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Highlights 

 Enhanced synthetized Fe3+-Al2O3 was tested for the continuous oxidation of 

phenol in an UFBR. 

 90% TOC reduction and leached Fe < 3 ppm were reached at selected operating 

conditions. 

 Catalyst remained active after 70 h of usage with TOC reductions > 70%. 

 Chelating by-products favored Fe lixiviation and Fe redistribution and poisoning 

by adsorption. 

 Proper adjustment of operating conditions allowed minimize deactivation 

processes. 

 

Abstract 

A highly dispersed Fe3+-Al2O3 catalyst (6 wt% Fe) was used for the catalytic wet 

hydrogen peroxide oxidation of phenol (1 g/L) in an up-flow fixed bed reactor (UFBR) 

under continuous operation. To enhance catalytic performance, three simple synthesis 

strategies were combined: two-stage impregnation of iron citrate, acid washing with 

CH3COOH and thermal treatment at 900 ºC. Solid samples were characterized in depth 

by several techniques: N2 Physisorption, XRD, SEM–EDS, TEM, TGA, PZC, TPD of 

pyridine, XPS and Mössbauer. Peroxidation experiments were performed in an UFBR 

over a wide range of operating parameters in order to evaluate their influence on phenol 

mineralization and catalyst stability. Under selected operating condition (T = 90 °C, 

Wcat = 20 g, QL = 1.2 mL/min and [H2O2]:[Phenol] = 16.8), complete phenol conversion 

and remarkable TOC reduction of 90% were achieved, with a high H2O2 consumption 

efficiency (η = 76 %) and low Fe leaching (< 3 mg/L). After 70 h of usage at different 

steady state conditions, the catalyst retained high mineralization levels (XTOC > 70%) 

but the cumulative iron loss was calculated to be c.a. 20% of the initial Fe loaded in the 

UFBR. The catalyst was susceptible to leaching due to the accumulation of complexing 

intermediates such as carboxylic acids. However, acceptable iron leaching values (< 10 

mg/L) were achieved when the reactor operating conditions were properly set (55% < 

XTOC > 80%). The presence of chelating by-products favored also the Fe redistribution 

inside the catalyst pellets. Nevertheless, catalyst decay in the long-term operation was 

mainly due to the occurrence and permanence of chelating organic acids. This process 
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was specially promoted by the amphoteric character of the alumina-based catalyst. 

However, adsorbed species were promptly eliminated by calcination at 500 ºC, 

recovering steady state conversion profiles. 

 

Keywords: Fe3+-Al2O3; phenol removal; continuous fixed bed reactor;chelating 

intermediates; catalyst deactivation. 

 

Nomenclature 

Di: internal diameter of the reactor (cm) 

Dp: diameter of catalyst particle (mm) 

UFBR: up-flow fixed bed reactor 

kap: apparent rate constant (min-1) 

L: height of the column (cm) 

QL: total flow rate (mL/min) 

TOS: time on stream (h) 

VL: liquid volume (mL) 

Vb: bed volume (mL) 

Wcat: catalyst load (g) 

Z: height of the bed (cm) 

ε: bed porosity 

εL: liquid hold-up 

η: efficiency of hydrogen peroxide consumption (%) 

θ: residence time (min) 

 

1. Introduction 

Nowadays, the world is facing a water crisis related to an exponential growing 

population, larger industrial requirements and the discharge of untreated and/or 

partially-treated wastewaters. As future projections reveal that by 2050, water demand 

will increase by 55% [1], it is essential to advance in the development of more efficient 

wastewater treatment technologies. 

Over the last few decades, Advanced Oxidation Processes (AOPs) have shown 

encouraging performance over conventional water treatment technologies [2]. 

Generally, AOPs are based on the in-situ generation of a powerful oxidizing agent, such 

as hydroxyl radicals (●OH), to achieve the complete abatement and high mineralization 
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levels of toxic and refractory organic pollutants at moderate operating conditions. Main 

types of AOPs are based on the production of hydroxyl radicals through chemical, 

photochemical, sonochemical and electrochemical reactions [3]. Among them, the so-

called heterogeneous Fenton systems combine the advantages of classic Fenton 

oxidation: inexpensive chemicals, moderate operating conditions, simple 

implementation in existing plants, etc.; with the ones from heterogeneous catalysis: easy 

separation and reusability of the catalyst without formation of Fe sludge. 

Typically, heterogeneous Fenton catalysts are based on the immobilization of transition 

metals (mainly Fe) onto different porous matrixes such as activated carbon [4], silica 

[5], alumina [6–8], pillared clays or zeolites [9,10], among others [11]. In particular, 

Fe/γ-Al2O3 based catalysts may display enhanced catalytic performance due to the 

amphoteric nature and good adsorption characteristics of the alumina support combined 

with the development of advantageous Fe-Al interactions [12–14]. During the 

impregnation process of these catalysts, the characteristic Lewis acidity of alumina 

promotes high dispersion of Fe species, increasing the number of available active sites. 

In addition, alumina Lewis acidity might facilitate the redox cycle of Fenton mechanism 

[14]. On the other hand, the alumina adsorption ability towards organic and inorganic 

molecules may contribute to catalyst deactivation if the adsorbed molecules do not 

further react under reaction conditions. Adsorption of organic compounds might be 

influenced by surface characteristics (surface area, pore volume, pore size distribution, 

pHPZC), pH and composition of the aqueous effluent [15]. Therefore, the function of Al 

on the high reactivity towards Fenton reaction needs further research [13]. 

Besides the good perspective of heterogeneously catalyzed Fenton system at batch 

scale, further engineering research must be performed in continuous systems (fixed-bed, 

fluidized-bed and continuous stirred-tank reactors) in order to allow large-scale 

applications [2,11,16]. 

Over the last two decades, heterogeneous Fenton/Fenton-like processes were 

extensively studied by using discontinuous batch reactors, which often are not the best 

solution for continuously generated industrial effluents. In recent years, more attention 

has been given towards their use in continuous treatment systems. Estevez et al. recently 

reviewed the literature devoted to the application of continuous reactors (fixed-bed, 

fluidized-bed and continuous stirred-tank reactors) for the treatment of model 

compounds and industrial wastewaters. The authors give examples of the most up-to-

date findings in the research field, the advantages and disadvantages of each reactor 
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configuration, along with a complete revision of the most relevant operating parameters 

[16]. 

In particular, fixed bed reactors (FBR) are attractive configurations that allow 

amplifying the solid to liquid ratio, which accelerates the mineralization of the organic 

pollutant and increases the treated volume of effluent by using shorter contact times. 

The liquid flow is usually directed upwards to prevent formation of gas pockets, to 

enable gas bubbles to leave through the top and to ensure that the catalyst is completely 

wetted. The main advantages over stirred-tank reactors or slurry bubble columns with 

suspended catalysts are the well specified residence time with minimum backmixing 

and the fixed catalyst bed, which avoids separation of the solid catalyst [17]. This 

configuration also avoids mechanical degradation by attrition/crushing of the catalyst 

due to agitation. Continuous FBR have been used in heterogeneous Fenton-like 

processes applied to the treatment of pharmaceutical [18] and textile [4] wastewaters, in 

dye removal [4,19] and oxidation of phenolic solutions [5,10,20 ̶ 22]. 

Catalyst deactivation is undoubtedly a concern in the practice of industrial processes. In 

fact, heterogeneous Fenton-type oxidation was associated with different deactivation 

mechanisms: i) leaching of active species, ii) fouling by accumulation of carbonaceous 

deposits, iii) poisoning by adsorption of complexing organic intermediaries and iv) 

attrition by reduction of the catalyst specific surface area [11]. It is widely accepted that 

leaching of active species is mainly associated with the accumulation of carboxylic 

acids of chelating nature such as oxalic acid [7,23] more than with the acidic pH of 

reaction medium [24]; the concentration of chelating organic acids strongly depends on 

operating conditions and the solid catalyst features [23]. On the other hand, fouling of 

catalyst surface by formation of carbonaceous deposits has been widely reported in 

studies of Catalytic Wet Air Oxidation (CWAO) [25,26]. Though, some publications of 

heterogeneous Fenton-type oxidation have reported noticeable surface modifications, by 

the accumulation of polymeric deposits that were eliminated after thermal treatment at 

450 ºC [27,28]. Another mechanism scarcely reported is the strong adsorption of several 

of the reactants or reaction products (in particular, organic acids) that can block surface 

reactivity by poisoning and also modify the surface charge of the material altering the 

diffusion rate of anions, radicals and organic molecules [23,29]. 

The removal of phenols and their derivatives constitutes a research field of vast activity 

due to its elevated occurrence in various industrial wastewaters [30]. Hence, phenol was 

chosen as a model pollutant due to its elevated toxicity and refractory nature (poor 
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biodegradability) by means of conventional treatment technologies. A high initial 

concentration was set (1 g/L) in order to test the solid catalyst under more demanding 

conditions. 

