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Abstract

Risperidone is an approved antipsychotic drug belonging to the chemical class of benzisoxazole. This drug has low solubility
in aqueous medium and poor bioavailability due to extensive first-pass metabolism and high protein binding (.90%). Since
new strategies to improve efficient treatments are needed, we studied the efficiency of anionic G4.5 PAMAM dendrimers as
nanocarriers for this therapeutic drug. To this end, we explored dendrimer-risperidone complexation dependence on
solvent concentration, pH and molar relationship. The best dendrimer-risperidone incorporation (46 risperidone molecules
per dendrimer) was achieved with a mixture of chloroform:methanol 50:50 v/v solution pH 3. In addition, to explore the
possible effects of this complex, in vivo studies were carried out in the zebrafish model. Changes in the development of
dopaminergic neurons and motoneurons were studied using tyrosine hydroxylase and calretinin, respectively. Physiological
changes were studied through histological sections stained with hematoxylin-eosin to observe possible morphological
brain changes. The most significant changes were observed when larvae were treated with free risperidone, and no changes
were observed when larvae were treated with the complex.
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Introduction

The antipsychotic drug risperidone, 3-[2-[4-(6-fluoro-1,2-benzi-

soxazol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9-tetrahydro-2-methyl-4H-

pyrido[1,2-a] pyrimidin-4-one (Risp), belongs to the chemical class

of benzisoxazole and it is one of the drugs most widely used in the

treatment for autism spectrum disorders (ASD) [1,2]. ASD, which

occur in 1 out of 150 individuals [2], include different

neurodevelopment disorders that manifest mainly in the earlier

years of life [3], affecting language, communication and reciprocal

social interaction development [4]. Risp has low solubility in

aqueous medium and, when orally administered, exhibits low

bioavailability due to extensive first-pass metabolism and high

protein binding (.90%) [5]. Moreover, non-targeted delivery

usually results in numerous side effects. Since Risp target organ is

the brain, it is necessary not only to develop a strategy to improve

drug bioavailability, by avoiding first-pass metabolism, but also

to achieve the desired drug concentration at the site of action,

thus reducing undesirable side effects [1]. In the last years,

strategies with chemical therapies, particularly the design of nano-

structured drug carrier systems [6], have been proposed to

overcome these issues regarding ASD treatment. However,

these kinds of carriers (plain, ultradeformable, stealth, pH-

sensitive liposomes, immunoliposomes, nanoparticles and dendri-

mers) must be carefully designed and/or chosen because their

pharmacokinetics, biodistribution, and tissue selectivity depend

exclusively on the nanocarrier structure [1,7–9].

In this sense, dendrimers are exceptional polymers presenting

important advantages over conventional linear or branched ones

such as polyethylene terephthalate or comb polymers, respectively

[10,11]. These advantages include monodispersity [12], controlled

size in the range of nanometers, controlled number of surface

groups, and extremely high area/volume ratio. Only intermediate

generation (3.5–5 G) dendrimers are suitable drug carriers, with

structures open enough to enable the loading and subsequent

release of molecules in a controlled fashion [13–15]. Since, in the

last years, PAMAM dendrimers have been found to be useful to

improve the solubility of low aqueous soluble drugs [16,17], the

present work aims to enhance Risp solubility by means of

PAMAM dendrimers. On the other hand, we used the zebrafish

(Danio rerio) as an ideal model to study developmental neurobiology

and other fields of biomedicine. The zebrafish is a teleost of the

Cyprinid family, with several advantageous features for use in the

laboratory: its small size (no more than 5 cm in adults) allows easy

maintenance of several individuals with relatively low costs;

females lay a large number of eggs; embryos develop rapidly

and are semitransparent 24 hours post-fertilization (hpf); and

embryos have a sequenced genome and numerous mutant and

transgenic lines [18–22].
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Thus, our proposal was the optimization of Risp complexation

with PAMAM dendrimers Generation 4.5 (DG4.5) at different

solvent concentrations, pH and molar relationship (Figure 1). In

addition, we analyzed the in vivo effects of risperidone and DG4.5-

Risp complexes on heart rate and brain development of zebrafish

larvae.

