmagnetic field h, and in the followingwe shall take it to be positive. As shown in the
first line of table 1, the degeneracy between the six ice-rule configurations is lifted as soon as thefield h is applied.
Indeed, for any non-zero h (and remembering that we always work in the h=J limit) the ground state of a
plaquette is the unique ‘all up’ configuration. It follows that, atT=0, the entire lattice simply hasσi=+1 for
all sites i.

Now let us consider what happens to this fullymagnetized state as the temperature is increased.Onemight
expect the appearance of a dilute set of ‘down’ spins.However, a feature of thismodel is that a single spin-flip
takes the systemout of the ice-rulemanifold, and at h k T J, B this will not occur. To understandwhat will
happen instead, let us introduce a representation of the states in the ice-rulemanifold in terms of strings.

We beginwith a single plaquette. If we take as our reference state the one inwhich all the spins are up, wemay
represent the six ice-rule configurations in terms of lines joining the spins that are down. This is shown in the
right-hand inset offigure 3. Representing the ‘all down’ configuration as two vertical lines rather than two
horizontal ones is in principle arbitrary, but it has the advantage of yielding amodel inwhich these lines of down
spins can neither cross each other nor form closed loops.

Tomake an ice-rule-obeying configuration of the entire lattice, wemust put these plaquettes together in
such away that any string that leaves one plaquette enters its neighbor. Thus there is a one-to-onemapping
between ice-rule-obeying configurations of the spinsσi and configurations of these strings. Each stringmust
extend all theway across the lattice. An example of such amapping is shown infigure 4, where panel (a) shows a
portion of the lattice in a particular ice-rule spin configuration, and panel (b) shows the same configuration
represented in terms of strings of ‘down’ spins. Notice that the strings cannot loop back on themselves:there is
no plaquette in the right-hand inset offigure 3 forwhich the string is horizontal, and the two types of diagonal
line cannot join into a ‘V’ shape because plaquettes on the same rowof the lattice do not share corners. Notice
also that the strings cannot cross:a plaquette containing all ‘down’ spins is always to be interpreted as a pair of
vertical strings, not as a pair of diagonally crossing ones, in order to preserve the one-to-one nature of the
mapping.

To proceed further, let us suppose that the lattice consists of Lx sites in the horizontal direction and Ly sites in
the vertical direction, so thatN=Lx Ly. Each string, irrespective of its configuration, contains precisely Ly spins,
so that a configurationwithNs strings hasNs Ly down spins and thus an energy of hN L2 s y relative to the fully
magnetized state (or ‘string vacuum’). Such a string is theminimal demagnetizing excitation of the system that is
consistent with the ice rule.

Since a single string has an energy cost proportional to the linear size of the system, itmight appear that such
strings cannot be thermally excited. This is not true, however, because a single string also has two choices about
whichway to go every time it enters a new plaquette,meaning that its entropy of k L ln 2B y is also proportional to
Ly. Thus the free-energy cost of introducing a single string into the fullymagnetized state is

= - = -( ) ( )F E TS h k T L2 ln 2 . 3B y
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When the temperature reaches the critical value = ( )T h k2 ln 2c B , this free-energy costflips sign, and the system
becomes unstable to the proliferation of strings. (This is somewhat similar towhat happens in a Berezinskii-
Kosterlitz-Thouless transition [30, 31], except that in ourmodel we do not have ‘positive’ and ‘negative’ strings,
so the physics of screening plays no rôle.)

In fact the increase in the string density from zero forT>Tc—which corresponds directly to the decrease in
themagnetization from its saturated value—is continuous. This is because the above argument applies strictly
only to a single string introduced into the fullymagnetized state. Once afinite density of strings has been created
the entropy associatedwith newones is reduced, and thus the temperature at which it becomes free-energetically
favorable to create them goes up.

This kind of transition, inwhich the elementary thermal excitations are system-spanning strings, is called a
Kasteleyn transition. It wasfirst described byKasteleyn in the context of dimermodels [23].

The above predictions are again borne out by ourMonteCarlo simulations, the results of which are shown in
figures 5–7.