In this contribution, we present a deep characterization of the Fe3+-Al2O3 catalyst and its 

performance for the phenol peroxidation carried out in a continuous UFBR. Our 

research aims to: (1) implement simple and cheap preparation strategies to improve the 

catalytic performance of heterogeneous Fenton-like systems that result active, stable 

and economic; (2) give a comprehensive description of the studied material and 

understand its surface and structural properties connected with its catalytic behavior; (3) 

provide detailed information on the start-up and performance of a continuous UFBR; 

(4) assess the catalytic performance under a wide range of operating conditions; (5) give 

some light over the role of electrostatic interactions between the organic molecules and 

the amphoteric iron-alumina catalyst (6) appraise the nature of deactivation processes in 

the long-term operation and (7) select proper operating conditions in order to minimize 

catalyst deactivation. 

 

2. Experimental section 

2.1. Preparation of Fe3+-Al2O3 catalyst 

The Fe3+-Al2O3 catalyst (6 wt% Fe) was prepared by incipient wetness impregnation of 

iron citrate (Aldrich, technical grade) onto commercial alumina spheres (SASOL, Dp = 

2.5 mm) at the best conditions described elsewhere [31]. Typically, heterogeneous 

Fenton-like catalysts based on iron employ ferric nitrate as metal precursor salt [7,8]. 

However, the Fe-catalysts prepared using this precursor showed poor dispersion levels; 

whereas the use of chelating precursors (as citrate) promoted homogeneous distributions 

of Fe due to a change of viscosity of the impregnating solution during the drying step. 

As a result, the formation of oxide clusters is avoided (silent iron phases on XRD) while 

a uniform distribution of the active component over the support bodies is favored 

[31,32]. The impregnation procedure was carried out in two consecutive stages by 

adding half of the total iron load at each step. After each impregnation, the sample was 

left for 12 h at room temperature and dried for 24 h at 150 °C. Dried samples were 

calcined at 900 °C in a muffle furnace with integrated air circulation for 4 h (10 

°C/min). With the aim of removing less stabilized Fe species, the calcined material was 

acid-washed into an aqueous solution of acetic acid (1 mol/L) for 24 h at room 
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temperature. This short-chain organic acid was selected since it is widely recognized as 

a refractory by-product of phenol oxidation [33,34]. Afterwards, the catalyst was 

thoroughly rinsed with distilled water, dried at 150 °C and re-calcined at 900 °C for 2 h. 

The catalyst was labeled as Fe900ac. 

 

2.2. Catalyst characterization 

Characteristics of the alumina support and Fe3+-Al2O3 catalyst were determined by 

different conventional techniques. 

The nitrogen adsorption and desorption isotherms at -196 °C were measured using a 

Quadrasorb SI equipment. Specific surface areas of the mesoporous catalysts were 

calculated from the adsorption branches by the BET method, while pore volumes and 

pore diameter sizes were obtained by the NLDFT equilibrium method in the relative 

pressure range of 0.00 – 1.00 (c.a. 40 – 760 mmHg) [35]. Before analysis, each sample 

was degassed overnight at 120 °C under vacuum conditions. 

Powder X-Ray Diffraction (XRD) of the catalyst samples were obtained with a 

PANalytical X’Pert Pro diffractometer by using CuKα radiation (𝜆 = 1.54056 Å). The 

diffractograms were recorded over 10° < 2θ < 70° range and compared to the JCPDS 

files to confirm phase identities. 

The catalyst surface was investigated by Scanning Electron Microscopy (SEM) using a 

JEOL JSM-6460LV electronic microscope. The elemental composition was determined 

by energy dispersive X-Ray spectroscopy (EDAX) using an EDAX Genesis XM4-

Sys60 equipment. Samples were metallized with Au or Au-Pd in a sputtering device 

Denton Vacuum Desk II. 

The microstructure of the materials was studied by Transmission Electron Microscopy 

(TEM) using a JEOL TEM-1011 instrument. Samples were prepared by dispersing the 

powdered catalysts in ethanol and dropping the suspension onto a standard formvar-

coated copper grid. 

X-Ray Photoelectron Spectroscopy (XPS) was employed for surface iron analysis using 

a multi-technique system (SPECS) equipped with a conventional dual Mg/Al X-ray 

source and a Phoibos 150 analyzer operating in the fixed analyzer transmission (FAT) 

mode. Spectra were recorded at a pressure below 2×10−8 mbar. Binding energies were 

referred to adventitious carbon at 285 eV. The data treatment was performed with the 

Casa XPS Processing Software. 
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The Mössbauer spectra were obtained in transmission geometry with a 512-channel 

constant acceleration spectrometer. A source of 57Co in Rh matrix of nominally 50 mCi 

was used. Velocity calibration was performed against a 12-µm-thick α-Fe foil. All 

isomer shifts () mentioned in this paper are referred to this standard at room 

temperature. Temperature was varied between 13 and 298 K working with an ARS 

closed-cycle cryogenic system. The Mössbauer spectra were evaluated using a 

commercial program with constraints named Recoil [36]. The spectra were folded to 

minimize geometric effects. 

The organic matter removal of the used catalysts was determined by Thermogravimetric 

Analysis (TGA) performed with a TGA Q500 V 20.13 (TA instruments) thermobalance 

under air atmosphere at a heating rate of 10 °C/min and a temperature interval between 

50−800 °C. 

The point of zero charge (PZC) and the surface charge were determined by the mass 

titration method following the protocol reported by Preočanin and Kallay [37]. Different 

catalyst masses were added to aqueous solutions of different initial pH values adjusted 

by addition of HNO3 or KOH. During the experiment, the pH of each solution changes 

gradually and once equilibrated approaches a constant value, which is the PZC. The 

ionic strength was kept constant at 0.003 mol/L and controlled by KNO3 as background 

electrolyte. The experiments were performed in a closed reactor of 50 mL at room 

temperature and the electrolyte was purged with nitrogen in order to avoid the influence 

of atmospheric carbon dioxide. The pH value of the solution was measured after 

equilibration by using a Black Stone pH controller. 

The quantity and amount of acid sites was assessed by means of temperature 

programmed desorption of pyridine. 0.2 g of the catalyst was first immersed in a closed 

vial containing pure pyridine (Merck, 99.9%) for 4 h. Then the catalyst was taken out 

from the vial and excess pyridine was removed by evaporation at room temperature 

under a fume hood. The sample was then charged to a quartz microreactor and a 

constant nitrogen flow (40 mL/min) was established. Weakly adsorbed pyridine was 

first desorbed in a first stage of stabilization by heating the sample at 100 °C for 2 h. 

The temperature of the oven was then raised to 700 °C at a heating rate of 10 °C/min. 

The reactor outlet was directly connected to a flame ionization detector to measure the 

desorption rate of pyridine. 

Total Fe concentration was determined by a standard colorimetric test (FerroVer®Iron 

Reagent, HACH). The iron content of fresh catalyst was measured over solid samples 
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previously digested in HNO3−HF. In order to ensure the reproducibility of the 

determined concentrations, the reported values are the average of at least two different 

samples, each one measured in duplicate during the standard colorimetric method. 

 

2.3. Catalytic tests in an up-flow fixed bed reactor 

The catalytic wet hydrogen peroxide oxidation (CWHPO) of phenol (1 g/L) was 

performed using the experimental set-up shown in Figure 1. The reactor consists in a 

glass jacketed column and the reaction temperature was kept constant by the upstream 

circulation of hot water throughout the reactor jacket. The column was divided in three 

distinguished zones: 1) pre-bed consisting of inert beads of the same size than the 

catalyst; 2) catalyst bed and 3) post-bed of inert beads. Experiments with smaller 

catalyst loads (Wcat) required a higher load of inert glass spheres to assure constant 

length of the column. The length of the pre-bed was increased accordingly, but the 

height of post-bed remained constant throughout the different experiments to preserve 

the response time of the system. The feed solution was pre-heated in a thermostatic bath 

and pumped to the column in up-flow mode by means of a peristaltic pump. This 

scheme ensures complete catalyst wetting. The oxidant dosage was adjusted to different 

molar ratios in order to maintain the mineralization levels as high as possible. Reactor 

features and operating conditions are listed in Table 1. 

The liquid residence time (θ) was calculated following the procedure reported by 

Martínez et al. [5,38]. This method takes into account the physical properties of the 

fluids (liquid and gas), operating conditions and geometrical properties of the UFBR. 