Materials and Methods

Materials
Poly(amidoamine) (PAMAM) dendrimer G4.5 (–COOH) (mo-

lecular weight = 26,258 g/mol, 128 carboxyl end groups) (DG4.5)

was purchased from Sigma–Aldrich, Argentina. Risperidone

(Risp) 99.0% was donated by Janssen Cilag Laboratory,

Argentina. All other reagents used were of analytical grade.

Preparation of DG4.5-Risp Complex
DG4.5 was obtained as previously [9]. Briefly, DG4.5 was

combined with a specific amount of Risp in methanol solution at

1:100 and 1:250 DG4.5:Risp molar ratios, and methanol was

immediately evaporated in a Speed Vac SAVANT at 25uC for

15 min (1010 SAVANT). After evaporation, Risp and PAMAM

DG4.5 were incubated with 1 ml of: a) chloroform:methanol

70:30; b) chloroform:methanol 50:50; c) chloroform:methanol

90:10; d) chloroform:methanol 50:50 pH 3; e) chloroform:metha-

nol 50:50 pH 6; f) chloroform:methanol 50:50 pH 9; g) chlor-

oform:methanol 50:50 pH 3 with additional drying; h) chloro-

form:methanol 50:50 pH 6 with additional drying; or i)

chloroform:methanol 50:50 pH 9 with additional drying. All

incubations were carried out for 48 h at room temperature (20uC)

with continuous stirring. Finally, solvents were completely

evaporated in a Speed Vac SAVANT. The solid residues obtained

were dissolved in 0.1 ml of phosphate buffer (PBS), at room

temperature, and centrifuged at 10,0006g for 10 min, in order to

separate the DG4.5-Risp complexes (DG4.5-Risp) (soluble Risp)

from the non-incorporated Risp (insoluble) (Figure 2). Complex’s

pH was adjusted to physiological pH with phosphate buffer PBS

7.4. The drug does not precipitate as it is incorporated into

dendrimers and dendrimers are water soluble.

If there were traces of MeOH and/or chloroform, they were

determined prior to preparing the final solution complexes. Steps

followed were: samples of each condition, in quintuplicate, were

vacuum dried in a Speed Vac SAVANT 10010 until dryness. Two

sets of samples were prepared in a parallel form. One set of

samples was submitted to an additional drying procedure in an

oven for 2 h at 40uC, the other set remained at room temperature,

and was used as a control. Afterwards, all samples were suspended

in the buffer solution and quantification of Risp was stated as in

section 2.3. All samples achieved the same result for each

condition between sample and control, confirming that the second

step was unnecessary and the absence of solvent present was

confirmed.

Risperidone Quantification
The amount of Risp was quantified by measuring the

absorbance at 280 nm with a UV–Vis NanoDrop1000. The

calibration curve of Risp in PBS was linear in a concentration

range of 0.1–100 mg/ml (r2 = 0.99) (Figure 3) [23,24]. DG4.5 does

not absorb at this wavelength (see Figure 4).

From absorbance vs. wavelengths graphics at different concen-

trations like Figure 5, a double reciprocal plot of 1/absorbance

versus 1/Risp concentration was calculated and linear regression

was linear, and the binding constant (k) estimated from the ratio of

the intersection to the slope was k = 4 [25,26].

