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Racks
Finite groups of Lie type

Ph’nglui mglw’nafh Cthulhu R’lyeh wgah’nagl fhtagn

1. Introduction

This is the first article of a series intended to determine the finite-dimensional pointed 
Hopf algebras with group of group-likes isomorphic to a finite simple group of Lie type. 
We now give an Introduction to the whole series.

1.1. The general question we are dealing with is the classification of finite-dimensional 
complex pointed Hopf algebras H whose group of group-like elements is a finite simple 
group. We say that a finite group G collapses when every finite-dimensional pointed 
Hopf algebra H, with G(H) Ä G is isomorphic to CG [3]. Here are the antecedents of 
that question.

• If G Ä Z/p is simple abelian, then the classification is known: for p = 2 by [22], see 
also [11]; for p > 7, by [9, Remark 1.10 (v)]; for p = 5, 7, combining [7, Theorem 1.3]
and [10].

• If G Ä Am, m ≥ 5 is alternating, then G collapses [3].
• If G is a sporadic simple group, then G collapses, except for the groups G = Fi22, 

B, M . For these groups, all irreducible Yetter–Drinfeld modules M(O, ρ) have infinite 
dimensional Nichols algebra, except for a short list appearing in [4, Table 1] and 
improved in [14, Appendix], of examples not known to be finite-dimensional.

• If G = SL2(q), GL2(q), PGL2(q) or PSL2(q), all irreducible Yetter–Drinfeld mod-
ules M(O, ρ) have infinite dimensional Nichols algebra, except for a list of examples 
not known to be finite-dimensional given in [15,16]. Particularly, PSL2(q) collapses 
for q > 2 even.

1.2. In this series of papers we consider finite-dimensional pointed Hopf algebras 
with finite simple group of Lie type. We recall the description of such groups. Let p be 
a prime number, m ∈ N, q = pm and Fq the field with q elements.

� Let G be a semisimple algebraic group defined over Fq. A Steinberg endomorphism 
F : G → G is an abstract group automorphism having a power equal to a Frobenius 
map [21, 21.3]. The subgroup GF of fixed points by F is called a finite group of Lie type
[21, 21.6].

� Assume that G is a simple simply connected algebraic group. Then G/Z(G) is a 
simple abstract group [21, 12.5] but GF is not simple in general. In fact G := GF /Z(GF )
is a simple finite group except for 8 examples that appear in low rank and with q = 2 or 3 
(Tits Theorem [21, 24.17]). These G are called finite simple groups of Lie type although 
they are not finite groups of Lie type in the sense above, in general.
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There are three possible classes of Steinberg endomorphisms of simple algebraic groups 
[21, 22.5] and accordingly we consider three families of finite simple groups of Lie type:

Chevalley groups. In the terminology of [21], these correspond to Fq-split Steinberg 
endomorphisms. That is, there exists an F -stable torus T such that F (t) = tq for all 
t ∈ T. Then F is called a Frobenius map and GF = G(Fq) is the finite group of Fq-points. 
Explicitly, these are the groups:

PSLn(q), n ≥ 2
!
except PSL2(2) Ä S3 and PSL2(3) Ä A4 that are not simple

"
;

PSp2n(q), n ≥ 2; PΩ2n+1(q), n ≥ 3, q odd;

PΩ+
2n(q), n ≥ 4; G2(q), q ≥ 3; F4(q); E6(q); E7(q); E8(q).

Also, PSL2(4) Ä PSL2(5) Ä A5; PSL2(9) Ä A6; PSL4(2) Ä A8, cf. [25].

Steinberg groups. These correspond to twisted Steinberg endomorphisms. A Steinberg 
endomorphism is twisted if it is not split and it is the product of an Fq-split endomor-
phism with an algebraic automorphism of G [21]; we may assume that F is the product of 
a Frobenius endomorphism with an automorphism of G induced by a non-trivial Dynkin 
diagram automorphism. Explicitly, these are the groups:

PSUn(q), n ≥ 3
!
except PSU3(2)

"
; PΩ−

2n(q), n ≥ 4; 3D4(q); 2E6(q).

Suzuki–Ree groups. Related to very twisted Steinberg endomorphisms [21]. Explicitly, 
these are the groups:

2B2
!
22h+1", h ≥ 1; 2G2

!
32h+1", h ≥ 1; 2F4

!
22h+1", h ≥ 1.

1.3. The base field is C. Let G be a finite group and let H be a pointed Hopf algebra 
with G(H) Ä G. For details on the following exposition – not needed henceforth and 
included only for completeness, see [8,5].

Let 0 = H−1 ⊂ H0 = CG(H) ⊂ H1 ⊂ . . . be the coradical filtration of H and 
grH =

m
n∈N0

Hn/Hn−1 Ä R#CG(H) be the associated graded Hopf algebra. Here 
R =

m
n∈N0

Rn is a graded Hopf algebra in the braided tensor category CG
CGYD of 

Yetter–Drinfeld modules over CG. Also, the subalgebra of R generated by V := R1 is 
isomorphic to the Nichols algebra B(V ) of V . Hence dimH < ∞ ⇐⇒ dimR < ∞ =⇒
dimB(V ) < ∞. Thus we need to address the question: Determine all V ∈ CG

CGYD with 
dimB(V ) < ∞.

In particular, the following are equivalent [3, Lemma 1.4]:

• G collapses.
• For every V ∈ CG

CGYD, dimB(V ) = ∞.
• For every irreducible V ∈ CG

CGYD, dimB(V ) = ∞.
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Now all irreducible Yetter–Drinfeld modules over CG are of the form M(O, ρ) =
IndG

CG(g) ρ, where O is a conjugacy class of G and ρ ∈ IrrCG(g) for g ∈ O fixed. Set 
B(O, ρ) := B(M(O, ρ)). Then the initial question about the classification of finite-
dimensional pointed Hopf algebras with finite simple group of Lie type G relies on the 
consideration of the following:

Question 1. For such G, determine all pairs (O, ρ) with dimB(O, ρ) < ∞.

1.4. A crucial observation is that the algebra B(O, ρ) does not depend on the Yetter–
Drinfeld module structure of M(O, ρ) but only on the underlying braided vector space 
(CO, cρ). In other words, the algebra B(O, ρ) depends only on the rack O and the non-
principal 2-cocycle arising from ρ, see Section 2 for definitions, or [5] for more details. In 
fact, to solve Question 1 for every finite group G is tantamount to solve

Question 2. (See [3, Question 2].) Determine all pairs (X, q), where X is a finite rack 
and q is a non-principal 2-cocycle, such that dimB(X, cq) < ∞.

The meaning of the next definition relies on the existence of some criteria for a rack 
to collapse, cf. Section 1.5, Section 2.2.

Definition 1.1. (See [3, 2.2].) A rack X collapses when dimB(X, q) = ∞ for every finite 
faithful 2-cocycle q.