Figure 5 shows a three-dimensional plot of the equilibrium value of themagnetization,M, as a function of
the temperature and the appliedmagnetic field. At all temperatures belowTc(h) themagnetization takes its
saturated value; aboveTc(h) it decreases smoothly with increasing temperature, tending to zero only as  ¥T .
Thismay be understood in the string representation of the problem. Asmore andmore strings are introduced,
the entropy density of each new one decreases; in the limit where half the lattice sites are populated by strings it
tends to zero,meaning that this will occur only in the infinite-temperature limit.

Figure 4.An example of themapping between ice-rule configurations of the spins and the string picture. (a)Aparticular ice-rule spin
configuration. (b)The same configuration in the string representation, obtained bymapping each plaquette as shown in the right-
hand inset offigure 3.

Figure 5.The ratio of themagnetization to its saturated value,M/Msat, as a function of scaled temperature, kB T/J, and scaled
longitudinal field, h/J. The solid black line shows the theoretical prediction for theKasteleyn transition temperature,

= ( )T h k2 ln 2c B .
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Figure 6 shows themagnetic susceptibility, determined at three different values of the applied field. In each
case, one sees atT=Tc(h) the asymmetric peak characteristic of a Kasteleyn transition. This highlights an
intriguing consequence of the physics of the Kasteleyn strings:belowTc(h) the linear susceptibility is strictly
zero, while asTc(h) is approached from above the susceptibility diverges.

For a two-dimensional Kasteleyn transition one expects tofindβ=1/2 on the high-temperature side
[21, 32], that is,

m ~ ( )t , 41 2

where m º -( )M M Msat sat is the reducedmagnetization and º -( )t T T Tc c is the reduced temperature.
This is indeed the case in our simulations:the inset offigure 6 is a log-log plot ofμ as a function of t, calculated
for a systemof 8192 spins andwith an applied field of h/J=0.017 (grey filled circles), comparedwith the
expected t1/2 behavior (solid red line). Similar behavior is found for all simulated fields below 0.1h/J.

Figure 6.Themagnetic susceptibility,χ, as a function of scaled temperature, kB T/J, for a lattice of 8192 spinswith three different
values of the scaledmagnetic field h/J: 0.017 (black symbols, leftmost peak), 0.034 (red symbols,middle peak), and 0.051 (blue
symbols, rightmost peak). The inset shows the reducedmagnetization,μ, as a function of the reduced temperature, t, for an applied
field h/J=0.017 (grey filled circles). The solid red line corresponds toμ∼t1/2.

Figure 7.The phase diagramof ourmodel as a function of scaled temperature, kB T/J, and scaledmagnetic field, h/J. The red dots
show the Kasteleyn temperature as determined from themagnetization curves, i.e. the temperature at which themagnetization first
departs from its saturated value. The black line is the theoretical prediction =( ) ( )T h h k2 ln 2c B . As expected, the simulation results
depart from the theoretical prediction at temperatures where the condition that the spin configuration remain strictly in the ice-rule
manifold, h k T J, B , is no longer fulfilled (pink area).
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Infigure 7we collect our data into a phase diagram. Thefilled red circles show the temperature of the
Kasteleyn transition, determined from the data infigure 5 as the temperature at which themagnetization departs
from its saturated value. The thick black line is the prediction =( ) ( )T h h k2 ln 2c B derived above. The departure
of the red points from this line at largerfields and temperatures is due to the violation of the condition

h k T J, B . In the pink region the thermal excitations are not full strings, but instead string fragments
extending fromone ice-rule-violating plaquette to another. The physics of such string fragments, and their
signatures in neutron scattering, were discussed byWan andTchernyshyov [26].

4. Entropy as a function ofmagnetization

In this section, we come to themain point of our paper:to use the string representation to calculate the entropy
density of the system, s, at a fixed value of themagnetization density,m≡M/Msat. Clearly s(m) is an even
function ofm, sowemay restrict our calculation to the case m 0. Themagnetization densitymay equivalently
be expressed as the density of strings, ηs, via the formula ηs=(1−m)/2.

To determine the entropy density corresponding to a given value of ηs, consider propagating the string
configuration downwards from the top of the lattice.We shall assume that this propagation has reached a certain
row j, and concentrate on a single string in that row. As it enters a new plaquette in row j+1, this string has in
principle two choices:to continue vertically downwards, or to cross the plaquette diagonally. However, if
another string is entering the same plaquette, it has only one choice, since the strings cannot cross (see figure 3).

