Mid- to Late Cambrian docking of the Río de la Plata craton to southwestern Gondwana: age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina)

SEBASTIÁN O. VERDECCHIA1*, CESAR CASQUET2, EDGARDO G. BALDO1, ROBERT J. PANKHURST3, CARLOS W. RAPELA4, MARK FANNING5 & CARMEN GALINDO2

1 CICTERRA–Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Córdoba (CONICET–UNC), Av. Veláz Sarsfield 1611, CP X5016CGA, Córdoba, Argentina
2 Dpto. de Petrología y Geoquímica, Fac. Ciencias Geológicas, Inst. de Geología Económica (CSIC–Universidad Complutense), 28040 Madrid, Spain
3 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
4 Centro de Investigaciones Geológicas, Universidad Nacional de la Plata–CONICET, 1900 La Plata, Argentina
5 Research School of Earth Sciences, The Australian National University, ACT0200 Canberra, Australia

*Corresponding author (e-mail: sverdecchia@gmail.com)

Abstract: The Early Palaeozoic stratigraphy and tectonic history of the Eastern Sierras Pampeanas of central Argentina are complicated by metamorphism and deformation resulting from the Pampean (545–510 Ma) and Famatinian (490–440 Ma) orogenies. We report U–Pb sensitive high-resolution ion microprobe dating of detrital zircons in two metasedimentary successions exposed at Quebrada de La Cébila (c. 28°45′S, 66°25′W): the Ambato and the La Cébila metamorphic complexes. The Ambato zircons record age peaks corresponding to Pampean (530 ± 10 Ma), Brasiliano (c. 570 and c. 640 Ma), Grenville (c. 950 to c. 1025 Ma) and minor Neoarchaean ages. Similar peaks are also apparent in the La Cébila sample but it additionally contains Palaeoproterozoic zircons (c. 2.1 Ga) corresponding to the age of the Río de la Plata craton, from which they are considered to have been sourced. Our interpretation is that the protolith of the Ambato complex was deposited prior to juxtaposition with the craton and is older than the Early Ordovician La Cébila metamorphic complex. We infer that the craton reached its current relative position in the Mid- to Late Cambrian, after the main Pampean tectonothermal event (530–520 Ma) and before deposition of the La Cébila protolith and the Achavil Formation (Sierra de Famatina), which contain comparable detrital zircon populations.

The Palaeoproterozoic Río de la Plata craton of central–eastern Argentina and southern Uruguay has an important role in the tectonic framework of southwestern Gondwana. Historically, this craton was considered the upper plate in collisional models for the Neoproterozoic to Early Cambrian Pampean orogeny (Escayola et al. 2007; Schwartz et al. 2008; Ramos et al. 2010). However, according to Schwartz & Gromet (2004) and Rapela et al. (2007) the pre-Pampean sedimentary Puncoviscana Formation (largely Late Neoproterozoic to Early Cambrian turbidites; see Zimmermann 2005), does not contain the 2.05–2.25 Ga detrital zircons expected in the case of orthogonal collision with the craton. Therefore the present position of the Río de la Plata craton had to be attained during or after the Pampean orogeny. From this evidence a new geotectonic model for the Pampean orogeny was developed by Rapela et al. (2007), involving significant right-lateral displacements of continental masses during oblique subduction that preceded collision.

In this paper, we present new U–Pb sensitive high-resolution ion microprobe (SHRIMP) detrital zircon ages from high-grade metasedimentary successions from the Ambato and La Cébila metamorphic complexes (Figs 1 and 2). Provenance patterns, combined with existing geochronological data relevant to Neoproterozoic to Early Palaeozoic metasedimentary successions elsewhere in the Sierras Pampeanas (Rapela et al. 2007; Collo et al. 2009), constrain the time at which the Río de la Plata craton first became available as a source of sediments for late to post-Pampean basins. This is taken as dating docking of the craton to SW Gondwana.