Therefore, we tackle the initial question about the classification of finite-dimensional 
pointed Hopf algebras with finite simple group of Lie type G (rephrased as Question 1) 
in the following way:

• Determine all conjugacy classes in G that collapse.
• If O is a conjugacy class in G that does not collapse, then for any ρ as above, 

compute the restriction cρX of the braiding cρ to a suitable abelian subrack X of O. 
If the Nichols algebra B(CX, cρX) has infinite dimension (and this is checked by 
inspection of the list in [17]), then so has B(CO, cρ).

1.5. In principle, to solve Question 2 one would need first to compute all possible 
non-principal 2-cocycles for a fixed rack X, before starting to deal with the corresponding 
Nichols algebras. A remarkable fact is the existence of criteria that dispense of this 
computation. The first such criterium is about racks of type D [3], see Section 2.2: If X
is a finite rack of type D, then X collapses. In Section 2.2 we introduce the notion rack 
of type F, and prove an analogous criterium. To distinguish the setting where neither of 
these criteria apply, we shall say that a rack is cthulhu1 when it is neither of type D nor 

1 See http://en.wikipedia.org/wiki/Cthulhu for spelling and pronunciation.

http://en.wikipedia.org/wiki/Cthulhu
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of type F. Also a rack is sober if every subrack is either abelian or indecomposable; this 
is stronger than being cthulhu. See Section 2.3 for examples.

1.6. We need the description of the conjugacy classes in finite simple groups of Lie 
type. Let G be a simple algebraic group, Gsc its simply connected cover with π : Gsc → G

the natural projection, F a Steinberg endomorphism of Gsc, cf. Section 1.2, G =
GF

sc/Z(GF
sc), π : GF

sc → G the natural projection. Often F descends to G, and then there is 
a projection π : [GF , GF ] → [GF , GF ]/π(Z(GF

sc)) Ä G. Every x ∈ Gsc has a Chevalley–
Jordan decomposition x = xsxu = xuxs, with xs semisimple and xu unipotent. This 
decomposition boils down to G and to the finite groups GF

sc and G, where it agrees with 
the decomposition in the p-part, namely xu, and the p-regular part, namely xs. We state 
a well-known fact referred to as the isogeny argument. Let G be a semisimple algebraic, 
respectively finite, group and Gu the set of unipotent, respectively p-elements, in G.

Lemma 1.2. Let Z be a central (algebraic) subgroup of G consisting of semisimple, re-
spectively p-regular elements. Then the quotient map π : G → G/Z induces a rack 
isomorphism π : Gu → (G/Z)u and a bijection between the set of G-conjugacy classes in 
Gu and that of G/Z-conjugacy classes in (G/Z)u.

If G is semisimple algebraic, then Z is finite because it consists of semisimple elements. 
Hence G/Z is again a semisimple algebraic group.

Proof. Clearly π(Gu) ⊂ (G/Z)u. Let g ∈ G with π(g) ∈ (G/Z)u and let g = gsgu be 
its Chevalley–Jordan decomposition (respectively, the decomposition in the p-regular 
and the p-part). Then π(g) = π(gs)π(gu), hence π(g) = π(gu) by uniqueness of the 
decomposition. Thus π : Gu → (G/Z)u is surjective. Let now g, h ∈ Gu with π(g) = π(h). 
Then g = hz = zh for some z ∈ Z; but this turns out to be the decomposition of g, 
hence g = h and π : Gu → (G/Z)u is a rack isomorphism. Finally, let again g, h ∈ Gu. 
If OG

g = OG
h , then clearly OG/Z

π(g) = OG/Z
π(h). Conversely, if OG/Z

π(g) = OG/Z
π(h), then there exist

u ∈ G and z ∈ Z such that ugu−1 = hz = zh; this is the decomposition of ugu−1 ∈ Gu, 
hence ugu−1 = h and OG

g = OG
h . �

Let x ∈ G; pick x ∈ GF
sc such that π(x) = x. If x = xsxu is its Chevalley–Jordan 

decomposition, then xs = π(xs), xu = π(xu) is the Chevalley–Jordan decomposition 
of x, with xs semisimple and xu unipotent. Now xu belongs to K := CGF

sc
(xs), thus 

xu ∈ K := π(K) and there are morphisms of racks

OK
xu Ä OK

xu
ñ→ OG

x , (1.1)

the first by the isogeny argument and the second by Remark 2.9 (c). Now the centralizer 
CGF

sc
(xs) is a reductive subgroup of Gsc by [19, Theorem 2.2], and K = CGsc(xs) ∩ GF

sc. 
Strictly, CGF

sc
(xs) is not of Lie type in the sense above, but close enough to allow some 

inductive procedure. So, we are reduced to investigate the conjugacy classes
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Table 1
Unipotent classes in PSLn(q), with (n, q) different from (2, 2), (2, 3), (2, 4), (2, 5), (2, 9), not known to col-
lapse.

n Type q Remark

2 (2) even or not a square sober, Lemma 3.6

3 (3) 2 sober, Lemma 3.7 (b)
(2, 1) 2 cthulhu, Lemma 3.7 (a)

even ≥ 4 cthulhu, Proposition 3.13, 3.16

4 (2, 1, 1) 2 cthulhu, Lemma 3.12
even ≥ 4 not of type D, Proposition 3.13,

open for type F

• x semisimple (the case x = xs), or
• x unipotent, and from this try to catch the general case.

1.7. In the first paper of the series, we deal with non-semisimple classes in G =
PSLn(q), except PSL2(q) with q = 2, 3, 4, 5, 9 which is either solvable or was treated 
in [3]; see Section 1.2. To state our results, we start with some terminology. By the 
classical theory of the Jordan form, unipotent conjugacy classes in GLn(q) are classified 
by their type; u ∈ GLn(q) is of type λ = (λ1, . . . , λk) when the elementary factors of its 
characteristic polynomial equal (X − 1)λ1 , (X − 1)λ2 , . . . , (X − 1)λk , where λ1 ≥ λ2 ≥
· · · ≥ λk; thus u is unipotent.

Theorem 1.3. Let x ∈ G and pick x ∈ SLn(q) such that π(x) = x, with Jordan decompo-
sition x = xsxu. Assume that xu Ó= e. Then either O = OG

x collapses or else xs is central 
and O is a unipotent class listed in Table 1.

Semisimple classes require different tools and are treated in work in progress.
We deal with the Nichols algebras associated to the unipotent classes in Table 1 in 

Lemma 3.18, concluding the following result.

Theorem 1.4. Let O be the conjugacy class of x ∈ G = PSLn(q) non-semisimple. Assume 
that either G Ó= PSL3(2), or else that x is not of type (3). Then dimB(O, ρ) = ∞, for 
every ρ ∈ IrrCG(x).

The unipotent class O of type (3) in PSL3(2) is sober and the centralizer of x ∈ O is 
cyclic of order 4. Hence any abelian subrack has at most two elements. If ρ ∈ IrrCG(x)
is given by ρ(x) = −1, then it is not possible to decide whether the dimension of the 
Nichols algebra B(O, ρ) is finite or not by looking at subracks.