In Vitro Release Studies
In vitro release of Risp from DG4.5-Risp complexes was studied

in PBS by using a micro-dialysis eppendorf tube diffusion

technique, by replacing the top internal flap-cover of a 0.5-ml

eppendorf tube with a dialysis membrane. This technique was

implemented and adapted to overcome micro-quantities of the

released drug. DG4.5-Risp complexes were sealed into the micro

dialysis eppendorf tube (MW cut-off: 12000 from Sigma-Aldrich,

Argentina) and incubated in PBS under continuous stirring. The

Risp release experimental design consisted of collecting aliquots at

pre-determined time intervals from the incubation medium, and

storing them at 4uC for quantitative analysis. Each aliquot

withdrawn is replaced afterwards by an equal volume of fresh

medium to maintain volume and to be considered within the

calculus. On the other hand, pH and temperature are controlled

to ensure they remain unchanged. The assay was repeated three

times and the amount of released Risp was determined by

absorbance at 280 nm, as described in Section 3.3. Data were

analyzed with GraphPad Prism 5 t-test.

Characterization of DG4.5-Risp Complexes
The spectra of the collected samples were characterized placing

1 ml of each of the residues into the attachment plate to measure

attenuated total reflectance (ATR). The determinations were

carried out in a spectrophotometer IRAffinity-1 Fourier Trans-

form Infrared Compact Shimadzu. After 25 scans in the range of

650 cm21 to 4000 cm21, the spectrum was withdrawn with a

resolution of 0.5 cm21. The IR spectra were analyzed with

solution software, version 1.50, supplied by the manufacturer.

Mean particle size and zeta potential of the complexes were

determined by dynamic light scattering with a Nanozetasizer

(Malvern Instruments, Malvern, Worcestershire, UK).

In Vivo Studies: Animals
Adult zebrafish (Danio rerio) used as breeding individuals belong

to the AB line, provided by the Department of Cell Biology and

Pathology, University of Salamanca (Spain) for histological assays.

The animals were kept in tanks at 28uC on a 14/10 h light/dark

cycle as previously established [18]. In this study, embryos refer to

zebrafish prior to hatching (0–3 dpf), while larvae refer to post-

hatching animals (over 3 dpf). Embryos were obtained from

natural mating, and all embryos/larvae used in these experiments

were reared at 28.5uC on a 14/10 h light/dark cycle in

conditioned E3 medium (NaCl 0.29 g/l, KCl 0.012 g, CaCl2

Figure 1. Dendrimer-Risperidone complex. Scheme of Risp
complexation with PAMAM dendrimers Generation 4.5 (DG4.5)
at different solvent, pH and molar relationship.
doi:10.1371/journal.pone.0090393.g001
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0.036 g/l and MgSO4 0.039 g/l in deionized water, and 50 ppb

methylene blue (Panreac) to inhibit fungal growth).

Ethics Statement
The animals were handled following the European Union

directives (86/609/EEC and 2003/65/EC) and Spanish legisla-

tion (RD 1201/2005, BOE 252/34367-91, 2005). Full details of

the study were approved by the Bioethics Committee of

Salamanca University (CBE/30/07/08). The animals were

anesthetized by a tricaine methanesulfonate solution and all

efforts were made to minimize suffering.

Embryo Collection
The evening before spawning, breeding pairs of specimens were

transferred to rearing tanks. These tanks were kept at 28.5uC. The

first light stimulus after the dark cycle induced egg lay. The eggs

obtained were prepared in petri dishes in E3 medium. Only

fertilized eggs in good condition were selected for further

treatment; the others were discarded. The characteristics of eggs

were determined with a stereomicroscope (Leica Zoom 2000).

Exposure to Risperidone and PAMAM Complexes
Risperdal tablets (Janssen Cilag Laboratory, 2 mg Risp) were

dissolved in E3 medium and prepared as a 0.5, 5 and 25 mM

solution. The larvae were divided into four groups and then

treated with i) Risp at 4 dpf for 24 h, ii) Risp at 6 dpf for 24 h, iii)

DG4.5-Risp at 4 dpf for 24 h, and iv) DG4.5-Risp at 6 dpf for

24 h, or v) medium (controls). Larvae were exposed to 5 mM Risp

for 24-h periods and subsequently rescued into a preconditioned

E3 medium (Figure 4 A and B). Buffered solution was pH 7.4 and

it was administered to each well under treatment where larvae

were, as indicated in Figure 4 B.