Geological setting

Outcrops and samples from drill-holes of the Río de la Plata craton suggest that it consists of a mosaic of Palaeoproterozoic igneous and metamorphic terranes of 2260–2020 Ma (e.g. Tandilia belt, Pando belt, Piedra Alta terrane) (Fig. 1; Ramos 1996; Rapela et al. 2007; Oyhantçabal et al. 2010, and references therein). Its present position was probably reached through large-scale dextral strike-slip movement (present coordinates will be considered throughout the paper) relative to the Puncoviscana Formation that forms the bulk of the sedimentary sequence involved in the Pampean orogen. The latter formation, which overlies an unexposed basement, is thought to have originated on the margin of the Kalahari craton and transferred laterally during oblique subduction of the ephemeral Clymene Ocean (Trindade et al. 2006; Rapela et al. 2007). In this interpretation, the final stage is represented by the oblique collision in Cambrian times of a large, probably allochthonous, Mesoproterozoic to Palaeoproterozoic terrane in the west that embraced the Western Sierras...
Fig. 1. Digital elevation model (DEM, 90-SRTM type) of central South America showing the Neoproterozoic to Early Palaeozoic tectonic framework and inferred limit of Río de la Plata craton (modified from Cordani et al. 2003; Rapela et al. 2007; Oyhantçabal et al. 2010). TB, Transbrasiliano lineament; T, Tandilia belt; PB, Pando belt; PA, Piedra Alta terrane; NP, Nico Pérez terrane; RB, Rivera block; TA, Tacuarembó block; AA, Asunción arch; ESP, Eastern Sierras Pampeanas; WSP, Western Sierras Pampeanas; P, Precordillera terrane.

Fig. 2. (a) Schematic geological map of central–western Argentina (after Astini & Dávila 2004; Dahlquist et al. 2008; Grosse et al. 2008). The main metasedimentary outcrops of the La Cebila metamorphic complex are marked (Quebradas of La Cebila, Cantadero and La Rioja). (b) Geological map of Quebrada de La Cebila. New and previously published sample localities are shown.
Pampeanas (Sierra de Pie de Palo and Sierra de Maz), the Arequipa block (southern Peru; Ramos 2008, and references therein; Casquet et al. 2010) and Amazonia among other continental blocks (Rapela et al. 2007; Casquet et al. 2009). This collision resulted in the Pampean orogenic belt (545–510 Ma, Rapela et al. 1998; Schwartz et al. 2008) in the Eastern Sierras Pampeanas, juxtaposed with the Río de La Plata craton across a major fault (Fig. 1).

Alternative models for the Pampean orogeny involve either Late Neoproterozoic to Early Cambrian orthogonal collision or ridge subduction against the Río de La Plata craton (Ramos & Vujovich 1993; Escayola et al. 2007; Schwartz et al. 2008; Ramos et al. 2010). Folding and the development of foliation took place in the Early Cambrian and were accompanied by low- to high-grade regional metamorphism under low to medium pressure between 530 and 520 Ma. Intrusion of calc-alkaline I-type plutons and S-type granites (migmatic arc) started at c. 545 Ma (Lira et al. 1997; Rapela et al. 1998, 2002; Schwartz et al. 2008; Martino et al. 2009).

The Sierras Pampeanas are blocks of pre-Andean basement tilted during Late Cenozoic flat-slab subduction of the Nazca plate beneath the Central Andean continental margin between 27° and 33°30’S (Jordan & Allmendinger 1986; Ramos et al. 2002). Two successive orogenies have long been recognized in the Eastern Sierras Pampeanas: the Pampean orogeny referred to above and the accretionary Famatinian orogeny (Aceñolaza & Toselli 1977; Pankhurst et al. 1998; Rapela et al. 1998; Dahlquist et al. 2008; Fig. 1). The Famatinian belt lies to the west of the Pampean belt and developed mainly between the Late Cambrian and the Early Silurian (490–440 Ma) (e.g. Pankhurst et al. 1998, 2000; Astini & Dávila 2004). This orogeny partially reworked the Pampean foreland to the east, and extended well into the Western Sierras Pampeanas on the west (e.g. Rapela et al. 1998; Pankhurst et al. 2000; Baldo et al. 2006; Casquet et al. 2008). The Famatinian belt is characterized by Late Cambrian to Early–Middle Ordovician marine and volcaniclastic successions, Early to Mid-Ordovician I- and S-type intrusions (migmatic arcs), minor tonalite–trondhjemite–granodiorite suites in the foreland and low- to high-grade, low- to intermediate-pressure metamorphism coeval with foliation development, folding and thrusting (e.g. Pankhurst et al. 1998, 2000; Casquet et al. 2001, 2008; Rapela et al. 2001; Astini 2003, and references therein; Astini & Dávila 2004; Büttner et al. 2005; Verdecchia & Baldo 2008; Otamendi et al. 2008; Collo et al. 2009). The Western Sierras Pampeanas close to the Andes consist of a Proterozoic basement of Grenville age (c. 1.0–1.3 Ga) that was pervasively reworked by the Famatinian orogeny (Pankhurst & Rapela 1998; Casquet et al. 2001, 2008; Varela et al. 2004; Vujovich et al. 2004; Rapela et al. 2010). Evidence for Pampean-age tectothermal activity in the Western Sierras Pampeanas is provided by U–Pb data, obtained by both thermal ionization mass spectrometry (TIMS) and SHRIMP, and Ar–Ar determinations (e.g. Lucassen & Becchio 2003; Mulcahy et al. 2007; Casquet et al. 2008).