Section 2 is devoted to racks and Section 3 to unipotent classes: we prove Theorem 1.3
for them in Section 3.5. In Section 4 we prove the theorem for non-semisimple classes, 
see Proposition 4.4.

Notation. We denote the cardinal of a set X by |X|. If ü is a positive integer, then we 
set Iü = {i ∈ N : 1 ≤ i ≤ ü}.
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Let ei,j ∈ kN×P be the matrix with 1 in the position (i, j) and 0 elsewhere. We 
denote by idN ∈ kN×N the identity matrix, and omit the subscript N when clear from 
the context.

Let G be a group and x1, . . . , xN ∈ G. Then éx1, . . . , xN ê denotes the subgroup 
generated by them.

2. Racks

2.1. A rack is a set X Ó= ∅ with an operation ó : X×X → X satisfying (a) ϕx := x ó
is a bijection for every x ∈ X, and (b) the self-distributivity axiom x ó (y ó z) = (x ó y) ó
(x ó z) for all x, y, z ∈ X. Let InnX be the subgroup of SX generated by ϕx, x ∈ X. 
All racks in this paper are finite, unless explicitly stated. The archetypical example of 
a rack is a conjugacy class O in a finite group G with the operation x ó y = xyx−1, 
x, y ∈ O. We denote by OG

x (or Ox when no confusion arises) the conjugacy class of x
in G. Conjugacy classes are racks of a special sort, namely crossed sets, as they satisfy 
(c) x ó x = x for all x ∈ X and (d) x ó y = y, iff y ó x = x for all x, y ∈ X, see e.g. [5]. 
But this distinction is not relevant for the purposes of this paper, so we assume that all 
the racks appearing here are crossed sets. The following statement will be used along the 
paper.

Remark 2.1. Let N be a normal subgroup of a finite group G, x ∈ N . Then there exists 
x = x1, . . . , xs ∈ N such that

OG
x =

á
1≤i≤s

ON
xi
, (2.1)

and ON
x Ä ON

xi
as racks for all i ∈ Is.

Indeed, OG
x ⊂ N , since N is normal, hence (2.1) holds. Now, if gi ∈ G satisfies 

gi ó x = xi, then gi óON
x = ON

xi
and the last claim follows.

A rack X is abelian when x ó y = y, for all x, y ∈ X. A rack is indecomposable when it 
is not a disjoint union of two proper subracks, or equivalently when it is a single InnX

orbit. Any rack is the disjoint union of maximal indecomposable subracks (in a unique 
way), called its indecomposable components [5, 1.17].

A rack X is simple when for any projection of racks π : X → Y , either π is an 
isomorphism or Y has only one element. The classification of finite simple racks is known 
[5, 3.9, 3.12], [20]; one of the main parts consists of conjugacy classes in a finite simple 
non-abelian group.

2.2. Racks of type D, F

We discuss criteria to decide that a rack collapses, see Definition 1.1. We start by the 
relevant definitions. Let G be a group and let X be a finite rack.
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Definition 2.2. (See [3, 3.5].) X is of type D when it has a decomposable subrack Y =
R ð S with elements r ∈ R, s ∈ S such that

r ó
!
s ó (r ó s)

"
Ó= s. (2.2)

Remark 2.3. If O is a finite conjugacy class in G, then the following are equivalent:

(1) The rack O is of type D.
(2) There exist r, s ∈ O such that Oér,sê

r Ó= Oér,sê
s and

(rs)2 Ó= (sr)2. (2.3)

Proof. Notice that (2.2) and (2.3) are equivalent in this setting. If (2) holds, then Y =
Oér,sê

r ð Oér,sê
s is the desired decomposable subrack. Conversely if (1) holds with Y =

R ð S and r ∈ R, s ∈ S, then Oér,sê
r ⊂ R, Oér,sê

s ⊂ S. �
Definition 2.4. X is of type F if it has a family of subracks (Ra)a∈I4 and a family (ra)a∈I4

with ra ∈ Ra, and for a Ó= b ∈ I4, Ra ∩Rb = ∅, Ra ó Rb = Rb,

ra ó rb Ó= rb. (2.4)

Here F stands for a rack with a family of four mutually disjoint subracks.

Remark 2.5. If O is a finite conjugacy class in G, then the following are equivalent:

(1) The rack O is of type F.
(2) There exist ra ∈ O, a ∈ I4, such that Oéra:a∈I4ê

ra Ó= Oéra:a∈I4ê
rb , a Ó= b in I4, and

rarb Ó= rbra, a Ó= b ∈ I4. (2.5)

Proof. Notice that (2.4) and (2.5) are equivalent in this setting. If (2) holds, then 
Ra = Oéra:a∈I4ê

ra , a ∈ I4 is the desired family of subracks. Conversely if (1) holds, then 
Oéra:a∈I4ê

ra ⊂ Ra, for all a ∈ I4 and we have (2). �
The rack formulations (1) in Remark 2.3, respectively 2.5, are more effective for appli-

cations to the classification of Hopf algebras, see Remark 2.9; the equivalent formulations
(2) are useful in proofs.

Remark 2.6. Let O be a finite conjugacy class in G. If O is of type D, respectively F, 
then there is a maximal K < G such that O ∩K is of type D, respectively F.

Indeed, let r, s ∈ O such that Oér,sê
r Ó= Oér,sê

s ; then ér, sê Ó= G, so there is a maximal 
K containing ér, sê. Same for type F.
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The following remark, a variation of [14, Lemma 2.5], is useful to check when the 
conditions in Remarks 2.3 or 2.5 hold.

Remark 2.7. Let G be a finite group and let r, s ∈ G be involutions such that [s, r] Ó= 1. 
Then Oér,sê

r Ó= Oér,sê
s if and only if |rs| is even > 2.

Theorem 2.8. A rack X of type D (respectively, F) collapses.

Proof. Type D: This is [3, Theorem 3.6], cf. [18, Theorem 8.6].
Type F: Let q : X × X → GL(n, C) be a finite faithful 2-cocycle on X. We need 

to check that the Nichols algebra associated to the braided vector space (V, c) :=
(CX ⊗ Cn, cq) attached to X and q has infinite dimension. By hypothesis there is a 
subrack Y =

à
a∈I4

Ra with Ra ó Rb = Rb as in Definition 2.4. Without loss of gen-
erality, we may assume that Y = X. By [5, 6.14], cf. also [3, Theorem 2.1], (V, c) can 
be realized as Yetter–Drinfeld module over a finite group G. Actually we may choose 
the subgroup G of GL(V ) generated by gx : V → V , gx(ey ⊗ v) = exóy ⊗ qxy(v), 
x, y ∈ X, v ∈ Cn. Let Va := CRa ⊗ Cn, a Yetter–Drinfeld submodule of V ; clearly 
V =

m
a∈A Va. Now we may replace Va by a simple Yetter–Drinfeld submodule Ua with 

ra ∈ suppUa = {g ∈ G : Ua,g Ó= 0}, where Ua =
m

g∈G Ua,g is the grading coming from 
the Yetter–Drinfeld module structure. Then c2 Ó= id on Ua ⊗ Ub for a Ó= b ∈ I4 by (2.4). 
This means that the Weyl groupoid W of U =

m
a∈I4

Ua, see [6], has rank at least 4 
and the Dynkin diagram of one of his objects would then have an edge between any two 
distinct vertices. Now if dimB(X, q) < ∞, then W is finite. But this contradicts the 
classification of finite Weyl groupoids in [13, Theorem 1.1]. �

The proof for type F uses stronger facts than the proof for type D, as it relies on the 
classification from [13]. By this reason, our order of preference for application of these 
criteria is first type D, then F.