For CWHPO tests, the gas phase is formed by carbon dioxide from organics 

mineralization and oxygen from parasitic decomposition of H2O2. Bearing in mind this, 

a conservative estimation of gas phase velocity allowed to approximate the liquid hold-

up (εL) as the bed porosity (ε), assumed as the theorical value for loose random packing 

of spheres ε = 0.4 [39]. Thus, the residence time depends on the simultaneous 

adjustment of the total flow rate (QL) and Wcat. For the operating conditions used in this 

work, θ was varied between 1.1 – 15 min and was considered as defined in Eq. (1): 

 

𝜃 =
𝑉𝑙

𝑄𝐿
= 𝜀 ∙

𝑉𝑏

𝑄𝐿
                                                         (1) 
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Where the bed volume (Vb) was calculated from the height of the bed (Z) and the cross 

section of the column. 

The percentage efficiency of hydrogen peroxide consumption η was calculated 

according to Eq. (2). The ratio R corresponds to the ratio between the experimental 

oxidant to phenol molar ratio and 14 (theoretical stoichiometric ratio for complete 

phenol oxidation). This definition contemplates that by feeding a suprastoichiometric 

oxidant dosage, η values cannot reach 100%. 

 

𝜂 (%) =
𝑔𝑇𝑂𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑/𝑔𝑇𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑔𝐻2𝑂2𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑/𝑔𝐻2𝑂2𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∙

100

𝑅
                                          (2) 

 

In addition, preliminary and complementary batch tests were performed by using an 

experimental set-up as described elsewhere [12]. 

 

2.4. Analytical techniques 

During experiments, liquid samples were regularly taken at the column top and 

immediately analyzed in order to evaluate phenol and total organic carbon (TOC) 

removal, hydrogen peroxide consumption, pH evolution, UV absorption of aromatics at 

254 nm and Fe leaching. 

Phenol and hydrogen peroxide concentrations were determined by standard analytical 

techniques, colorimetric method and iodometric titration respectively [40]. TOC 

contents were measured at least in duplicate by using a Shimadzu TOC-VCPN analyzer. 

The removal of aromaticity was measured at 254 nm (diluted 1:16) with a Shimadzu 

UV-1800 spectrophotometer and reported as dimensionless ratios in relation with a 

fresh phenol solution (UV254). The pH was determined by using a Black Stone pH 

controller. 

The Fe leaching levels in the outlet of the reactor were determined over liquid samples 

from the collected effluent by a standard colorimetric test (FerroVer®Iron Reagent, 

HACH). The cumulative loss of iron as a fraction of the initial Fe content was 

calculated according to Eq. (3): 

 

𝐹𝑒𝑙𝑒𝑎𝑐ℎ𝑒𝑑 = ∫ 𝐶𝐹𝑒 ∙ 𝑄𝐿
𝑡

0
∙ 𝑑𝑡                                           (3) 
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By taking into account the feed flow rate (QL), the output concentration of Fe (CFe) and 

the time on stream (TOS) under continuous operation at each steady state for Wcat = 20 

g [4]. 

In order to confirm the repeatability of experiments, steady-state outcomes of a 

representative reaction condition (80 °C, QL = 5 mL/min) was periodically verified. 

 

3. Results and discussion 

3.1. Characterization results 

Surface and structural characteristics of metal oxide catalysts strongly affect 

physicochemical properties and catalytic behavior (activity, selectivity, stability, etc.). 

Hence, alumina support and fresh catalyst samples were thoroughly characterized by 

different techniques. 

Physisorption of nitrogen revealed that the treated catalyst retained main surface 

characteristics of the mesoporous alumina support. However, it should to be note that 

calcination stage at 900 ºC diminished the surface area of the commercial alumina 

support in a 34% and provoked a noticeable change of the mean pore diameter (Table 

2). All adsorption/desorption isotherms were type IV with H1–H3 hysteresis loops 

indicating capillary condensation taking place in mesopores (Figure 2-a) [35]. The 

materials exhibited a narrow pore size distribution between 30 – 50 Å (Figure 2-b) and a 

pore volume of ~ 0.4 cm3/g typical for commercial γ-Al2O3 [41]. As seen in Table 2 

both the impregnation process carried out in one-stage (Fe900-1s) and the thermal 

treatment at 900 °C (Al2O3-900) induced a reduction in surface area and pore volume 

due to partial pore blockage and surface shrinking respectively; whereas the two-stage 

impregnated catalyst (Fe900-2s) retained the area of the calcined support (Al2O3-900) 

prompting a better Fe distribution. The acid treatment (Fe900ac) reduced c.a. 10% of 

the Fe content in Fe900-2e, inducing an area reduction but recovering the pore diameter 

of the calcined support (Al2O3-900). The pore size distribution might suggest that acid 

wash removed the more labile Fe atoms that did not form part of the support structure 

and were blocking its porosity. The Fe species not eliminated during washing could be 

considered as better anchored to the alumina matrix conducing to more stable Fenton-

like catalysts. 

XRD results confirmed the high dispersion level of Fe species onto the alumina support 

displaying only γ-Al2O3 characteristic peaks (Figure 3). For samples calcined at 900 °C 

the diffraction rays get sharper and evolve towards rays which can be assigned to δ- 
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and/or θ-phases, in agreement with similar findings on boehmite-derived γ-Al2O3 

reported by other authors [42,43]. Iron oxide phases were not detected neither the 

presence of mixed oxides due to the good dispersion of the active phase and the low 

total Fe content [44]. In order to obtain evidences about the Fe state, the diffractogram 

of the catalyst calcined at 1400 °C was performed (Fe1400). Even at this high 

calcination temperature, the existence of iron phases was not registered. Therefore, as a 

first approximation, the presence of FeOx clusters in Fe/Al2O3 could be discarded, 

because is unlikely that this high calcination temperature does not produce sintering. If 

this process would occur, nanoparticles of -Fe2O3 would be obtained (this is the iron 

oxide species more thermodynamically stable [45]. In a system of α-Al2O3, with -

Fe2O3 nanoparticles and 6 % wt/wt of iron loading, at least weak signals of this oxide 

would be detected by XRD. However, only the presence of α-Al2O3 peaks are 

recognized with their position slightly displaced in 2θ. Bearing in mind that Fe3+ and 

Al3+ ions have identical nominal charge and close ionic radii (rFe3+ = 0.64 Å vs. rAl3+ = 

0.51 Å) an isomorphic substitution of Al3+ by Fe3+ ions is possible [46]. This 

substitution would produce a small structural alumina matrix distortion, bringing about 

the displacement of the XRD peaks. 

In agreement with XRD results, SEM-EDAX mapping and FeK-line profile exposed a 

uniform Fe distribution onto the alumina support and throughout the pellet cut (Figure 

4). SEM micrograph shown in Figure 4-a is representative of the surface topography of 

the support and the iron-alumina catalyst. Likewise, SEM micrographs for commercial 

alumina, Al2O3-900, Fe900(2s), Fe900ac and used catalyst sample resulted analogous 

displaying no surface topography differences; unlike Fe900(1s), where some iron oxide 

clusters might accumulate on the catalyst surface after the impregnation step (see Figure 

S1 in the Supplementary Section). EDAX results showed that the metal is 

homogeneously dispersed onto the support and its weight percentage of 6.2 wt% 

(measured through different regions of the pellets) can be well compared with the Fe 

content of the bulk catalyst. However, the pellet outer shell has a slightly higher average 

weight percentage of 7.8 wt% Fe.  

As can be observed from TEM image (Figure 4-b), the catalyst microstructure is 

constituted by compact and disordered grouping of plate-like primary particles, typical 

of mixed oxides systems. The stacking of these particles results in a tridimensional 

structure with narrow channels that constitutes the porosity of the material (as was 

detected by N2 physisorption). 
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Figure 6 shows the XPS spectrum of Fe 2p. As can be seen, the Fe900ac sample shows 

binding energies at 711.4 and 725.0 eV for the photoelectron peaks of Fe 2p3/2 and 2p1/2, 

respectively. Various iron oxides and/or oxy-hydroxides have a similar range of Fe 2p 

binding energies [47]. Taking into account the previous thermal treatment of this solid 

(calcination in air at 900°C during a total time of 6 h) the only iron compound that could 

be present would be -Fe2O3. However, the characteristic satellite peak of this 

compound, at about 719.0 eV, is not present. Consequently the presence of -Fe2O3 

must be discarded [48,49] Therefore, the peaks at 711.4 and 725.0 eV could be assigned 

to Fe3+ ions isolated with a surrounding of O= ions.  

On the other hand, the chemical environment and oxidation state of Fe in the sample 

were investigated by Mössbauer spectroscopy. The Mössbauer spectrum of Fe900ac at 

298 K only shows two peaks in the central region (Figure 7). This spectrum was fitted 

with a doublet and their hyperfine parameters (Table 3) could be assigned to 

paramagnetic Fe3+ ions and/or superparamagnetic iron species (with very small size), 

such as α-Fe2O3, -Fe2O3 [50,51], FeAlO3 [52], etc. The presence of hercynite 

(FeAl2O4) can be discarded because it was not detected any iron species with isomer 

shift characteristic of Fe2+ [53]. 