This work is focused on the southern tip of the Sierra de Ambato and eastern tip of Sierra de Velasco in the Eastern Sierras Pampeanas (Fig. 2), which underwent Famatinian deformation and metamorphism. Two metasedimentary successions are recognized, yielding contrasting detrital zircon ages. The Ambato metamorphic complex (Fig. 2b) mainly consists of high-grade metasedimentary rocks (migmatites and gneissies) and discordant granitic and pegmatitic bodies (Caminos 1979). Larrovere (2009) obtained an Early to Mid-Ordovician metamorphic age on monazite from one migmatite from the central–northern part of the sierra. However, the ages of igneous rocks and sedimentary protoliths in this region are still unknown. At the southern tip of the Sierra de Ambato, the metamorphic complex overlies the low-grade successions of the La Cébila metamorphic complex across a west-directed Cenozoic reverse fault (Fig. 2b).

The La Cébila metamorphic complex consists of a low- to high-grade metasedimentary succession, peraluminous granites and pegmatitic bodies (Espizúa & Caminos 1979; Verdecchia 2009; Fig. 2b) that crop out discontinuously along the eastern edge of the Sierra de Velasco with the main outcrops along the Quebrada de La Cébila (Fig. 2b). The Sierra de Velasco is a large igneous massif consisting of Ordovician peraluminous to metaluminous granites (Pankhurst et al. 2000; Toselli et al. 2007), Devonian mylonites (e.g. TIPA shear zone, Höckenreiner et al. 2003), and undeformed Carboniferous A-type granite plutons (Dahlquist et al. 2006, 2010; Grosse et al. 2008). The La Cébila metamorphic complex consists of phyllites, metapammites, quartzites, mica- and quartz-schists, gneisses and migmatites with minor calcilicate rocks, graphite-schist layers and discordant pegmatitic bodies (Espizúa & Caminos 1979; Verdecchia 2009). The metamorphic grade increases from very low in the east to high in the west, towards the contact with the Punta del Negro pluton, giving rise to a succession of metamorphic zones (chlorite, biotite, cordierite, andalusite, andalusite–K-feldspar, sillimanite–K-feldspar and cordierite–K-feldspar) roughly parallel to the contact (Verdecchia 2009; Fig. 2b). South of the study area at Quebrada de la Ríoja (Fig. 2a) one granitoid that intrudes rocks equivalent to the La Cébila metamorphic complex has yielded an age of 476.4 ± 1.5 Ma (U–Pb isotope dilution (ID)-TIMS on monazite; De los Hoyos et al. 2008). Although the age of metamorphism is unknown, Verdecchia (2009) suggested on geological and petrological grounds that Ordovician magmatism was roughly coeval.

An Early Ordovician depositional age for the protoliths of the La Cébila metamorphic complex has been determined from biotratigraphy in quartzites from the sillimanite–K-feldspar zone that preserve a shelly fauna (Verdecchia et al. 2007). This age is compatible with U–Pb detrital zircon ages that yielded a maximum sedimentation age of c. 530 Ma (sample QCE-6004, Rapela et al. 2007; Fig. 2b). A shallow-water marine siliciclastic platform, in a foreland position relative to the Famatinian magmatic arc to the west, was previously suggested for protoliths of the La Cébila metamorphic complex (Astini et al. 2003, 2004; Verdecchia et al. 2007; Verdecchia & Baldo 2010).