Remark 2.9. Being open conditions (i.e., expressed by inequalities), these notions enjoy 
some favorable properties.

(a). If a rack X contains a subrack of type D (respectively, F), then X is of type D 
(respectively, F). If a rack X projects onto a rack of type D (respectively, F), then X is 
of type D (respectively, F).

Let K be a subgroup of G, τ ∈ K, CG(K) the centralizer of K in G.

(b). If OK
τ is of type D (respectively, F), then so is OG

τ .

(c). Let κ ∈ CG(K). The right multiplication by κ identifies OK
τ with a subrack of OG

τκ; 
if OK

τ is of type D (respectively, F), then so is OG
τκ.

(d). Assume that G = G1 × . . .×Gr Ð x = (x1, . . . , xr). Then OG
x = OG1

x1
× . . .×OGr

xr
; 

hence, if OGj
xj is of type D (respectively, F) for some j, then so is OG

x .
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Now an indecomposable rack Z always admits a rack epimorphism onto a simple 
rack X. Therefore, any indecomposable rack having a quotient simple rack of type D 
collapses. Hence it is natural to ask for the classification of all simple racks of type D 
or F. See [1] for the present status of this problem, in the case of type D.

Lemma 2.10. Let X and Y be racks.

(i) Assume that there are y1 Ó= y2 ∈ Y , x1 Ó= x2 ∈ X such that y1 ó y2 = y2, x1 ó (x2 ó

(x1 ó x2)) Ó= x2. Then X × Y is of type D.
(ii) Assume that there are y1, . . . , y4 ∈ Y all different, x1 . . . , x4 ∈ X such that yi óyj =

yj, xi ó xj Ó= xj for i Ó= j ∈ I4. Then X × Y is of type F.
(iii) Let Xi be disjoint sets provided with bijections ϕi : X → Xi, i ∈ I2; X(2) :=

X1 ð X2 Ä X × I2 is a rack with ϕi(x) ó ϕj(y) = ϕj(x ó y), i, j ∈ I2. If there are 
x1 Ó= x2 ∈ X satisfying (2.2), then X(2) is of type D.

Proof. Take R = X×{y1}, S = X×{y2}, r = (x1, y1), s = (x2, y2) in (i); Rj = X×{yj}, 
rj = (xj , yj), j ∈ I4, in (ii). Now (i) implies (iii). �
2.3. Cthulhu racks

Recall that a rack is cthulhu when it is neither of type D nor of type F; and that it 
is sober if every subrack is either abelian or indecomposable. A sober rack is cthulhu. 
More than this:

Remark 2.11. If all subracks generated by two elements of a rack X are either abelian or 
indecomposable, then X is cthulhu.

Here are some examples of these notions.

Example 2.12. The rack OS4
3 of 3-cycles in S4, also known as the cube rack, is the union 

of two tetrahedral racks (conjugacy classes in A4) not commuting with each other. It is 
neither of type D nor of type F.

Example 2.13. Every abelian rack is sober. The tetrahedral rack is sober. The conjugacy 
class of non-trivial unipotent elements in PSL2(q), where either q is even, or odd but 
not a square, is sober, cf. Lemma 3.5.

Example 2.14. The rack of transpositions in Sn is cthulhu for n ≥ 2 but not sober for 
n ≥ 4; see [3, Remark 4.2] for other examples of conjugacy classes in symmetric groups 
that are cthulhu.

Example 2.15. Let Dn be the affine rack (Zn, T ) where T is the inversion; when n is odd, 
it is the class of involutions in the dihedral group Dn of order 2n. If n > 4 is even, then 
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Dn is of type D [2, Lemma 2.2]. If n is odd, then Dn is sober. For, observe that every 
subgroup of Dn is either cyclic of order d or isomorphic to a dihedral group Dd, for some 
d|n. Let X be a subrack of Dn and H = éXê. Since X consists of involutions, H Ä Dd

for some d|n; hence X is the class of involutions in H, that is indecomposable.

3. Unipotent classes in SLn(q)

Let n ∈ N, n ≥ 2. In this section, we consider G = SLn(q) and investigate when 
a unipotent conjugacy class collapses. By the isogeny argument, the result carries over 
G = PSLn(q). We deal with unipotent classes of type D in Section 3.3, with those of 
type F in Section 3.4. We summarize in Section 3.5.

Before starting we state an observation useful not only in the unipotent context. Let 
u ∈ G with block decomposition

u =

⎛⎜⎜⎜⎝
u1 0 . . . 0
0 u2 . . . 0
...

. . .
...

0 . . . . . . uk

⎞⎟⎟⎟⎠ , (3.1)

where uj ∈ SLλj
(q), j ∈ Ik. By Remark 2.9, we have:

Lemma 3.1. If OSLλi
(q)

ui is of type D (respectively F) for some i ∈ Ik, then so is OG
u . �

3.1. Unipotent classes

Recall that a unipotent u ∈ GLn(q) is of type λ = (λ1, . . . , λk) when the elementary 
factors of its characteristic polynomial equal (X−1)λ1 , (X−1)λ2 , . . . , (X−1)λk , where 
λ1 ≥ λ2 ≥ · · · ≥ λk. A (unipotent) x ∈ GLn(q) (or its conjugacy class) is regular if it 
is of type (n), i.e. if its characteristic and minimal polynomials coincide. Every element 
of type λ = (λ1, . . . , λk) in GLn(q) is conjugate to a u with block decomposition as in 

(3.1) with ui =

⎛⎝ 1 1 ... 0
...

. . . . . . 0
0 ... 1 1
0 ... 0 1

⎞⎠ ∈ SLλi
(q). To describe unipotent conjugacy classes in 

G = SLn(q) and other purposes we set some notation. For a = (a1, . . . , an−1) ∈ Fn−1
q , 

define ra and the set Ra ⊂ G by:

ra =

⎛⎜⎜⎜⎜⎜⎝
1 a1 0 . . . 0
0 1 a2 . . . 0
...