With the aim to discern between the different possible iron species, the Mössbauer 

spectrum at 13 K was obtained (Figure 7). Again, only two central peaks were detected 

and the spectrum was fitted with one doublet. If superparamagnetic species would be 

present, when the measurement temperature decreases, a magnetic blocking occurs and 

the doublet is transformed into a sextuplet. It could be considered that a temperature 

lower than 13 K is necessary to produce this effect. However, α-Fe2O3 nanoparticles as 

small as 6 nm of size are close to complete its magnetic blocking at 30 K and the central 

doublet practically has disappeared to generate a sextuplet [54]. If α-Fe2O3 

nanoparticles would be present is unlikely that, after the thermal treatment, they have 

sizes lower than 6 nm. Thereby, a sextuplet would be detected. Besides, the magnetic 

blocking is not a first order transition. Therefore, there is a broad temperature range in 

which the superparamagnetic relaxation is gradually slowed down. Consequently, the 

background of the spectrum shows a pronounced curvature. None of these phenomena 

is detected. Thereby, the presence of superparamagnetic nanoparticles of iron oxides 

can be discarded. On the other hand, FeAlO3 at low temperature shows four sextuplets 

[55]. As a consequence, the existence of this species can be ruled out, too. 
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From the cross-checking of the XRD, XPS and Mössbauer results, we can conclude that 

paramagnetic Fe3+ ions are present in Fe900ac. They arise from the substitution of 

aluminum by iron ions; as was stated before, the isomorphic substitution is possible due 

to the identical nominal charge and similar ionic radii of Fe3+ and Al3+ ions. In the 

present system we have a transition alumina as support, either -alumina, or, more 

likely, -alumina (see diffuse X-Ray peaks in Figure 3) indicating that there are two 

types of aluminum sites: octahedral and tetrahedral. Bearing in mind that only one 

doublet was necessary to fit the Mössbauer spectrum at 13 K and considering that the 

isomer shift of Fe3+ ions located into tetrahedral sites is lower than that located in 

octahedral sites we can conclude that, in our system, paramagnetic iron ions are located 

in octahedral sites [56]. 

The quadrupole splitting value depends on the magnitude of the electric field gradient at 

the 57Fe nucleus due to the local crystalline structure. The high values obtained for this 

hyperfine parameter, at both temperatures, would indicate that these paramagnetic Fe3+ 

ions are inside of highly distorted octahedral sites. Probably, they are on the alumina 

surface.  

Therefore, from XPS spectra, XRD diffractograms, and Mössbauer spectra measured at 

298 and 13 K we can conclude that all iron loading is present as paramagnetic Fe3+ ions 

located inside of distorted octahedral sites on the surface alumina. It can be speculated 

that Fe3+ ions diffuse inside the alumina lattice during thermal treatment at 900 °C. 

Apart from catalyst structure characterizations and chemical environment of the doped 

Fe species, the assessment of surface reactivity results essential. So far, not much 

attention has been paid to the role of acid-base interactions in the use of heterogeneous 

Fenton catalysts. These concepts were first introduced in the study of catalytic 

ozonation processes and are thought to play a key role in the mechanisms of organic 

pollutants oxidation [57]. The interactions between active sites (highly dispersed iron 

centers included inside the alumina lattice), alumina host and the organic molecules 

might be an important point in the enhanced performance of the CWHPO of phenol by 

using iron-alumina systems [12,14,58]. These interactions strongly depend of the 

functional groups at the catalyst surface, the functional groups nature of the organic 

molecules (i.e. presence of carboxylic and phenolic-OH groups), the surface charge of 

the solid phase and consequently, of the effluent pH. The operation pH range will also 

affect the charge of ionic or ionisable organic molecules and also the charge of possible 

catalyst poisons. Therefore, the surface charge will influence the system sorption 
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behavior and consequently its catalytic performance [15,57]. Hence, determinations of 

the point zero charge and catalyst acidity are of crucial importance. 

The point of zero charge (PZC) is a central concept in the adsorption of charged species 

and its position defines the affinity of the solid surface to the ionic species [59]. The 

PZC represents the pH at which the number of positively charges species (M–OH2+) 

equals the number of negatively charged species (M–O-) nulling the net surface charge, 

where M stands for a surface metal center. In aqueous suspensions, ion exchange 

properties are based on the ability of surface hydroxyl groups (M–OH) to dissociate or 

to be protonated as a function of pH as follows [37,60]: 

 

𝑀𝑂𝐻 + 𝐻+ → 𝑀𝑂𝐻2
+ 

𝑀𝑂𝐻 + 𝑂𝐻− → 𝑀𝑂− + 𝐻2𝑂 

 

The PZC value was found to be c.a. 7.6 for the fresh commercial alumina and about 7.1 

for the Fe900ac catalyst (Figure S2 in the Supplementary Section), which are consistent 

with those reported in the literature for similar metal oxide systems [59]. As is widely 

known, Fenton mechanisms greatly depend on pH and oxidations are typically carried 

out at acidic conditions. At the acid conditions used in this work (pH < 6) the catalyst 

surface should be positively charged and will adsorb/attract anions and/or negatively 

charged ligands from the aqueous effluent.  

Catalytic properties of metal oxides are determined by its acidity and basicity. Hydroxyl 

groups are present on all metal oxides surfaces. These -OH groups formed at the surface 

behave as Brönsted acid sites, whereas Lewis acids and Lewis bases are sites located on 

metallic cations and coordinatively unsaturated oxygen, respectively. Both acid sites are 

thought to be the real catalytic centers of metal oxides [43,60]. For alumina based 

systems, the presence of active surface sites such as Lewis acid sites make them capable 

of behave as amphoteric ion exchangers depending on pH [59,60].  

Figure 8 shows the evolution of pyridine desorption in nitrogen flow when the alumina 

and catalysts samples (Fe900(2s) and Fe900ac), saturated in pyridine and stabilized at 

100 °C, are heated to 700 °C at 10 °C/min. In this evolution, the pyridine chemisorbed 

on centers of different acidic strength is desorbed as the temperature increases until 

completely desorbed. Thus, desorption curve quantifies the total amount of acid sites 

(weak, medium and strong acid sites) of each sample. The pyridine TPD results showed 

that the addition of Fe increased the acidity strength of the alumina support since all 
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desorption curves corresponding to catalysts with iron are displaced to higher 

temperatures and also higher concentration of acid sites (greater area under the curve). 

The acetic acid wash treatment (Fe900ac and Fe900(2s)), while eliminating 10% of Fe 

species weakly attached to the support, does not modify the acidity (total amount of acid 

sites and acidity strength). 

 

From all these characterization results it can be established that the implemented 

strategies during preparation steps allowed the development of a highly dispersed Fe-

alumina catalyst, with Fe species strongly anchored to the support. Higher Fe dispersion 

facilitates reduction-oxidation processes onto the solid catalyst surface [61] and also a 

faster H2O2 decomposition [62], by exhibiting a higher surface concentration of active 

sites and increasing the catalyst capability of producing radicals to carry out the 

oxidation of the organic molecules. On one hand, well-stabilized Fe species allows 

reducing the incidence of leaching processes associated with the acidic reaction medium 

and/or the accumulation of chelating carboxylic acids [31]. On the other hand, the 

amphoteric nature and the acidity of the iron-alumina catalyst might attract anionic 

intermediates towards the catalyst active centers, promoting its oxidation at proper 

operating conditions [15]. 

 

3.2. Peroxidation of phenol 

3.2.1. Batch reactor experiments 

The catalytic activity and stability of Fe3+-Al2O3 material was tested for the hydrogen 

peroxide decomposition and for phenol peroxidation in a batch reactor. 

The first approach to evaluate the catalyst performance was to test its ability to 

decompose H2O2 at different temperatures (in the absence of phenol) at pH0 = 5 (which 

corresponds to double-distilled water matrix). A pseudo-first order kinetic model was 

used to fit the time evolution of H2O2 according with the mechanism proposed by Lin 

and Gurol [63]. From the pseudo-first order apparent rate constants enlisted in Table 4 

 (see Figure S3 in the Supplementary Section), the apparent activation energy was 

determined to be 38.5 kJ/mol (R2 = 0.9847) in concordance with literature reports [63]. 