Samples

One sample from each metamorphic complex referred to above was selected for U–Pb SHRIMP zircon dating.

Sample CEB-392 is a banded migmatite from southern Sierra de Ambato (28°50′29.10″S, 66°20′39.40″W, see Fig. 2b). The mineral association consists of plagioclase, biotite, quartz, K-feldspar and secondary muscovite and chlorite, with accessory zircon (both in the matrix and as inclusions in biotite), apatite and scarce opaque minerals. The migmatite is a stromatite with alternation of leucosome and melanosome concordant with the foliation. The melanosome is composed of aligned biotite layers (<3–5 mm thick), whereas the leucosome layers (<30 mm thick) can have interlobate mosaic of quartz, plagioclase, K-feldspar and subordinate biotite.

Sample CEB-428 is a paragneiss of the inner La Cébila metamorphic complex collected near the contact with the porphyritic Punta del Negro granite (28°45′46.80″S,
66°24′29.60″W, Fig. 2b). The mineral association includes cordierite, K-feldspar, biotite, plagioclase, quartz and secondary muscovite, with accessory tourmaline, zircon, monazite, apatite and opaque minerals. Compositional banding is characterized by leucocratic layers <10 mm thick consisting of slightly interlobate aggregates of cordierite, K-feldspar, plagioclase, quartz with minor biotite, and thin biotitic layers (<1 mm thick) with subordinate cordierite, plagioclase, K-feldspar and quartz. In both domains, a foliation is defined by biotite aligned parallel to the banding.

Analytical methods

Zircons were concentrated using standard crushing, washing (to decant slime), heavy liquid, and paramagnetic separation procedures as described by Rapela et al. (2007). The zircon-rich heavy mineral concentrates were poured onto double-sided tape, mounted in epoxy together with chips of the Temora reference zircon, sectioned approximately in half, and polished. Cathodoluminescence (CL) images (Fig. 3) were used to decipher the internal structures of the sectioned grains.

The U–Th–Pb analyses were made using SHRIMP RG at the Research School of Earth Sciences, The Australian National University, Canberra, Australia as described by Williams (1998, and references therein). Each analysis consisted of four scans through the mass range, with the reference zircon analysed once for every five unknowns. Data were reduced using the SQUID Excel macro of Ludwig (2001). Because young zircons with normal U contents have low $^{207}\text{Pb}/^{235}\text{U}$ ratios and statistically highly imprecise $^{204}\text{Pb}/^{206}\text{Pb}$ ratios, common-Pb correction was made using the measured $^{204}\text{Pb}$ measurements only for ages older than c. 1100 Ma, and $^{207}\text{Pb}$ measurement for younger ages (see Williams 1998); in the latter case there are no common-Pb corrected $^{207}\text{Pb}/^{235}\text{U}$ ratios reported in Table 1.

Tera–Wasserburg concordia plots (Fig. 4) and probability density plots with stacked histograms (Fig. 5) were constructed, and weighted-mean $^{206}\text{Pb}/^{238}\text{U}$ age calculations were carried out using ISOPLOT/Ex (Ludwig 2003). Uncertainties on all calculated ages are reported as 95% confidence limits.

U–Pb results

**CEB-392 (Ambato metamorphic complex)**

Zircon grains are up to 200 μm long, rounded, anhedral, but with a minority of euhedral prismatic crystals, some of the latter showing bi-pyramidal terminations (Fig. 3a–c). CL images show irregular detrital cores and discordant low-luminescence overgrowths, some showing faint oscillatory zoning that is interpreted as metamorphic in origin. Sixty-one grains were analysed (Table 1). The zircons have moderate Th/U ratios, mostly $\leq$0.5, and their $^{206}\text{Pb}/^{238}\text{U}$ ages range from c. 460 to c. 2650 Ma, with only three analyses being more than 10% discordant. The inheritance pattern shows a bimodal distribution with 54 ages in the range 460–1200 Ma and five Archaean ages at c. 2600 Ma (for which $^{207}\text{Pb}/^{206}\text{Pb}$ ages are considered more reliable than $^{238}\text{U}/^{206}\text{Pb}$ ages). There is a notable absence of Palaeoproterozoic ages. The two youngest ages (459±5 and 471±5 Ma) are from rims with high U (>1000 ppm) and low Th/U (<0.05), which suggests a metamorphic origin during the Famatinian orogeny and provides a minimum age for sedimentation, although the precise age of metamorphism cannot be determined with only two results. There is a major peak at c. 530 ± 10 Ma, defined by six analyses of grains showing oscillatory zoning characteristic of igneous crystallization, and hence it is assumed that these are of detrital origin, constraining a maximum possible age for deposition. Other significant post-Archaean age peaks occur at c. 570 Ma, c. 640 Ma, c. 900 Ma, 950–1025 Ma (concentrated at c. 1015 Ma) and, perhaps, c. 1165 Ma.