Heart Rate Measurements
The heart rate was assessed on 8 and 10 dpf. Control and

experimental zebrafish larvae were individually transferred to a

depression slide with methylcellulose and placed under a binocular

microscope. The heart rate was determined by counting the

number of beats every 15 s and recorded as beats per minute

(bpm) (see Video S1). Experiments were performed thrice on three

larvae per group for each time point [27].

Preparation of Histological Sections
For the fixation of samples, both treated and control animals

were anesthetized by a tricaine methanesulfonate solution (MS-

222, Sigma) at 0.3 g/l. Samples were then fixed by immersion in

4% v/v paraformaldehyde in PBS, pH 7.4 for 24 hours at 4uC.

Following fixation, paraformaldehyde was removed with five

washes of 5 minutes in PBS. Then, the samples were embedded in

a mixture of agar 1.5% and sucrose (Panreac) 10% in PBS. Such

mixture was heated and added to the plastic molds in which the

animals were targeted. After the mixture was solidified, the larvae

were cryoprotected in a 30% w/v sucrose solution in PBS for 24 h.

Agar blocks containing cryoprotected larvae were frozen in a

Figure 2. Preparation of DG4.5-Risp Complex. DG4.5 was combined with a specific amount of Risp in methanol solution and
methanol was immediately evaporated. All incubations were carried out for 48 h at room temperature with continuous stirring. Finally, solvents
were completely evaporated. The solid residues obtained were dissolved in 0.1 ml of buffer PBS, at room temperature, and centrifuged at 10,0006g
for 10 min, in order to separate the DG4.5-Risp complexes (soluble Risp) from the non-incorporated Risp (insoluble).
doi:10.1371/journal.pone.0090393.g002

Figure 3. Risperidone quantification. Scheme shows the determination of number of Risp molecules per dendrimer. The amount of
Risp was quantified by measuring the absorbance at 280 nm with a UV–Vis spectrophotometer.
doi:10.1371/journal.pone.0090393.g003
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cryostat (Microm HM 560) and then cut at 228uC in 10-mm-thick

parasagittal serial sections, which were collected on gelatinized

slides and stored at 220uC until further use. We performed 55

histological sections and larvae were analyzed three times (n = 3) at

10 dpf [27].

Hematoxylin-Eosin Staining
Histological sections were obtained as mentioned above and

stained with hematoxylin-eosin to observe possible morphological

changes. Briefly, the technique involves immersing the sections in

eosin for 1 minute, then washing with water every 30 minutes and

further incubating for 1 minute in hematoxylin. Finally, the

samples were dehydrated in ethanol of increasing concentration

for 5 minutes each, ending with three tanks of xylene, for 3

minutes each. The slides were mounted in Entellan (Merck KGaA,

Darmstadt, Germany) for analysis and storage. Images of

hematoxylin-eosin staining were taken in a light microscope

(Olympus Provis AX70) coupled to a digital camera (DP70,

Olympus).

Finally, to adjust the brightness and contrast to those observed

directly under the microscope, Adobe H Photoshop CS2 H version

9.0 (Adobe Systems) was used [27].

Immunohistochemistry in Tissue Sections
The sections were washed three times in PBS for 10 min to

rehydrate and remove the agar. They were incubated for 1 h at

room temperature (RT) in non-immune serum (Sigma) 5.0%,

detergent Triton X-100 (Sigma) 0.2% and 1.0% DMSO in PBS.

The serum used was made into the species of the secondary

antibody.