The peroxidation of phenol (1 g/L) at 70 °C was also tested in a batch reactor (Figure 9-

a). Phenol was completely depleted in 120 min and high mineralization level (XTOC = 

80%) was observed after 240 min with a final Fe leaching of 2% (13 mg/L). As reaction 

time advanced, reaction medium color turned brownish and then transparent according 
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to the nature of reaction intermediates [33]. As seen in Figure 9-a, initial reaction rates 

of phenol, TOC and hydrogen peroxide (stage 1) are low and sharply increased to 

higher rates at c.a. 90 min (stage 2) as reaction evolved. To explain the differences in 

reaction rates observed, pH and Fe leaching values has to be taken into account. The pH 

decreased from the initial value (pH0 = 6) to a minimum of 2.6 at 120 min and then 

slowly increases as time advanced. This clearly indicates the formation of acid 

intermediates that are further oxidized. On the other hand, the amount of leached Fe was 

negligible during the first 40 min and then increased. As reported before, Fe3+ 

heterogeneous systems applied to batch reactors exhibited a marked induction period for 

phenol and TOC abatement related with the activation of the catalyst surface under 

reaction conditions by means of two contributions: the presence of homogeneous Fe and 

the development of Fe2+/ Fe3+ ratio [12,64]. Then, the lag phase observed in this 

experiment (stage 1) would be connected to the slow rate limiting reduction of Fe3+ by 

H2O2 and also with the build-up of Fe2+ species through faster pathways, such as the 

reduction of ferric species by quinone-like intermediates acting as electron-transfer 

catalysts [29,64]. 

Once the H2O2 was depleted at 120 min, an additional stoichiometric oxidant dose was 

supplied (stage 3) to further mineralize the organic matter. The TOC conversion 

increased up to a final value of 80 %. 

Additionally, Figure 9-b shows the influence of phenol over the pseudo-first order 

apparent rate constants for hydrogen peroxide decomposition. During the first step 

(stage 1), the apparent constant rate (kap = 0.0049 min-1, R2 = 0.99) resulted 3.5 times 

smaller than the one reached in the absence of phenol due to competitive processes 

between phenol and the oxidant for the surface active sites. After 90 min (stage 2), the 

oxidant was decomposed about twenty times faster (kap = 0.1018 min-1, R2 = 0.99) than 

during the first stage, probably due to surface activation by the formation of ferrous 

species and/or the presence of homogeneous Fe species, which enhanced hydrogen 

peroxide decomposition. Afterwards, all H2O2 supplied was consumed and an additional 

stoichiometric dose was added to the reactor (stage 3), giving a constant rate 

comparable with the first stage (kap = 0.0067 min-1, R2 = 0.99). 

Finally, the used catalyst was tested for peroxide decomposition in a blank without 

phenol (see Figure S3) achieving an apparent rate constant smaller than the one 

observed with the fresh catalyst and similar to the value evaluated in the presence of 
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phenol (kap = 0.0057 min-1, R2 = 0.99). This result indicates catalyst deactivation, whose 

origin will be discussed in detail in the next sections. 

 

3.2.2. Up-flow fixed bed reactor under continuous operation 

3.2.2.1.  Blank experiments and start-up of the UFBR  

According to the previous results, the iron-alumina catalyst was further investigated in a 

continuous UFBR. Contrasting with batch schemes, a very different catalytic 

performance can be expected in the fixed bed reactor due to its distinctive features: 

static solid phase, higher solid/liquid ratio, lower contact time between phases, etc. It is 

noteworthy to expect that the last two features may reduce leaching of Fe species. 

Prior to core tests, several blank experiments were carried out in order to evaluate the 

potential contribution of non-catalytic mechanisms in phenol elimination and hydrogen 

peroxide decomposition. A blank test was carried out loading the column with 20 g of 

fresh alumina and negligible conversions of phenol, TOC and H2O2 in the outlet 

effluent were reached at typical operating conditions. In the absence of H2O2, phenol 

adsorption was negligible. As well, phenol, TOC and H2O2 concentrations were 

periodically verified in the feed tank to discard thermal depletion of reagents at the inlet 

supply, therefore ensuring initial concentrations. 

Regarding to the start-up procedure with fresh catalyst loads, the following features 

were always observed. For instance, Figure 10 shows experimental results obtained at 

70 °C, QL = 5 mL/min and pH0=3 using fresh catalyst load. Before reaching steady state 

conversions, the conversion profiles displayed an induction period of about one hour. 

During the lag phase, as phenol and TOC conversion levels slowly increased, a 

brownish coloration of the solid phase was detected: a color front advanced slowly from 

the upper to the lower layers of the catalytic bed (Figure S4 at Supplementary Section). 

After the induction period, this coloration gradually disappeared and conversion levels 

reached steady state values: complete phenol abatement, 92 and 65% of H2O2 and TOC 

conversion, respectively and 36 mg/L of leached Fe. It should be noted that this 

phenomenon was even more pronounced when higher initial concentrations of phenol 

were used [65]. As discussed previously, the occurrence of color during early stages of 

phenol peroxidation is related to the presence of quinone-like intermediates. As reaction 

proceeds, these compounds are further oxidized and color disappears. 

The oxidant profile showed a distinctive evolution. A minimum is observed at c.a. 60 

min, starting from almost complete conversions due to parasitic decomposition (bubbles 
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are released at the top of the column). At 60 min, as catalyst is colored due to 

accumulation of quinone-like by-products on the catalyst surface, peroxide conversion 

decreased. Then, as the color front started to disappear, peroxide conversion increased 

up to the steady state value. As seen in Figure 10, during the lag phase the presence of 

leached Fe was negligible. Therefore, as in previous batch experiment, phenol oxidation 

began by a heterogeneous pathway that involves the surface accumulation of reducing 

organic intermediates that favors •OH production [64]. 

 

3.2.2.2. Influence of main operating parameters 

The influence of main operating parameters, namely reactor temperature, residence time 

(by varying feed flow rate or Wcat), initial pH and adjustment of [H2O2]:[Phenol] ratio 

(R) on steady–state outcomes was explored. Results are summarized in Table 5. 

As shown, phenol removal was above 98%, TOC conversions varied between 44-90%, 

aromaticity decreases as TOC conversions increases and η values exceeded 60%. Even 

though heterogeneous Fenton-like oxidation allows complete phenol removal and high 

mineralization levels, TOC conversion hardly reaches 100%. Therefore, the mass 

balance is completed considering the accumulation of by-products (see recognized 

intermediate species presented in Table S1 of the Supplementary Section). The first 

stage of the oxidation mechanism comprises phenol decomposition into aromatic 

compounds with two hydroxyl groups substituted in the benzene ring (hydroquinone, 

resorcinol and catechol). The oxidation of these molecules generates quinone-like 

compounds (p-benzoquinone and o-benzoquinone) which can be more toxic than phenol 

itself and adds color to the effluent. Besides, effluent coloration might be also due to the 

presence of quinhydrones and iron complexes. Then, oxidation of quinones gives place 

to the ring-opening of aromatic molecules to form carboxylic acids with lower carbon 

content which provoke the pH descent of the reaction medium [33,34]. Therefore, the 

organic carbon occurrence in the final effluent is related to the presence of strongly 

chelating and refractory carboxylic acids. These compounds favor the solubilization of 

the supported iron species. In general, these low chain organic acids are biodegradable 

and can be further degraded by means of subsequent biological treatment [66]. 

Results presented in Table 5 can be explained taking into account the oxidation 

mechanism. As observed, higher temperature (90 °C) intensified the oxidation process: 

hydrogen peroxide decomposition was accelerated and mineralization increased up to 

90%. Therefore, removal of acidic intermediates was promoted and outlet pH values 
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increased. Consequently, Fe leaching decreased below 3 mg/L warranting better catalyst 

stability. In agreement, aromaticity of the treated effluent notably decreased.  

The adjustment of initial pH did not enhance significantly the oxidation performance 

(see results at 70 °C, experiments SS5 and SS6). As discussed, the treatment of 

concentrated phenol solutions imposes a strong accumulation of acidic intermediates 

that contribute to work at pH values close to the optimal [67]. Therefore, CWHPO 

experiments were performed without initial pH adjustment (where pH0 = 6 stands for 

the natural pH of a phenolic solution of 1 g/L), taking advantage of the natural decay of 

pH, without the needing of an additional acidification step. 

From the result of pHPZC= 7.1 obtained for the fresh Fe900ac catalyst, it could be 

inferred that acidic conditions may be more favorable to the efficiency of the oxidation 

process. Under these conditions, the positively charged catalyst surface could interact 

with anionic species from the aqueous medium (e.g. deprotonated reaction 

intermediates), promoting the adsorption of the organic compounds and their further 

oxidation. However, it should be noted that this PZC value expands the possibilities of 

using the catalyst within a wider range of pH, closer to neutrality. This might allow its 

application in the treatment of real wastewaters (with typically neutral pH values), 

minimizing additional steps of pH adjustments [16, 68]. In the following sections some 

other relevant aspects are also considered, as the incidence of different deactivation 

processes. 