The probability that a second string enters the same plaquette in row j+1 as thefirst is simply ηs. Thus the
average number of choices available to the first string upon entering the new plaquette is
h h h´ + - ´ = -( )1 1 2 2s s s. Thismeans that each string has a total entropy h» -( )S k L ln 2 ;s B y s with a
total number of strings h Ls x, it follows that the total entropy is h h» -( )S k L L ln 2B x y s s . Dividing by the
number of spins =N L Lx y, and using ηs=(1−m)/2, we obtain

» º
- +⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( ) ˜ ( ) ( )s m s m k

m m1

2
ln

3

2
. 5B0 0

Infigure 8we compare this approximationwith numerical results for the entropy density obtained using the
Wang-Landaumethod. Thefilled black circles are the numerical results, while the dashed red curve is our
analytical approximation (5). It is clear that thesewere never going to coincide, since them→ 0 limit of ˜ ( )s m0 is

the Pauling entropy density, ( )k lnB
1

2

3

2
, while them→ 0 limit of the actual entropy density is the Lieb entropy

density, ( )k lnB
3

4

4

3
.

The origin of the difference between Lieb’s exact result and Pauling’s approximation lies in positive
correlation of closed loops [4, 5], which increases by a small factor the number of possible configurations
obeying the ice rule. If onemakes the crude assumption that this factor is independent ofm, this results in a

Figure 8.The residual dimensionless entropyper site, s0/kB, as a functionof the scaledmagnetizationper site,m≡M/Msat. Theblack
filled circles show the values obtainednumerically using theWang-Landaumethod for a lattice of 512 spins. Thedashed red line is the free-
string result ˜ ( )s m0 (see text); note that it tends toPauling’s entropy atm=0 (filled red square). The solid blue line is the curve obtainedby
multiplying thenumberofmicrostates by a constant factor, chosen to rescale ˜ ( )s 00 tomatchLieb’s exact result (openblue circle).
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constant additive change to the logarithm in (5):

a
- +

+⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥˜ ( ) ⟶ ( )s m k

m m1

2
ln

3

2
. 6B0

If we choose the constantα tomatch the known result atm=0, the resulting curve (shown in blue) gives a very
reasonablefit to the numerical data points over thewhole range  m0 1.

5. Summary and futurework

In this paper, we have presented a spin-icemodel defined on a two-dimensional lattice ofmixed ferro- and
antiferromagnetic bonds.We have used its Kasteleyn transition (a known feature of the six-vertexmodel to
which it can bemapped) tomotivate the introduction of a ‘string representation’ of the ice-rulemanifold, and
we have demonstrated that this representation is well adapted to the task ofmaking an analytical estimate of the
entropy density as a function of themagnetization density.

One appealing feature ofmodels in this class is that, unlike full three-dimensional spin ices, the Ising
quantization axis is the same on each lattice site. Thismakes it natural to consider adding to themodel a spatially
uniform transversemagnetic field,Γ. The results of this should be particularly interesting in the G h k T J, , B

regime, where the applied field is expected to stabilize the string phase at low temperatures, leading to a line of
quantumKasteleyn transitions in the zero-temperature (h,Γ) plane. This extension of themodel (1) is the
subject of a forthcomingwork [33].
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Appendix. Numericalmethods

WeperformedMonte Carlo simulations using theMetropolis [34] andWang-Landau [29, 35] algorithms. In
both cases we used a single-spin flip algorithmon systems of L×L unit cells (see inset offigure 1) ranging from
L=8 (128 spins) to L=64 (8192 spins). For ourMetropolis algorithm, we used 5×103Monte Carlo steps for
equilibration and ´-L 102 8 for averaging. In order to calculate the entropy of the systemwe used theWang-
Landau algorithm to determine the density of states, δ.We labeled the states according to their energy,Ei, and
magnetization,Mi. For normalizationwe used the condition då =( )E M, 2E M i i

N
,i i

, whereN is the total

number of spins of the system. Themodification factor changed from =( )fln 10 to = -( )fln 10final
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