Then, the primary antibodies were added and incubated

for 24 hours at RT. After this incubation, the excess antibodies

were removed with three washes with PBS and then the sections

were incubated with the corresponding secondary antibodies

Figure 4. Timeline representing the stage specificity of the effects of risperidone and DG4.5-Risp in developing zebrafish. Larvae
were exposed to 5 mM risperidone or DG4.5-Risp for 24-h periods from 4 dpf or 6 dpf and subsequently rescued into a conditioned E3 medium (A).
Schematic representation of the in vivo treatment (B).
doi:10.1371/journal.pone.0090393.g004

Figure 5. Evaluation of the Dendrimers-Risperidone complex
formation. Absorbance Spectrum DG4.5-Risp (green) and free
Risp (black) under experimental conditions determined as
optimum.
doi:10.1371/journal.pone.0090393.g005
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conjugated with the appropriate fluorochrome for 1 h at RT. The

secondary antibody was removed with three washes of 10 minutes

each in PBS with fish gelatin 0.4% (Sigma-Aldrich).

In order to mark cell nuclei, tissue sections were incubated in

49,6-diamidine-2-phenylindole (DAPI, Sigma) at a 1:10,000

concentration for 7 minutes at RT, and then washed three times

of 10 minutes each in PBS.

Antibodies Used
-Polyclonal anti-calretinin (CalR) antibody 7696 (# 6B3 Swant,

Bellinzona, Switzerland) at a 1:10,000 concentration. This

antibody has been widely used in the study of the neuroanatomy

of teleosts, in adult animals as well as in embryos, larvae and

juveniles [28,29]. Secondary antibody labeled with Cy3 (red) [30].

-Anti-tyrosine hydroxylase (TH) antibody (Incstar, Stillwater,

MN, USA) [31], at a 1:1,000 concentration. Secondary antibody

labeled with Cy2 (green).

The sections were examined under a microscope (Olympus

Provis AX70) coupled to a digital camera (XM10, Olympus). The

images were coded green (Cy2) and red (Cy3), giving yellow co-

localization in merged images. The images were adjusted for

brightness, contrast and colors using Adobe Photoshop 7.0 (Adobe

Systems) [27].

Statistical Analysis
Data were presented as mean 6 standard deviation and

analyzed by one-way analysis of variance (ANOVA) and Tukey’s

Multiple Comparison Test using GraphPad Prism v. 5. Only

values with P,0.05 were accepted as significant.

Results and Discussion

Preparation of the DG4.5-Risp Complex
The methodology with the highest drug incorporation efficiency

proved to be that related to the following parameters:

2.461023 mmoles of DG4.5+0.24 mmoles of Risp

(DG4.5:Risp 1:100 mol:mol).

A chloroform:methanol 50:50 v/v solution with HCl 0.1N

added to a final pH of 3 (30 ml/ml incubation solution).

Film recomposition in 100 ml buffer PBS 2X.

Figure 5 shows the results obtained for the complexation of Risp

with DG4.5, where 35 to 45 drug molecules per DG4.5 were

incorporated.

The incubation solution percentage of solvents varied, and so

the polarity changed. The greatest incorporation of Risp was

obtained for the mixture chloroform:methanol 50:50 v/v solution.

Different pH conditions were then tested (pH 3–9) within the

incubation solution in order to allow the highest incorporation of

drug complexes in a 1:100 molar ratio DG4.5:Risp and the

incubation solvent composition of 50:50 chloroform:methanol

50:50 v/v solution. The solubility of the drug increased signifi-

cantly at pH 3 (46 DG4.5-Risp molecules), proving that this is the

optimum condition to obtain the DG4.5-Risp complex (Figure 6).

Finally, we analyzed whether, after the centrifuge vacuum

drying operation, there were still remaining traces of organic

solvents that could generate great variability in the amount of drug

incorporated. No significant differences were observed between

samples with and without the additional drying operation

(Figure 7).

In a previous work where we examined the complexation of

DG4 with Risp in different solvents, we found that in high ionic

strength (1 M NaCl) few molecules of Risp were incorporated in

each DG4 molecule. By simulation methodology, Welch and

Muthukumar [32] determined that the density of dendritic profiles

is suitable from that of dense core to that of a dense shell with salt

concentration or pH modification. In addition, it has been

reported that the nature of the intramolecular density profile

and the position of the terminal groups are critical in utilizing

dendrimers as drug hosts in controlled release systems [33,34].