Hydrogen peroxide dosage was examined in order to get the maximum H2O2 

consumption efficiency, maintaining the mineralization levels as high as possible. 

Excessive oxidant dosage should be avoided due to both the scavenging effect of 

hydroxyl radicals by H2O2 and the increase on the final cost of the process; however if 

hydrogen peroxide concentration is insufficient, the oxidation advance can be hindered. 

Hence, H2O2 fed was increased to a suprastoichiometric ratio of R = 16.8 in the 

experiments performed at temperatures above 70 °C. Particularly at this temperature 

(experiments SS5 and SS7), the increase of R resulted in an enhancement of 5% in TOC 

conversion. While η, aromaticity and final pH values remained constant and Fe leaching 

levels decreased more than 20%. 

The impact of the residence time of the liquid phase θ on reactor performance was also 

addressed. In general, higher θ values increase mineralization and pHout, hence the Fe 

leaching decreases. 
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As seen in Table 5, a relatively simple way to enhance catalytic performance might be 

to increase reactor temperature [69] and/or residence time. However, in terms of costs, it 

is always desirable to work at moderate temperatures and appropriate residence times, 

equilibrating operating conditions with the catalytic capability of the system under 

study. Moreover, the use of unreasonable high residence times will also increase the 

final cost of the process and its adequate adjustment must balance mineralization 

levels/Fe leaching in order to reduce the total treatment time and increase the treated 

effluent volume. 

In summary, results presented in Table 5 evidence a relationship between TOC 

conversion values and Fe leached concentrations measured at the top of the column. 

Figure 11 shows this relationship under all tested operating conditions. A maxima 

concentration of leached iron at c.a. 60% of TOC reduction is observed. This is due to 

the presence of remnant organic matter with high concentration of chelating by-products 

that promotes iron dissolution. This relationship allows to establish an operating 

window in the range of 55 < XTOC > 80%, in which the UFBR can be operated with Fe 

leaching levels below 10 mg/L. 

Table 5 also compiles an estimation of the expected catalyst lifetime at each steady 

state. The lifecycles were estimated by considering the total Fe mass loaded to the 

UFBR, the feed flow rate and the steady state Fe leaching value. From these 

approximations, it can be observed that under optimized operating conditions the 

catalytic bed would work c.a. 300 h and beyond. Nevertheless, it should be noted that 

this approach only takes into account catalyst deactivation by Fe leaching and dismissed 

the incidence of other deactivation mechanisms which would influence the kinetic of 

deactivation, as will be discussed in the next sections. 
 

3.2.2.3. Catalyst stability studies  

Stability of the Fe-catalyst was evaluated at 80 °C and setting a residence time of θ = 

3.7 min (experiment SS9 in Table 5). The catalyst was used 70 h, Figure 12 shows the 

profiles registered after 15 h of continuous mode operation at different steady state 

values. TOC and H2O2 conversion levels gradually decreased in c.a. 10% in the interval 

of time between 15–32 hours, retaining total phenol removal, outlet pH values around 

2.7 and a constant Fe leaching of 15 mg/L (measured by the mixing cup method). The 

decline in TOC conversion caused an increase of the aromaticity and the treated 

solution becomes colored due to the presence of quinone-like by-products. It should be 
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remarked that these results compares reasonably well with the reference point SS9 listed 

in Table 5. 

After 32 h of usage, different reactivation strategies were implemented in order to 

recover the initial steady state conversion levels and also to assess the nature of 

deactivation processes. 

 

3.2.2.4. Catalyst deactivation 

Catalyst deactivation in Fenton-like processes can be due to fouling by carbonaceous 

deposit, iron leaching and/or poisoning by adsorption of organic intermediates [11,23]. 

In addition, for the Fe-alumina catalyst used in this work, another source of catalyst 

deactivation was found. Additional experiments were performed to address these issues 

and results are presented in the next sections. 

 

3.2.2.4.1. Carbonaceous deposits 

TGA-DTA studies were performed over used catalyst samples in order to evaluate the 

removal of adsorbed organic intermediates and/or the presence of carbonaceous deposits 

(Figure S5 in the Supplementary Section). A loss weight of 2 wt% was registered in the 

range of 150-500 °C, with a pronounced step at 250 ºC. Since it is true that the 

analytical technique does not allow discerning about the nature of the removed organic 

matter, the surface of the used catalyst sample was analyzed by SEM trying to gather 

some evidence on the formation of carbonaceous deposits. Nevertheless, the micrograph 

displayed the same surface appearance that the fresh catalyst (See Figure S1 at the 

Supplementary Section). 

Then, an additional experiment was performed with a sample of fresh catalyst exposed 

to a solution of oxalic acid at pH = 2.9 and succinctly analyzed by TGA-DTA (Figure 

S5 in the Supplementary Section). Again, the elimination of organic matter proceeded at 

250°C, suggesting that the weight loss in the used catalyst sample corresponds to 

adsorbed carboxylic acids. 

 

3.2.2.4.2. The question of Fe leaching 

The Fe leaching by organic ligand promoted-dissolution of iron oxides was widely 

reported in the literature [29,70–72]. In summary, the dissolution of Fe-oxides takes 

place by different mechanisms such as protonation, complexation or reduction. The Fe 

dissolution by complexation is a surface-controlled reaction occurring in steps. First, the 
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fast adsorption of the ligand onto the oxide surface by a ligand exchange mechanism. 

Second, the surface complex slowly weakens the metal-oxygen bonds on the surface 

and finally detaches it from the crystalline lattice [29]. 

An important question regarding the heterogeneous Fenton systems performance is if 

the catalyst is truly heterogeneous or if the observed results are due to the presence of 

trace amounts of leached Fe. 

Therefore, homogeneous Fenton tests with Fe(SO4).7H2O at pH0 = 3 were performed in 

a batch reactor at different temperatures and Fe2+ concentrations to characterize the 

influence of dissolved Fe at different operating conditions: 44 mg/L of Fe at 70ºC, 14 

mg/L of Fe at 80ºC and 2 mg/L of Fe at 90ºC, equivalent to the measured Fe leaching in 

experiments SS5, SS9 and SS13 in Table 5. It should be noted, that these tests 

overestimated the homogeneous contribution since the release of Fe is a gradual process 

throughout the catalytic bed. For these experiments, no induction period was detected 

achieving TOC conversions of: 42% (44 mg/L of Fe at 70ºC), 39% (14 mg/L of Fe at 80 

ºC) and 31% (2 mg/L of Fe at 90 ºC) after 10 min and TOC removals of: 61%, 58% and 

51% after 120 min, respectively. Therefore, the influence of homogeneous iron as a 

secondary contribution of TOC mineralization might be strongly limited due to the short 

residence time at the UFBR and the good catalytic performance achieved could be 

mainly assigned to heterogeneous phenomena. 

Moreover, it is broadly accepted that Fe leaching is mainly associated with the 

accumulation of oxalic acid. To assess its influence in the output effluent stream, we 

performed an additional heterogeneous batch experiment with oxalic acid at 80 ºC and 

10 g/L of Fe900ac (setting a total carbon concentration of 191 mg/L, representing the 

25% of remnant TOC for SS#9 in Table 5). This carboxylic acid confirmed its 

recalcitrant nature, reaching TOC conversions of 9% and 36% after 10 min and 120 min 

respectively. Iron was leached out of the catalyst during the first minutes of the reaction 

reaching values of 10 mg/L at 5 min, a maxima concentration of 19 mg/L at 30 min and 

a final value of 15 mg/L at 120 min. This experimental fact might indicate readsorption 

of leached Fe species, discarding iron precipitation at the acidic pH conditions of the 

reaction supernatant. 

Noteworthy, homogeneous experiments were not performed under continuous operation 

in the UFBR because it is not possible to ensure identical residence times between 

heterogeneous and homogeneous tests. In our experimental setup, reaction will not only 

proceed in the inert glass bed. The reservoir, the enter and exit piping and the 
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unavoidable dead volumes in the inlet and outlet sections of the column will also 

contribute as additional contact time between the reactants. Therefore although batch 

tests are not representative of the continuous experiments, they serve as a good tool to 

evaluate the catalytic activity of the leached iron. 

 

3.2.2.4.3. Intermediates adsorption 

Heterogeneous Fenton-like oxidation is mainly driven by surface reaction mechanisms 

where different species compete for adsorption on the available surface active sites, 

leading to catalytic deactivation [13,29]. 