. . . . . . 0
0 . . . . . . 1 an−1
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ ∈ Ra =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
1 a1 ∗ . . . ∗
0 1 a2 . . . ∗
...

. . . . . . ∗
0 . . . . . . 1 an−1
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (3.2)

If a = (a, 1, . . . , 1), a ∈ F×
q , then we simply write ra = ra.
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The sets Ra enjoy the following properties: RaRb ⊂ Ra+b, R−1
a = R−a, hence Ra ó

Rb ⊂ Rb. Thus, 
à

a∈F Ra is a subrack of G for every subset F of Fn−1
q . We shall need 

more precise formulae. For a = (a1, . . . , an−1), b = (b1, . . . , bn−1) ∈ Fn−1
q , set

θka,b = akbk+1 − ak+1bk, 1 ≤ k ≤ n− 2, (3.3)

γk
a,b = 2akbk+1 + (ak + bk)(ak+1 + bk+1), 1 ≤ k ≤ n− 2, (3.4)

νka,b = akbk+1(ak+2 + bk+2) + ak+1bk+2(ak + bk) 1 ≤ k ≤ n− 3. (3.5)

Then

ra ó rb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 b1 θ1
a,b −a3θ

1
a,b . . . (−1)n−1a3 · · · an−1θ

1
a,b

0 1 b2 θ2
a,b . . . (−1)n−2a4 · · · an−1θ

2
a,b

...
. . . . . .

0 . . . . . . bn−2 θn−2
a,b

0 . . . . . . . . . 1 bn−1
0 . . . . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.6)

Thus ra ó rb Ó= rb if θka,b Ó= 0 for some 1 ≤ k ≤ n − 2. Analogously,

(rarb)2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2(a1 + b1) γ1
a,b ν1

a,b . . . ∗
0 1 2(a2 + b2) γ2

a,b ν2
a,b ∗

0 0 1 2(a3 + b3)
. . . ∗

...
. . . . . . γn−2

a,b
0 . . . . . . 0 1 2(an−1 + bn−1)
0 . . . . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

hence (rarb)2 = (rbra)2 implies that

γk
a,b = γk

b,a ⇐⇒ 2θka,b = 0, ∀1 ≤ k ≤ n− 2 and

νka,b = νkb,a ∀1 ≤ k ≤ n− 3. (3.7)

Now every element in G of type λ = (λ1, . . . , λk) is conjugate to one of the form (3.1)
with ui = rai

∈ SLλi
(q) for some ai ∈ F×

q .
Indeed, assume that V ∈ SLn(q) admits C ∈ GLn(q) such that CV C−1 is of 

the form (3.1) with regular unipotent blocks. Consider the diagonal matrix D =
(detC−1, 1, . . . , 1) ∈ (F×

q )n. Then E = DC ∈ SLn(q) and EV E−1 is of the form (3.1)
with regular unipotent blocks.

Remark 3.2. To study the unipotent conjugacy classes in G, it suffices to consider classes 
of elements of the form (3.1) with ui = r1, cf. Remark 2.1.
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For further purposes, we shall need the following well-known description of the regular 
unipotent conjugacy classes in G.

Lemma 3.3. Let d := gcf(q − 1, n). There are d regular unipotent conjugacy classes in 
G, all isomorphic as racks. Explicitly, they are of the form Ora, for some a ∈ F×

q , and 
Ora = Orb if and only if θna = b for some θ ∈ F×

q . If a = (a1, . . . , an−1) ∈ (F×
q )n−1, 

then Ra ⊆ Ora for a = a1a
2
2 · · · an−1

n−1.

Proof. Let x ∈ G be a regular unipotent element; we may assume that

x =

⎛⎜⎜⎜⎜⎜⎝
1 x12 x13 . . . x1n
0 1 x23 . . . x2n
...

. . . . . .
...

0 . . . . . . 1 xn,n−1
0 . . . . . . 0 1

⎞⎟⎟⎟⎟⎟⎠ , xi,i+1 ∈ F
×
q , 1 ≤ i ≤ n− 1. (3.8)

Let a ∈ F×
q ; we claim that x ∈ Ora if and only if

θna = x12x
2
23x

3
34 · · ·xn−1

n−1,n for some θ ∈ F
×
q . (3.9)

Indeed, x ∈ Ora if and only if there exists C = (cij) ∈ SLn(q) such that Cra = xC

which holds if and only if the following linear equations hold

cn,j = 0 for all 1 ≤ j < n, (3.10)

ci,j =
nØ

k=i+1

xi,kck,j+1 for all 1 ≤ i < n, 2 ≤ j < n, (3.11)

aci,1 =
nØ

k=i+1

xi,kck,2 for all 1 ≤ i < n, (3.12)

0 =
nØ

k=i+1

xi,kck,1 for all 1 ≤ i < n. (3.13)

By a direct computation using (3.10), (3.11) and (3.13), cij = 0 for all 1 ≤ j < i ≤ n, 
i.e. C is upper triangular. Thus, ac11 = x12c22 from (3.12), and cii = xi,i+1ci+1,i+1 for 
all 1 < i < n, from (3.11). Since detC = 1,

a = ac11 · · · cnn = x12x
2
23 · · ·xn−1

n−1,nc
n
n,n. (3.14)

Thus, if x ∈ Ora , then it is conjugated to ra by an upper triangular matrix C and (3.9)
holds with θ = c−1

n,n. Conversely, if (3.9) is satisfied, then define an upper triangular 
matrix C by cn,n = θ−1, cii = xi,i+1ci+1,i+1 for 1 < i < n, c11 = a−1x12c2,2 and 
use Eqs. (3.11) to find the remaining elements. Consequently, Ora = Orb if and only if 
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θna = b for some θ ∈ F×
q ; i.e. the set of regular unipotent classes in G is parameterized 

by the quotient of the cyclic group F×
q by the image of the map by x Ô→ xn. Since the 

kernel of this map has order d = gcf(n, q − 1), we get d different classes. �
3.2. Unipotent conjugacy classes in PSL2(q)

We start with unipotent classes in PSL2(q); here q Ó= 2, 3, 4, 5, 9, see Section 1.2. First 
we recall Dickson’s classification of all subgroups of PSL2(q). Let d = (2, q − 1).

Theorem 3.4. (See [24, Theorems 6.25, p. 412; 6.26, p. 414].) A subgroup of PSL2(q) is 
isomorphic to one of the following groups.

(a) The dihedral groups of order 2(q ± 1)/d and their subgroups. There are always such 
subgroups.

(b) A group H of order q(q − 1)/d and its subgroups. It has a normal p-Sylow subgroup 
Q that is elementary abelian and the quotient H/Q is cyclic of order (q−1)/d. There 
are always such subgroups.