**CEB-428 (La Cébila metamorphic complex)**

Zircon grains are up to 100 μm in size and show a variety of rounded to euhedral prismatic shapes, some with bi-pyramidal structures.
terminations (Fig. 3d and e). Many grains are fragments. Strong oscillatory zoning is evident in the CL images. Some grains show zoned cores overgrown by thin rims of low luminescence (Fig. 3d and e). On the other hand, some of the anhedral zircon grains show little or no zoning. Sixty-five grains were analysed, all of which yielded ages that are mostly less than 10% discordant. The majority of the grains exhibit Th/U ratios in the range 0.2–1.0, which is normal for igneous zircon. The inheritance pattern shows a similar but more continuous spread of ages than that for sample CEB-392. Five youngest ages form a coherent group with a mean age of 520 ± 10 Ma, but more prominent peaks are defined at c. 570, c. 610 and c. 660 Ma. Early Neoproterozoic ages in the range 950–1150 Ma (with a small peak at c. 1015 Ma) are less common than in CEB-392, but there is a significant grouping of Palaeoproterozoic 207Pb/206Pb ages (1750–2200 Ma, with possible minor peaks at c. 700 and 2300 Ma). A number of grains show little or no zoning. Sixty-five grains were analysed, all of which yielded ages that are mostly less than 10% discordant. The majority of the grains exhibit Th/U ratios in the range 0.2–1.0, which is normal for igneous zircon. The inheritance pattern shows a similar but more continuous spread of ages than that for sample CEB-392. Five youngest ages form a coherent group with a mean age of 520 ± 10 Ma, but more prominent peaks are defined at c. 570, c. 610 and c. 660 Ma. Early Neoproterozoic ages in the range 950–1150 Ma (with a small peak at c. 1015 Ma) are less common than in CEB-392, but there is a significant grouping of Palaeoproterozoic 207Pb/206Pb ages (1750–2200 Ma, with possible minor peaks at c. 1890, c. 2050 and 2150 Ma), as well as a few Archaean ages of c. 2600 Ma.

Discussion

Neoproterozoic to Early Cambrian sedimentary rocks that were involved in the Pampean orogeny are characterized by detrital zircon provenance patterns with well-developed Brasiliano age peaks between 680 and 570 Ma and Grenvillian age peaks between 950 and 1100 Ma, but lack Pampean magmatic and metamorphic zircons with ages in the range 545–520 Ma. A minor group of Palaeoproterozoic (1.7–2.0 Ga) and Archaean (c. 2.6 Ga) grains is also present (see Sims et al. 1998; Pankhurst et al. 2000; Schwartz & Gromet 2004; Escayola et al. 2007; Rapela et al. 2007; Drobe et al. 2009; Adams et al. 2011). In contrast, the migmatite of the Ambato metamorphic complex records a maximum sedimentation age of 530 ± 10 Ma (CEB-392, Fig. 5). Age peaks corresponding to Brasiliano ages (c. 570 and c. 640 Ma) and Grenville ages (c. 950 to c. 1025 Ma) are present, whereas Palaeoproterozoic ages characteristic of the Río de La Plata craton (2260–2020 Ma; Rapela et al. 2007, and references therein) are absent. Two ages of 471 ± 5 and 459 ± 5 Ma (1σ uncertainties) determined for overgrowths on zircon grains from the Ambato complex sample are interpreted as closely approximating the age of the Famatinian metamorphic overprint and are compatible with an Early to Mid-Ordovician U–Pb monazite age (c. 470 Ma) determined by Larrovere (2009). The protolith of the complex was thus deposited between Early Cambrian and Middle-Ordovician time (based on the ICS Stratigraphic Chart of 2009).