Interactions between organic ligands and metal oxide surfaces have attracted a great 

deal of attention due to their significant environmental implications. Adsorption of 

organic matter onto inorganic solid interfaces (e.g., Fe- and Al-phases) by means of 

surface complexation-ligand exchange mechanisms was widely reviewed in the 

literature of colloidal chemistry [73–78]. All these studies highlighted the fact that the 

degree of adsorption of organic compounds onto metal oxides surfaces is strongly 

dependent of: i) the pH value and ionic strength of the liquid phase, ii) the pHPZC of the 

solid phase, iii) the number and nature of functional groups per organic molecule (i.e. -

OH and -COOH), iv) the pKa of the dissociable groups and their steric arrangement. 

The adsorption of an organic molecule onto the alumina surface can be can be explained 

by the ligand-exchange model. Where the oxygen atom of the surface (-OH) group act 

as a donor (Lewis base) and coordinate with protons or metal ions (Lewis acids), 

whereas structural Al(III) ion present at the surface layer acts as a Lewis acid capable to 

exchange the (-OH) group for another anionic ligand [76]. 

Hidber et al. studied the adsorption behavior of different molecules based on a benzene 

ring substituted with (-OH) and (-COOH) groups and also aliphatic carboxylic acids 

onto α-Al2O3. The authors determined that the pKa value of the dissociable groups and 

the pHPZC of the solid phase define the pH range at which the adsorption maximum 

occurs. Then, they stated that if the pKa < pHPZC the adsorption maximum can be 

expected when pH ≈ pKa; but when pKa > pHPZC, the adsorption maximum should 

occur around the pHPZC of the material. Furthermore, the organic molecules with 

different functional groups can get a high degree of adsorption over a wide pH range 

between the pKa values of those dissociable groups. Consequently, whereas organic 

molecules with (-OH) groups (i.e. catechol) adsorbed preferentially in the high-pH 

regime, carboxylic acids showed strong adsorption in the low-pH region [76]. 
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Therefore, taking into account the pKa values listed in Table S1 of the Supplementary 

Section and the acidic pH regime of the reactor (c.a. 6 – 2.6), it can be expected that the 

catalyst preferentially attracts carboxylic acids present as inner and outer-sphere 

complexes. Furthermore, the catalyst might develop greater adsorption affinity towards 

acids with more than one -COOH group, and especially those with cis-configured 

carboxylic groups (i.e. maleic acid) [77]. 

To confirm this deactivation hypothesis, the pHPZC for the used catalyst was determined 

(over a solid sample taken out after c.a. 70 h of usage). As can be observed in Figure 13, 

the used catalyst displayed a shift of the pHPZC by 2 pH units to lower values that 

reduces the positive surface charge in the range of pH = 4–6. According to the ligand-

exchange model, the adsorption is a simple exchange of the -OH group for another 

dissociated group (i.e. -COOH) and does not necessarily lead to a change of the surface 

charge. However, the surface charge can be changed if the molecule has additional 

dissociated groups (‘charge carriers’) which are not coordinated to the surface or if two 

dissociated groups coordinate to the same Lewis acid center [73,76]. Following this 

reasoning, the pHPZC decrease might be correlated with the permanent adsorption of 

anionic species such as dicarboxylic acids and/or more than one -COOH group 

coordinated to the same adsorption center. As a consequence of this shift, the role of 

electrostatic interactions at the solid–liquid interface would be changed, altering affinity 

between anionic ligands with the less positively charged catalyst surface. 

Furthermore, TPD of pyridine were performed over the used catalyst sample (not 

shown). The spend catalyst showed to be much less acidic than the fresh sample. 

Nevertheless, the solid sample partially recovered its surface acidity after a thermal 

treatment at 500 ºC (2 h). This result is in agreement with the former hypothesis. 

 

3.2.2.4.4. Iron redistribution 

Iron leaching due to complexation was extensively discussed in the previous sections. 

However, complexing intermediates may also affect catalyst stability through another 

mechanism not previously discussed in the literature. 

It was observed, after several hours of operation, the onset of color in the inner zone of 

the spherical pellets. According to Figure 14-a, the used catalyst presents an egg-yolk 

distribution that cannot be reverted by calcination at 500°C, discarding the 

accumulation of colored intermediates. 
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EDAX FeK profile displayed iron maxima in the inner region of the pellet and on its 

edge, reaching valleys between these regions and on the pellet center (Figure 14-b). 

Punctual determinations partially confirmed this trend (Figure 14-c), but absolutely 

contrast with the FeK profile of the fresh catalyst showed in Figure 5. 

The Fe redistribution towards the core of the pellets might be favored by the presence of 

potential complexing agents; thus, iron-complexes could be considered as mobile 

species that gradually spreads over the alumina surface. 

The phenomena can be compared with the competitive adsorption technique used in the 

preparation of egg-yolk type alumina catalysts [79,80]. These systems are based in the 

addition of a second component (polycarboxilic acid) that adsorbs more strongly than 

the metal precursor itself, leaving no available surface sites in the outer shell, causing 

the metal diffusion inward of catalyst grains in search for available sites [81]. 

 Hence, besides Fe leaching detected in the liquid phase, complexed iron would be also 

re-dispersed inside of pellets. This non-homogeneous active site distribution adds an 

additional mass transport resistance (through the inner shell of support) that may 

contribute to the observed decrease in rates. On the other hand, Fe may not be well 

dispersed in the active inner core and this could also contribute to activity decay. 

 

Considering the previous discussion, catalyst deactivation would be strongly related 

with the presence and permanence of chelating acidic intermediates. For alumina based 

catalysts, the amphoteric character of the support plays a key role by attracting anionic 

ligands towards Fe active centers. When operating conditions favor to shield high 

mineralization levels, the support aids to attract the organics intermediates towards Fe 

centers and mineralize them, leaving the active sites available for a new set of reactant 

molecules to attach to the catalyst surface. When more moderate reaction conditions are 

used, the system is not capable to mineralize the more refractory compounds such as 

acidic by-products and in consequence TOC conversions are low, the accumulated 

acidic intermediates remains more time adsorbed onto the surface and the catalyst is 

more prone to Fe dissolution [29]; hereafter, Fe species could be transferred to the 

liquid phase or be readsorbed/redistributed inside the spherical pellets. 

 

3.2.2.5. Strategies for catalyst reactivation/regeneration 

The effects caused by iron complexation (leaching and redistribution of iron inside the 

pellet) might be irreversible. However, adsorbed organic intermediates could be 
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removed to improve catalyst activity. Several reactivation strategies were tested in the 

UFBR and results on performance are shown in Figure 12. 

First, reactor temperature was increased up to 90 °C (T1, Figure 12); however the 

system was not able to recover the steady state at 90 °C (SS11, Table 5) and the 

performance slightly descended to: XTOC = 78%, XH2O2 = 87%, pHout = 2.8, UV254 = 

0.11, ηH2O2 = 75% and [Fe]leached = 7.5 mg/L. When the reactor temperature was 

decreased again to 80 °C, conversion profiles recovered their previous descending 

tendency, reaching TOC conversions below 70% and [Fe]leached = 10.4 mg/L. 

Second, the catalytic bed was dried at 150 °C for 72 h and then used in reaction (T2, 

Figure 12); again, the system recovered its descending profile of mineralization levels 

and an output concentration of dissolved Fe of 10.5 mg/L. 

Afterwards, the catalyst was removed from the bed and calcined at 500 °C (2 h, static 

air atmosphere) to remove strongly adsorbed refractory by-products and then used again 

in reaction (T3, Figure 12). As observed, the catalyst exhibited the typical induction 

phase previously mentioned (Section 3.2.2.1) and during the steady state operation, the 

conversion profiles reestablished steady state values akin to those listed before (SS9, 

Table 5): XTOC = 76%, XH2O2 = 88%, [Fe]leached = 11.8 mg/L, pHout = 3 and η = 72%. 

Finally, when mineralization levels decayed below XTOC = 70%, a fourth reactivation 

strategy was tested (T4, Figure 12). This time the UFBR was softly washed with a 0.1 

mol/L solution of NaOH (1 h at 80 °C) with the purpose of desorb adsorbed acidic 

intermediates [27]. The change of reaction medium pH did not allow recovering an 

average TOC conversion above 70% and the leached iron was 11 mg/L. 

After 70 h of usage under continuous operation at different steady state conditions the 

cumulative loss of iron as a fraction of the initial Fe content loaded to the UFBR was 

calculated to be c.a. 20%. 