Ideally, to incorporate a drug, the branches of dendrimers should

be highly extended. In the ionic strength tested in our previous

work, this was not the case, and DG4 was not capable of

incorporating a great number of drug molecules. This is consistent

with data published by Ma et al. (2007) [34], who found that salt

concentration is related to large changes in DG4 molecular

conformation and decreased drug incorporation. The same trend

was observed with solvent polarity [35]. It is known that the

compact structures of the hydrophobic dendrimers presenting low

accessibility to the hydrophobic pockets are favored by high

polarity solvents [36].

For our particular system, i.e. hydrophilic dendrimers and Risp,

we found that the best combination of solvents was chloroform:-

methanol 50:50 v/v pH 3, which rendered 45 molecules of Risp

per DG4.5. However, the 50:50 condition presented minimal

deviation. In this sense, methanol is necessary to stabilize the

Figure 6. Optimization of incubation parameters. Moles of Risp
per mole of DG4.5; data obtained from incubation solutions of
chloroform:methanol 50:50 v/v in different pH conditions.
doi:10.1371/journal.pone.0090393.g006

Figure 7. Moles of Risp per mole of DG4.5. Data from
incubation with different chloroform:methanol 50:50 v/v mo-
lar ratios solutions at different pHs, subjected or not to an
additional drying process.
doi:10.1371/journal.pone.0090393.g007
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carboxyl-surface, but a non-polar solvent should also be present to

improve the drug partitioning between the solvent and the inner

hydrophobic pocket of the dendrimer, which will be wide open to

incorporate the drug, but partially close to retain it. However, at

100% chloroform, no drug incorporation is achieved, since the

drug partitions better in the highly non-polar solvent than in the

hydrophobic DG4.5 pocket, and as the solvent is non-polar,

DG4.5 compaction is expected and no drug entrapment in the

hydrophobic DG4.5 inner can be achieved.

Finally, anionic DG4.5 is a weak acid capable of deprotonating

the carboxyl ending of its branching points under physiological pH

[37]. The branching points exhibit open conformations at low pH,

due to the electrostatic repulsion between the superficial groups,

which force branches to move away from each other. At pHs

higher than 9, the branches come closer again as a consequence of

the hydrogen bonds between the tertiary amines of the interior

and the carboxyl ending group portioned of the surface, resulting

in a compact structure [38]. Based on the results obtained in this

work, we can conclude that the amount of Risp incorporated to

DG4.5 is inversely proportional to pH values, which is also

consistent with the literature.

DG4.5-Risp Complex Stability
In contrast to that shown by free Risp, the release profile of the

drug complexed with DG4.5 showed that the dendrimers

functioned as nanocarriers (Figure 8). DG4.5-Risp complexes

resulted in a 45.08% release in contrast to the 62.52% release of

the free drug, after 24 h.

Characterization of DG4.5-Risp Complexes
Figure 9 A shows the FTIR spectrum of the solid drug Risp.

The bands observed correspond to the vibrational mode of the

amide NH group at 3280 cm21 and the corresponding bending at

1635 cm21. The band of the aromatic ring movement around

1014 cm21 is also present. The bands observed are also those

related to stretching vibration of the CH2 group at 2922 and

2953 cm21.

On the other hand, the FTIR spectrum of DG4.5 (Figure 9 B)

showed an absorbance peak at 2873 cm21, corresponding to the

vibrational motion of the terminal carboxyl groups and a strong

double band related to a symmetric vibrational motion of the

carboxylate at 1568 cm21. The spectrum also showed bands

corresponding to the vibrational mode of the amide group NH at

3284 cm21 and 1635 cm21, corresponding to the flexion group.

In addition, movements due to CH bonds, related to the

dendrimer backbone chain within the core of DG4.5, were

observed at 1558 cm21.