The Ambato migmatite detrital zircon age pattern resembles that of the Middle Cambrian Negro Peinado Formation of the Sierra de Famatina (Collo et al. 2009), which yielded a youngest detrital zircon age of 505 ± 13 Ma (and a more significant peak at 522 ± 8 Ma) but also lacks zircons of Río de La Plata craton age (see Fig. 5). Brasiliano age peaks are present in both samples (stronger in CEB-392) and are consistent with provenance from reworking of Late Neoproterozoic sedimentary successions such as the Puncoviscana Formation (e.g. Drobe et al. 2009; Adams et al. 2011; Hauser et al. 2011) and the equivalent Ancasti metamorphic complex of the easternmost Sierras Pampeanas (Rapela et al. 2007; Murra et al. 2011; see Fig. 5). Provenance of the Puncoviscana Formation has been related in part to sources in the Kalahari craton (see Schwartz & Gromet 2004; Rapela et al. 2007). On the other hand, 1165–950 Ma zircon ages in the Ambato metamorphic complex and the Negro Peinado Formation suggest derivation from a Grenville-age basement similar to that recognized in the Western Sierras Pampeanas, probably the tip of a much larger terrane that collided during the Pampean orogeny embracing the Arequipa block and Amazonia (see Rapela et al. 2007; Casquet et al. 2008, 2010). Alternatively, the Grenvillian-age grains might be derived from reworking of the underlying Puncoviscana Formation. Collo et al. (2009) interpreted the Negro Peinado Formation as deposited in a Mid-Cambrian foreland basin related to the Pampean orogen exposed in the east.

Protoliths of the La Cebila metamorphic complex are Early Ordovician according to fossil remains in quartzitic layers (Verdecchia et al. 2007). The provenance pattern of the para-
Table 1. Summary of SHRIMP II Pb-zircon results for Ambro and La Célia metamorphic complex.

<table>
<thead>
<tr>
<th>Grain spot</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>K (ppm)</th>
<th>Pb-Th (ppm)</th>
<th>Pb-U (ppm)</th>
<th>Pb-Th/K</th>
<th>U/Pb-Th</th>
<th>Th/Pb-Th</th>
<th>U/Pb-Th/K</th>
<th>Pb-Th/Th</th>
<th>Pb-U/Th</th>
<th>Pb-Th/K</th>
<th>Pb-U/Pb-Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4.3</td>
<td>40.1</td>
<td>25.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>30</td>
<td>5.4</td>
<td>49.2</td>
<td>30.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>40</td>
<td>6.5</td>
<td>58.3</td>
<td>40.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>50</td>
<td>7.6</td>
<td>67.4</td>
<td>50.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>60</td>
<td>8.7</td>
<td>76.5</td>
<td>60.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>70</td>
<td>9.8</td>
<td>85.6</td>
<td>70.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>80</td>
<td>10.9</td>
<td>94.7</td>
<td>80.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>90</td>
<td>12.0</td>
<td>103.8</td>
<td>90.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>100</td>
<td>13.1</td>
<td>112.9</td>
<td>100.1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The table entries represent the concentrations of various elements in parts per million (ppm).

**Analytical Methods:**
- **Pb-Pb**: Pb-Pb dating was performed using the SHRIMP II ion microprobe at the University of New South Wales, Australia.
- **U-Pb**: U-Pb dating was performed using the same SHRIMP II ion microprobe.
- **Th-Pb**: Th-Pb dating was performed using the same SHRIMP II ion microprobe.

**Data Handling:**
- The data was corrected for instrumental mass fractionation and isochron analysis.
- The errors in the data are propagated from the uncertainties in the analytical measurements.

**References:**
- The data presented here is based on previous studies conducted by the authors and their collaborators.
- For detailed methodology and further analysis, please refer to the original publications cited in the references section.
For CEB-392, error in Temora reference zircon calibration was 0.74% for the analytical session. For CEB-428, error in Temora reference zircon calibration was 0.79% for the analytical session. Uncertainties are given at the 1σ level. Pb/Pb denotes the percentage of 206Pb that is common Pb. For areas older than c. 1100 Ma, correction for common Pb made using the measured 238U/206Pb and 207Pb/206Pb ratios (see Williams 1998). For % Disc., 0% denotes a concordant analysis. 206Pb* is radiogenic 206Pb.