 

4. Conclusions 

A highly dispersed and well-anchored iron-alumina catalyst was synthetized and used 

for the CWHPO of concentrated phenolic solutions in a continuous UFBR. The 

preparation methodology involved the combination of three simple and cheap synthesis 

strategies (two-stage impregnation of iron citrate, acetic acid washing and thermal 

treatment at 900 ºC) that favored: i) high dispersion levels of Fe onto the mesoporous 

support, ii) the removal of the more labile Fe species and iii) the diffusion of Fe3+ inside 

the alumina lattice, giving rise to strong Fe-Al interactions. 
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Peroxidation of 1 g/L of phenol was performed over a wide range of demanding 

operating parameters. In all cases, phenol removal was above 98%, TOC conversions 

varied between 44-90% and H2O2 consumption efficiencies resulted η > 60%. Under 

selected working condition (T = 90 °C, Wcat = 20 g, QL = 1.2 mL/min and 

[H2O2]:[Phenol] = 16.8), complete phenol conversion and remarkable TOC reduction of 

90% were achieved, with less than 3 mg/L of iron leached. Although the catalyst was 

subject to deactivation, high mineralization levels (> 70%) were sustained for 70 h of 

continuous operation. Nevertheless, the UFBR usage at different steady state conditions 

with output Fe concentrations up to 44 mg/L caused a cumulative loss of iron c.a. 20%. 

The nature of deactivation processes in the long-term operation of the reactor was 

thoroughly characterized. Activity decay of the amphoteric Fe-Al catalysts is strongly 

related with the presence and permanence of chelating acidic intermediates. These 

chelating by-products diminished catalyst performance by different mechanisms: 

a) Fe migration to the liquid phase as Fe leached species and to the catalyst pellets core 

giving egg-yolk distribution.  

b) Permanent adsorption of carboxylic acids that block surface sites and modify affinity 

towards anionic ligands, affecting the conversion levels in the long-term operation. 

Nevertheless, adsorbed species were easily removed by calcination at 500 ºC, 

recovering steady state conversion profiles. 

Therefore, the proper adjustment of operating conditions results decisive to prolong the 

useful life of the catalytic bed. Namely, the Fe leaching can be reduced to acceptable 

levels (< 10 mg/L) if the reactor operates with TOC reductions above 80% (or below 

55%) decreasing the occurrence of chelating by-products such as dicarboxylic acids. 
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Figures 

 
 

 
Figure 1. Experimental set-up employed for the CWHPO of phenol carried out under 

continuous operation (where TI: temperature indicator; PP: peristaltic pump). 
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Figure 2. N2 physisorption results: isotherms at -196 °C (a) and pore size distribution (b) 

for alumina support and fresh catalyst samples. 
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Figure 3. XRD diffractograms of the Fe-Al catalytic system calcined at 900 °C and 

1400 °C. Corundum and hematite patterns were also include for comparative purposes. 

(Notation: θ/δ corresponds to θ-Al2O3 or δ-Al2O3 respectively; γ corresponds to γ-

Al2O3). 
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Figure 4. SEM (a) and TEM (b) images for Fe900ac catalyst. 
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Figure 5. EDAX mapping, FeK profile across the spherical pellet and Fe content (wt%) 

from EDAX determinations at different pellet regions for Fe900ac catalyst (Internal 

zone: 1-8 and spherical cap). 
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Figure 6. XPS results for Fe900ac catalyst, Fe2p core level deconvolution. 
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Figure 7. Mössbauer spectra of the Fe900ac catalyst at room temperature and 13 K. 
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Figure 8. Temperature programmed desorption of pyridine of saturated samples. 
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Figure 9. CWHPO of phenol in a batch reactor ([Catalyst] = 10 g/L, [Phenol]0= 1 g/L, 

[H2O2]:[Phenol] = 14, pH0 = 6 and T = 70 °C).  
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Figure 10. Conversion profiles of phenol peroxidation in a continuous UFBR reactor (T 

= 70 °C, Wcat = 20 g, QL = 5 mL/min, [Phenol]0 = 1 g/L, [H2O2]:[Phenol] = 14 and pH0 

= 3). 
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Figure 11. Fe concentration vs. TOC conversion in the outlet effluent for different 

operating conditions by using a continuous UFBR reactor (according to Table 5). 
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Figure 12. Long-term phenol peroxidation by using a continuous UFBR reactor (T = 80 

°C, Wcat = 20 g, QL = 5 mL/min, [Phenol]0 = 1 g/L, [H2O2]:[Phenol] = 16.8 and pH0 = 

6). 
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Figure 13. Mass titration at different initial pH of the water to which pelletized solid 

samples was added and surface charge density calculated from mass titration data for 

the fresh and used Fe900ac catalyst (c.a. 70 h of usage under continuous mode at the 

UFBR). 
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Figure 14. Images for Fe900ac pellets sectioned equatorially: a) Image of fresh and used 

catalyst calcined at 500 °C; b) EDAX FeK profile across an used catalyst pellet; c) Fe 

content (wt%) from EDAX determinations at different pellet regions. 
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Tables 
 

Table 1. Operating conditions and reactor dimensions. 

Wcat 6.7 − 20 g 

Z 3.5 − 11 cm 

T 60 − 90 °C 

[H2O2]:[Phenol] 14 − 16.8 mol/mol 

QL 1.2 − 5 mL/min 

θ 1.1 – 15 min 

Dp 2.5 mm 

Di 2.3 cm 

L 21 cm 

 

 

 

Table 2. Summary of Fe content and N2-physisorption results. 

Sample 

 

Description 

Fecontent 

(wt%) 
ABET 

(m2/g) 

Vpore 

(cm3/g) 

Dpore 

(Å) 
  

Al2O3 As received from 
SASOL 

- 208 0.49 31 

Al2O3-900 Al2O3 calcined at 
900ºC 

- 138 0.46 43 

Fe900(1s) Impregnated in 1 
stage and calcined 
at 900ºC 

6.6 125 0.38 37 

Fe900(2s) Impregnated in 2 
stages and 
calcined at 900ºC 

6.6 140 0.40 37 

Fe900ac 
Impregnated in 2 
stages, calcined at 
900ºC, acid 
washed and re-
calcined at 900ºC 

6.1 116 0.41 43 
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Table 3. Fe900ac hyperfine Mössbauer parameters obtained from spectra measured at 

298 K y 13 K. 

Temperature (K)  (mm/s)  (mm/s) 

298 0.29 ± 0.01 0.97 ± 0.01 

13 0.41 ± 0.01 1.01 ± 0.01 

 : isomer shift (all isomer shifts are referred to -Fe at 298 K); : quadrupole splitting. 

 

 

Table 4. Pseudo-first order apparent rate constant values for H2O2 decomposition with 

Fe900ac catalyst ([Catalyst] = 10 g/L, [H2O2]0= 0.149 mol/L and pH0 = 5).  
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60 0.0104 0.9981 

70 0.0170 0.9995 

80 0.0216 0.9985 

90 0.0330 0.9966 
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Table 5. Summary of results for phenol peroxidation (1 g/L) at different operating 

conditions in a continuous UFBR reactor.  

SS T       
(ºC) 

QL       
(mL/min) 

θ 

(min) R pH0 
Wcat  
(g) 

Z 
(cm) 

XPhenol  

(%) 
XH2O2 
(%) 

XTOC 
(%) UV254 pHout 

Feleached 
(mg/L) 

 
Feleached 
(%) 

η      

(%) 

Expected 
lifetime 
(h) 

1 60 5 3.7 14 6 20 11 98 58 54  - 2.6 6 0.1 93 678 

2 60 2.5 7.3 14 6 20 11 99 70 58  - 2.7 15.5 0.3 83 525 

3 70 5.4 1.1 14 6 6.7 3.5 98 70 44  - 2.9  - - 63  - 

4 70 5.4 2.3 14 6 13.3 7 100 93 60  - 2.6  - - 65  - 

5 70 5 3.7 14 6 20 11 100 100 62 0.55 2.7 44 2.0 62 92 

6 70 5 3.7 14 3 20 11 100 92 65 0.52 2.6 36 3.3 71 113 

7 70 5 3.7 16.8 6 20 11 100 88 67 0.51 2.7 34 4.5 63 120 

8 70 2.5 7.3 16.8 6 20 11 100 95 72 0.31 3 22 4.8 63 370 

9 80 5 3.7 16.8 6 20 11 100 92 75 0.24 2.8 14 5.3 68 290 

10 80 2.5 7.3 16.8 6 20 11 100 97 80 0.13 3.2 8 5.4 69 1017 

11 90 5 3.7 16.8 6 20 11 100 92 84 0.12 3.1 6 5.6 76 678 

12 90 2.5 7.3 16.8 6 20 11 100 98 85 0.08 3.3 4 5.7 72 2033 

13 90 1.2 15 16.8 6 20 11 100 99 90 0.04 3.5 2.4 5.7 76 7060 
* Where abbreviations in first row means: SS: steady state reference point; T: temperature; QL: feed flow 

rate; θ: residence time; R: H2O2 to phenol molar ratio; pH0: initial pH; Wcat: catalyst load; Z: bed height; 

X: conversion; UV254: dimensionless aromaticity; pHout: output pH; Feleached: leached iron expressed as 

output concentration or cumulated percentage of Fe loss and η: hydrogen peroxide consumption 

efficiency. 
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