The FTIR spectrum for the DG4.5-Risp complex (Figure 9 C)

showed several differences when compared with the control

spectrum. The most interesting change was that of the band shift

of the -CH2 binding at 2945 cm21, indicating the presence of

hydrophobic interactions in the sample analyzed. We also

observed a less pronounced shift of the amide band at

3277 cm21, and several bands, especially at 1120 and

1080 cm21, due to the stretching vibration of the carbonyl group

CO bound, strongly indicating hydrophobic interactions between

the dendrimers and the drug [7]. The resultant of dynamic light

scattering of complexes wase the three indicated peaks of

multimodal distribution, which diameters reached an average of

6.099 nm and 454.6 nm. The last peak indicates complex

aggregates. Anionic dendrimers like DG4.5 often have zeta

potentials more negative than 230 mV [39], we found that

DG4.5-Risp complexes had a zeta potential of 5.83 mV, due to

the conversion of the dendrimers’ surface carboxyl groups with

Risp molecules. This close to neutral charge could be responsible

for the formation of aggregates [40–42].

In Vivo Toxicity
Airhart et al. (2007) [43] exposed zebrafish embryos to seven

different fluoxetine (a serotonin reuptake inhibitor) concentrations

beginning at 10 hpf and up to 11 days post fertilization (dpf) to

determine the lowest observable effective concentration (LOEC).

In larvae exposed to 4.6 mM fluoxetine for 24-h intervals between

4 and 5 dpf, spontaneous swimming activity was significantly

depressed compared to controls and remained depressed ones

through 14 dpf. In addition, the core neuronal migration raphe to

the spinal cord was observed between 3 and 6 dpf [43] and

variations in the serotonin levels may affect the normal develop-

ment of the central nervous system (CNS).

Based on the observations obtained in our previous work [27],

we selected the concentrations to be used in the present work.

Heart Rate Measurements
The effect of Risp exposure on circulation was qualitatively

evaluated by observing the heart rate and blood flow through the

ventral aorta-posterior cardinal vein channel in control versus

treated larvae. These parameters provide an idea of the effects

caused by free Risp and the DG4.5-Risp complex in early

development stages and knowledge on the area of neuropharma-

cology. Here, we determined whether Risp or DG4.5-Risp

affected blood circulation. To this end, 4 and 6 dpf larvae were

exposed to 5 mM Risp or DG4.5-Risp for 24 h and their heart rate

monitored at 8 and 9 dpf. Treated larvae exhibited normal heart

rate as compared to controls (data not shown).

Tissue Sections
i- Morphological Changes. Both treated and control

animals were fixed at 10 dpf, cut in serial sections and stained,

as detailed in the Experimental Section. A 24-h exposure to

risperidone or DG4.5-Risp on 4 dpf resulted in a larger area in the

postoptic commissure and the raphe population zone and a

cellular disorganization in the latter. This effect was observed in all

treatments, but higher in animals treated with free Risp (Figure 10).

Undoubtedly, the administration of this drug to animals at 4 dpf

caused dramatic changes that persisted over time.

ii- Immunohistochemistry. For the histological analysis,

crop images were obtained to include reference space area and

optical angle for brain tissue. We used tyrosine hydroxylase (TH)

Figure 8. Release profile of the drug complexed to DG4.5. The
graph indicates the percentage of drug released when found in
the dendrimers or free form.
doi:10.1371/journal.pone.0090393.g008
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Figure 9. Drug interaction with the dendrimer. FTIR spectrum of Risp (A), DG4.5 (B) and DG4.5-Risp (C) solid state runs.
doi:10.1371/journal.pone.0090393.g009
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to label dopaminergic neurons and calretinin (CalR) to label

motoneurons.

When the larvae were exposed to free Risp at 4 dpf, an increase

in CalR-positive motoneurons was observed in the brain

(Figure 11). The other treatments showed no changes in brain

tissue with respect to controls (Figure 11).