(c) A4, and there are such subgroups except when p = 2 and m is odd.
(d) S4, and there are such subgroups if and only if q2 ≡ 1 mod 16.
(e) A5, and there are such subgroups if and only if q(q2 − 1) ≡ 0 mod 5.
(f) PSL2(t) for some t such that q = th, h ∈ N. There are always such subgroups.
(g) PGL2(t) for some t such that q = th, h ∈ N. If q is odd, then there are such 

subgroups if and only if h is even and q = th. �
Lemma 3.5. Assume that q is either even, or else odd but not a square. Then a unipotent 
conjugacy class O of PSL2(q) is sober, hence cthulhu.

Proof. Let X be a subrack of O; we show that X is either abelian or indecomposable. 
Let K be the subgroup of PSL2(q) generated by X. Since X generates K, it is a union 
of (unipotent) K-conjugacy classes [5, 1.9]. We may assume that r1 ∈ X. The order of 
any element in X is p, so p divides |K|; this excludes case (a) in Theorem 3.4 for p odd. 
Assume that q is even, so that d = 1, and K is a dihedral group of order 2(q± 1). Then 
X is the rack of involutions of K, which is indecomposable, see Example 2.15.

If K is as in case (b), then X ⊂ Q, hence it is an abelian rack. If K Ä A4 Ä PSL2(3), 
case (c), then p = 2 or 3. If p = 2, then X could not generate K, being contained in the 
normal 2-Sylow subgroup of K. If p = 3, then we are reduced to case (f). If K Ä S4, 
case (d), then p = 2 or 3; but the 3-cycles in S4 generate A4 so 3 is not possible, whereas 
p = 2 is excluded by Theorem 3.4. If K Ä A5 Ä PSL2(5), case (e), then p = 2, 3 or 5. If 
p = 2, then X is indecomposable, being the unique class of involutions in A5. If p = 3, 
then p2m − 1 ≡ 0 mod 5 ⇐⇒ m is even, excluded by hypothesis. If p = 5, then we are 
reduced to case (f).
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Assume then that K Ä PSL2(t), q = th, case (f). For q even, PGL2(t) Ä PSL2(t)
has just one regular unipotent conjugacy class, so X is indecomposable by [5, 1.9, 1.15]; 
for PSL2(2) Ä S3 this is clear. Assume that q is odd. Let s ∈ X; is K-conjugate to rx for 
some x ∈ F

×
t . But OG

s = O = OG
r1 , hence x ∈ (F×

q )2. Since m is odd, this only happens 
when x is a square in F×

t , i.e. when OK
s = OK

r1 . Hence X = OK
r1 is indecomposable. Here 

we have to argue separately for PSL2(3) Ä A4, but in this case the claim is clear.
Finally, case (g) is excluded when q is odd because q is not a square. �

Lemma 3.6. A non-trivial unipotent conjugacy class O in G = SL2(q), respectively in 
PSL2(q), is of type D if and only if q > 9 is an odd square.

We excluded PSL2(9) Ä A6 but in this case Or is not of type D by [3, Remark 4.2 (b)].

Proof. By Remark 3.2, we may assume that O = Or with r = r1. Suppose q Ó= 9
is an odd square. Let x ∈ F×

p − (F×
p )2; since q Ó= 9 we may assume that x Ó= 2. Let 

v = rx. Since x is not a square in F×
p , OG

r = OG
v but R := OSL2(p)

r Ó= OSL2(p)
v =: S. 

Let s =
! 0 1
−1 0
" ! 1 x

0 1

" ! 0 −1
1 0

"
=
! 1 0
−x 1

"
∈ S. Then (rs)2 Ó= (sr)2 showing that OG

r is of 
type D. Conversely, if q is not an odd square, then OG

r is cthulhu by Lemma 3.5, hence 
not of type D. �

The exceptional isomorphism PSL3(2) Ä PSL2(7) motivates the analysis of some 
semisimple classes in this last group.

Lemma 3.7. Let O be the conjugacy class of x ∈ PSL2(7).

(a) If ordx = 2, then O is cthulhu.
(b) If ordx = 4, then O is sober.

Hence the class of type (2, 1), respectively (3), in PSL3(2) is cthulhu, respectively 
sober.

Proof. The proper subgroups of PSL2(7) are isomorphic either to D3 Ä S3, D4, the 
non-abelian group of order 21, A4, or S4, or their subgroups. Let X be a subrack of O
and K = éXê; we show by inspection that X is either abelian, or indecomposable, or the 
union of at most 3 subracks that do not fulfill (2.2). Suppose that ordx = 2. First, OS3

(12) is 
indecomposable. Second, D4 = ér, s | r4 = s2 = id, srs = r3ê has 3 classes of involutions: 
{r2} which is central, and the abelian racks {s, sr2}, {sr, sr3} not commuting with each 
other; (2.2) does not hold here. The involutions of A4 generate the 2-Sylow subgroup, 
so K = A4 is not possible. If K = S4, then OA4

(12)(34) = OS4
(12)(34) does not generate K, 

OS4
(12) is indecomposable by [5, 3.2 (2)], and (2.2) does not hold in OS4

(12)(34) ð OS4
(12). 

So, O is cthulhu but not sober. If ordx = 4, then K could be either abelian, D4 or S4. 
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The elements of order 4 in D4 generate a cyclic subgroup. If K Ä S4, then X = OS4
4 is 

indecomposable. �
3.3. Unipotent classes of type D

3.3.1. Odd characteristic
Here we assume that q is odd.

Lemma 3.8. Let u ∈ G be a unipotent element of type (λ1, . . . , λk). If λ1 > 2, then the 
conjugacy class Ou is of type D.

Proof. Assume that u is regular, i.e. λ1 = n > 2. By Remark 3.2 we may suppose 
that O = Or1 . Let ζ ∈ F×

q with ζ3 Ó= 1, t the diagonal matrix (1, ζ, ζ−1, 1, . . . , 1) and 
b = (ζ−1, ζ2, 1, . . . , 1). Then tr1t

−1 ∈ Rb and R1 ð Rb is a decomposable subrack 
of Or1 . Besides, r1 ó (rb ó (r1 órb)) Ó= rb by (3.7), so that Or1 is of type D. In the general 
case, we may assume that u is as in (3.1) with uj ∈ SLλj

(q), j ∈ Ik. Then Lemma 3.1
applies. �

We next deal with non-trivial unipotent conjugacy classes not covered by the previous 
lemma, that is those of type (2, 2, . . . , 1, . . . , 1).

Lemma 3.9. Let u ∈ G be a unipotent element. Assume that either

(a) n = 4 and u has type (2, 2) or
(b) n = 3 and u has type (2, 1).

Then the conjugacy class Ou is of type D.