1 Discordant point excluded from Figure 5.
gneiss studied here is characterized by Pampean (c. 520 to c. 540 Ma), Brasiliano (c. 570 to c. 660 Ma) and Grenville (c. 1015 Ma) age peaks, but significantly includes Palaeoproterozoic zircons with ages that match those of the Rio de la Plata craton (2.02–2.26 Ga; Hartmann et al. 2002; Rapela et al. 2007) and a few older grains. Similar results were obtained on a quartzite from this same complex by Rapela et al. (2007) (Fig. 5), which strengthens the view that by the Early Ordovician the Rio de la Plata craton (RLPC) is indicated as Mid- to Late Cambrian.

Fig. 5. Detrital zircon U–Pb age patterns for metasedimentary samples from the La Cebila metamorphic complex (CEB-428, this work; quartzite QCE-6004, Rapela et al. 2007), the Ambato metamorphic complex (CEB-392, this work, excluding one discordant point from Table 1), the Ancasti metamorphic complex (schist ANC-10018, Rapela et al. 2007), and the Negro Peinado and Achavil formations (Collo et al. 2009). The position of final docking of Rio de la Plata craton (RLPC) is indicated as Mid- to Late Cambrian.
were also recorded by Collo et al. (2008) in the Achavil Formation, as well as Pampean (c. 520 Ma), Brasiliano (c. 630 Ma) and Grenville (c. 1040–1120 Ma) age peaks, much like the La Cébila metamorphic complex provenance. The maximum age of the Achavil Formation is poorly constrained as the base of the overlying Volcanicito Formation contains fossils of that age (Astini 2003; Albanesi et al. 2005). Collo & Astini (2008) and Collo et al. (2009) suggested that the Achavil Formation had to be late Middle to Late Cambrian and younger than the Negro Peinado Formation on the basis of stratigraphical evidence and detrital zircon age patterns. Thus the record of Rio de la Plata craton influence extends back into the Late Cambrian.

From these results we suggest here that the Ambato metamorphic complex is older than both the La Cébila metamorphic complex and the Achavil Formation, and is probably equivalent to the Middle Cambrian Negro Peinado Formation of Sierra de Famatina. Both the Ambato metamorphic complex and the Negro Peinado Formation lack detrital zircons of Rio de la Plata age (Fig. 5). On the other hand, the Achavil Formation and the La Cébila metamorphic complex, although not equivalent stratigraphically, both contain detrital zircon populations with age peaks in part similar to those of the Ambato and Negro Peinado formations, but additionally include Palaeoproterozoic zircons that can be related to the Rio de la Plata craton. The latter implies that by the Mid- or Late Cambrian the Rio de la Plata craton had reached a palaeogeographical position close to the present position. Moreover, the Rio de la Plata craton does not show evidence of deformation and metamorphism of Pampean age (Rapela et al. 2007), which implies that it was the source of zircons for the Achavil sedimentary basin after the main Pampean tectonothermal events (i.e. between 545 and 520 Ma). Orographic barriers such as the rising Pampean orogen played a transient role sometime between 520 and 510 Ma. By the time the Achavil Formation was deposited, such a barrier did not exist and Palaeoproterozoic zircons could easily reach sedimentary realms in the west. We conclude that the Rio de la Plata craton reached a position close to the present one sometime between the end of the main Pampean tectonothermal event (c. 520 Ma) and when it became the source for Palaeoproterozoic detrital zircons in the Achavil Formation (i.e. during the Mid- to Late Cambrian interval). The situation persisted in the earliest Ordovician when the La Cébila sedimentary succession was deposited.

Financial support for this paper was provided by Argentine Grants PIP-CONICET 5719 and FONCYT BID 1728/OC AR PICT-1009 and Spanish MECC Grants CGL2005-02065/BTE, CGL2009-07984 and UCM-Santan- der GR58/08. We acknowledge comments by V. Ramos and one anonymous reviewer.

References


Received 16 September 2010; revised typescript accepted 21 February 2011.

Scientific editing by Quentin Crowley.