The spinal cord showed a decrease in CalR-positive motoneu-

rons in treatments with Risp alone (Figure 12). The other

treatments showed no changes in brain tissue with respect to

controls (Figure 12).

Several antipsychotic drugs produce a neurotoxic mechanism

resulting from an increased or decreased concentration of

serotonin both in the synaptic and extracellular spaces. In this

sense, drug exposure at 4 or 5 dpf coincides with the initial

appearance of raphe axons distributed throughout the entire

length of the spinal cord in zebrafish [43]. Growth cones of these

axons at 4 dpf were observed adjacent to reticulospinal neurons in

the hindbrain and secondary motoneurons in the spinal cord. The

temporal correlation between the growth of inferior raphe axons

and growth cones throughout the spinal cord and the earliest

morphological effects of antipsychotic drugs suggested that raphe

Figure 10. Images of histological sections of brain tissue stained with hematoxylin-eosin. A) control, B) risperidone (Risp) at 4 dpf, C) Risp
at 6 dpf, D) DG4.5-Risp at 4 dpf, and E) DG4.5-Risp at 6 dpf. Larvae were analyzed three times (n = 3) at 10 dpf.
doi:10.1371/journal.pone.0090393.g010

Figure 11. Immunohistochemistry images of brain tissue. Tyrosine hydroxylase, labeled with Cy2 (green), and Calretinin, labeled with Cy3
(red). A) control, B) risperidone (Risp) at 4 dpf, C) Risp at 6 dpf, D) DG4.5-Risp at 4 dpf, and E) DG4.5-Risp at 6 dpf. Larvae were analyzed three times
(n = 3) at 10 dpf.
doi:10.1371/journal.pone.0090393.g011
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axons were affected by the exposure to these drugs. However, the

mechanism of toxicity by excess or deficit of serotonin was difficult

to determine.

Antipsychotic drugs could alter extracellular levels of neuro-

transmitters and thereby modify the development of the CNS [43–

46]. These changes suggest that the neuroanatomy is severely

affected by exposure to free Risp but to a lesser extent than by

DG4.5-Risp.

Conclusions

Development of molecular nanostructures with well-defined

particle sizes is of increasing interest in biomedical applications

[6,47–49]. Dendrimers, like other delivery systems, offer attractive

properties that allow modifying the pharmacokinetics and

bioavailability of drugs. These changes depend not only on the

class of dendrimer, but also on the physicochemical nature of the

complex that the dendrimer forms with the drug. Drugs can be

complexed with dendrimers through encapsulation into void

spaces (nanoscale container), association with the surface groups

(nano-scaffolding), or both [6,50]. The high density of surface

groups (one amino group/nm2 for DG4) combined with the small

size (4.5 nm diameter for the DG4 ellipsoids) result in a high area/

volume ratio [51,52], which can be modified controlling the

environment ionic strength, pH, temperature, etc.

In summary, here we described the preparation, stability and

characterization of the DG4.5-Risp complex. The best dendrimer-

risperidone incorporation (46 risperidone molecules per dendri-

mer) was achieved with a mixture of chloroform:methanol

50:50 v/v pH 3.

Then, we determined the in vivo effects of risperidone and

DG4.5-Risp on the heart rate and brain development in zebrafish

larvae. The most significant changes were observed when free

risperidone was administered, but no changes were observed when

larvae were treated with the complex. This could indicate a

decrease in the side effects of the drug when administered as a

complex, or a decrease in the effectiveness and/or arrival of the

complex. Certainly, more studies are necessary to determine

whether the complexed drug reaches the brain.

Supporting Information

Video S1 Heart Rate Measurements. The heart rate was

assessed on 8 and 10 dpf. Control and experimental zebrafish

larvae were individually transferred to a depression slide with

methylcellulose and placed under a binocular microscope. The

heart rate was determined by counting the number of beats every

15 s and recorded as beats per minute.
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