Proof. (a): We may assume u =
1

r1 0
0 r1

2
, Remark 3.2. Let ζ ∈ F×

q − (F×
q )2, r = u, 

t =
A 0 −ζ 1 1

1 0 0 0
0 0 0 −ζ−1

0 0 1 0

B
and s = t ó u =

A 1 0 −ζ 0
−ζ−1 1 −1 ζ−1

0 0 1 0
0 0 −ζ 1

B
. A direct computation shows that 

(rs)2 Ó= (sr)2. Moreover, ér, sê is strictly contained in the subgroup H of SL4(q) of block 

upper triangular matrices with diagonal blocks in SL2(q). Since 
1

1 0
−ζ−1 1

2
is conjugated 

to 
1

1 ζ−1

0 1

2
in SL2(q) and this is not conjugated to r1 by Lemma 3.3, it turns out that 

OH
r Ó= OH

s , so OSL4(q)
r is of type D.

(b): We may assume that u =
3

1 1 0
0 1 0
0 0 1

4
. Take r = u and s =

3
0 1 0
0 0 1
1 0 0

4
ó r =

3
1 0 0
0 1 0
1 0 1

4
∈

OSL3(q)
r . Then (rs)2 Ó= (sr)2, since q is odd. Also, H = ér, sê =

)3 1 a 0
0 1 0
c b+ac 1

4 -- a, b, c ∈ Fp

*
because [rk, sm] =

3
1 0 0
0 1 0
0 km 1

4
and [r, [rk, sm]] = [s, [rk, sm]] = 1. It is not hard to verify 

that OH
r Ó= OH

s . �
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If OSLn(q)
u is of type D, then OGLn(q)

u is of type D too. Thus, the previous results apply 
to nontrivial unipotent conjugacy classes in GLn(q) with the prescribed hypothesis. We 
deal with the remaining cases.

Lemma 3.10. If u =
! 1 1

0 1

"
and q > 3, then OGL2(q)

u is of type D.

Proof. Consider the subsets of Ou given by

R =
)
AuA−1 : A ∈ GL2(q),detA /∈

!
F
×
q

"2*
,

S =
)
AuA−1 : A ∈ GL2(q),detA ∈

!
F
×
q

"2*
.

Let A, B ∈ GL2(q) and set r = AuA−1 and s = BuB−1 ∈ Ou. Then

r ó s =
!
AuA−1"!BuB−1"!AuA−1"−1 =

!
AuA−1B

"
u
!
B−1Au−1A−1"

and det(AuA−1B) = detB. Hence R, S are subracks of Ou, R ó S ⊆ S and S ó R ⊆
S. Moreover, R ∩ S Ó= ∅ if and only if there exists B ∈ CGL2(q)(u) with detB not 
a square. But CGL2(q)(u) = {

!
a b
0 a

"
: a, b ∈ Fq}, so that the two racks are disjoint 

and Y = R ð S is a decomposable subrack of Ou. Now let d ∈ Fq be not a square 

and rd = d−1
1

d−1 1
−1 d+1

2
= AduA

−1
d ∈ R with Ad =

! 1 0
1 d

"
. If we set s = u, a direct 

computation in GL2(q) shows that

s ó (rd ó s) = d−2
3
d2 + d− 2 d2 − 4d + 4

−1 d2 − d + 2

4
= t.

Hence, rd ó (s ó (rd ó s)) = s if and only if t = r−1
d ó s if and only if3

d2 − d− 1 (d + 1)2
−1 d2 + d + 1

4
=
3
d2 + d− 2 (d− 2)2

−1 d2 − d + 2

4
,

if and only if (d + 1)2 = (d − 2)2 and 2d = 1 in Fq. Thus, rd ó (s ó (rd ó s)) Ó= s if 2d Ó= 1. 
If q Ó= 3, such a d always exists, showing that Ou is of type D. �
3.3.2. Even characteristic

Here we assume that q is even.

Lemma 3.11. Let u ∈ G be a unipotent element of type λ = (λ1, . . . , λk); assume that 
λi ≥ λi+1 ≥ 3 for some 1 ≤ i ≤ k − 1. Then the conjugacy class O := Ou is of type D.

Proof. By Lemma 3.1, it is enough to look at the following specific unipotent class: If 
λ = (λ1, λ2) with λ1 ≥ λ2 ≥ 3, then O is of type D.
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Let xi = r(1,...,1) ∈ Fλi×λi , i = 1, 2. By Remark 3.2 we may assume that u =
1

x1 0
0 x2

2
. 

Notice that x−1
1 =

⎛⎝ 1 1 ... 1
0 1 ... 1
...

. . .
...

0 ... ... 1

⎞⎠ ∈ Ox1 by Lemma 3.3. Let

R1 =
;3

x1 Z

0 x2

4 --- Z = (zij) ∈ F
λ1×λ2
2

<
, R = R1 ∩ O;

S1 =
;3

x−1
1 Z

0 x2

4 --- Z = (zij) ∈ F
λ1×λ2
2

<
, S = S1 ∩ O.

Since Y1 = R1 ð S1 is a decomposable subrack, so is Y = R ð S ⊂ O. Let

z1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0
0 1 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ , z2 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
...

0 0 1 1 . . . 0
0 0 0 1 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ,

z3 =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 1 0 . . . 0
0 0 1 1 0 . . . 0
...

...
...

...
...

...
0 0 1 1 0 . . . 0
0 0 0 1 1 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

If P =
1

idλ1 eλ1,1
0 idλ2

2
= P−1 ∈ G, then v = P

1
x−1
1 0
0 x2

2
P =

1
x−1
1 z1
0 x2

2
∈ S,

(uv)2 =
3

id x1z1
0 x2

2

42

=
3

id x1z1(id +x2
2)

0 x4
2

4
=
3

id z2
0 x4

2

4
, and

(vu)2 =
3

id z1x2
0 x2

2

42

=
3

id z1x2(id +x2
2)

0 x4
2

4
=
3

id z3
0 x4

2

4
when λ2 > 3; but

when λ2 = 3, (uv)2 =
1

id e2,3

0 x4
2

2
, (vu)2 =

1
id e1,3+e2,3

0 x4
2

2
. Thus O is of type D. �

Lemma 3.12. Let u ∈ G of type (λ1, . . . , λk) and assume that either

(a) λ1 = 4.
(b) λ1 = 3, λ2 = 1.
(c) λ1 = λ2 = 2.

Then the conjugacy class Ou is of type D. Furthermore, the class in PSL4(2) of type 
(2, 1, 1) is cthulhu.
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Proof. Assume that n = 4, q = 2: Since PSL4(2) Ä A8, we apply [3]. There are two 
classes of involutions in A8, of types (14, 22) or (24); with centralizers of orders 96 and 
192, respectively. The former is of type D [3, Table 2], and the latter is cthulhu because 
its proper subracks generated by two elements are abelian racks and dihedral racks with 
3 and 4 elements [3, 4.2 (f)]. Now the class in PSL4(2) of type (2, 1, 1), respectively type 
(2, 2), has centralizer of order 192 so it is cthulhu, respectively of order 96 and so is of 
type D. Also, there are two classes of elements of order 4 in A8, of types (12, 2, 4) or (42), 
both of type D [3, Table 1 and Step 9]. Hence the classes in PSL4(2) of types (3, 1) and 
(4) are of type D. Now the claim for the classes (2, 2), (3, 1) and (4), for q even, follows 
as SLn(q) < SLn(qj) for any j ∈ N; here Remark 3.2 is needed. Finally Lemma 3.1
applies. �

We now present a negative result.

Proposition 3.13. The unipotent classes of type (2, 1, 1, 1, 1, . . .) in SLn(q) for q even and 
n ≥ 2 are not of type D.

Proof. Let O be a class of type (2, 1, 1, 1, 1, . . .) in G = SLn(q). Let UF , respectively 
TF , the subgroup of unipotent upper-triangular, respectively diagonal matrices, in G. 
Without loss of generality we may assume that it is represented by r = idn +e1,n, which 
lies in Z(UF ). We will show that if s ∈ O satisfies [s, r] Ó= 1 and Oér,sê

r Ó= Oér,sê
s , then 

(rs)2 = (sr)2. Let s ∈ O satisfy [r, s] Ó= 1, and let g ∈ G such that s = grg−1. By [21, 
24.1] g can be decomposed as g = unwtv where nw is a monomial matrix with coefficients 
in F2; u, v ∈ UF and t ∈ TF . Then s = unwtrt

−1n−1
w u−1. We have:

trt−1 = idn +ξe1,n, for some ξ ∈ F
×
q ,

σ := nwtrt
−1n−1

w = idn +ξei,j , for some i Ó= j.

Further, [r, s] Ó= 1 iff u−1[r, s]u = [r, σ] Ó= 1 and this happens only if either i = n or j = 1, 
or both. Assume first (i, j) = (n, 1). Since r ∈ Z(UF ) we have K := ér, sê Ä u−1ér, sêu =
ér, σê Ä é

! 1 1
0 1

"
, 
! 1 0
ξ 1
"
ê ≤ SL2(q). By Lemma 3.5, OK

r = OK
s . Assume now i = n and 

j Ó= 1, n. Then

u−1(rs)2u = (rσ)2 =
!
(idn +e1,n)(idn +ξen,j)

"2 = idn +ξe1,j ,

u−1(sr)2u = (σr)2 =
!
(idn +ξen,j)(idn +e1,n)

"2 = idn +ξe1,j .

The case j = 1, n Ó= 1, n can be treated similarly. �
Lemma 3.14. The unipotent classes of type (3) in PSL3(22m) are of type D for every 
m ≥ 1.
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Proof. Let ζ ∈ F
×
4 − F2, r =

3
1 1 0
0 1 1
0 0 1

4
, s =

A
ζ2 0 ζ2

ζ 1 ζ2

ζ ζ2 ζ2

B
. Then (rs)2 Ó= (sr)2, O =

OSL3(4)
r = OSL3(4)

s and OH
r Ó= OH

s , where H = ér, sê < SL3(4). Indeed, |H| = 108 and 
it can be presented as the group generated by two elements r, s satisfying the relations 
r4 = s4 = 1, (rs)3 = 1, (r ó (s−1 ó (r ó s)))s−1 = 1. Thus, also (sr)3 = 1. In particular, 
sr−1s ∈ CH(r), rs−1r ∈ CH(s) and

OH
r =

)!
risj
"
ó r
-- 0 ≤ i ≤ 3, 0 ≤ j ≤ 2 and i = 0 if j = 0

*
and

OH
s =

)!
sirj
"
ó s
-- 0 ≤ i ≤ 3, 0 ≤ j ≤ 2 and i = 0 if j = 0

*
,

with |OH
r | = 9 = |OH

s |. A direct computation shows that s /∈ OH
r . The lemma follows, 

as SL3(4) < SL3(22m). �
3.4. Unipotent conjugacy classes of type F

Here assume that q is even and investigate when a unipotent class is of type F; recall 
that not all classes are of type D, see Proposition 3.13.

Lemma 3.15. Let u ∈ G of type (λ1, . . . , λk) and assume that either

(a) λ1 ≥ 5.
(b) λ1 = 3, λ2 = 2.
(c) λ1 = 3 and q ≥ 8, or
(d) λ1 = 2 and λj = 1 for at least 3 different j.

Then the conjugacy class Ou is of type F.

Proof. By Lemma 3.1, it is enough to look at some specific unipotent classes; when these 
are regular we may assume that O = Or1 by Remark 3.2.

Case 1. If n > 4, then a regular unipotent class O in G is of type F.

Let a = (a1, a2, a3), u = (u1, u2, u3) ∈ F3
q and set

xa(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . a1 u1 u3
0 1 1 0 . . . 0 a2 u2
0 0 1 1 . . . 0 0 a3
...

...
...

...
...

...
0 . . . . . . . . . 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

0 . . . . . . . . . . . . . . . 0 1
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Let Xa = {xa(u) : u = (u1, u2, u3) ∈ F3
q} ⊂ O. Then xa(u)xb(v) = xb(v + w)xa(u), 

where

w = (a1 + a2 + b1 + b2, a2 + a3 + b2 + b3, a1 + a2 + b1 + b2 + u1 + u2 + v1 + v2).

Thus Xa ó Xb = Xb, for every a, b ∈ F3
q. Let

A =
)
(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)

*
.

If a Ó= b ∈ A, then xa(u) ó xb(v) Ó= xb(v) for any u, v, and O is of type F.

Case 2. If O is unipotent of type (3, 2), then O is of type F.

Let a = (a1, a2, a3), u = (u1, u2, u3) ∈ F3
q and set xa(u) =

⎛⎝ 1 1 a1 u1 u3
0 1 1 a2 u2
0 0 1 0 a3
0 0 0 1 1
0 0 0 0 1

⎞⎠. Let 

Xa = {xa(u) : u = (u1, u3, u3) ∈ F3
q}. It can be shown that Xa ⊂ O if and only if 

a ∈ I = {(a1, a2, a3) ∈ F3
q : a2 = a3}. Let a, b ∈ I. Now

xa(u)xb(v) = xb(v + w)xa(u), (3.15)

where w = (a2 +b2, 0, a2 +b2 +a1b2 +a2b1 +u1 +u2 +v1 +v2). By (3.15), Xa óXb = Xb, 
for every a, b ∈ I. Let

A =
)
a1 = (1, 0, 0), a2 = (1, 1, 1), a3 = (0, 1, 1), a4 = (0, 0, 0)

*
⊂ I;

r1 = xa1(1, 0, 0), rj = xaj
(0, 0, 0), 2 ≤ j ≤ 4.

Then rj ∈ Rj := Xaj
and ri ó rj Ó= rj for i Ó= j ∈ I4, so O is of type F.

Case 3. If n = 3 and q ≥ 8, then a regular unipotent class O is of type F.

Let A = {a := (a2, a−1) ∈ (F×
q )2 : a ∈ F×

q }. Then (Ra)a∈A is a family of mutually 
disjoint subracks of O, by Lemma 3.3. Now θ1

a,b = 0 ⇐⇒ a3 = b3 ⇐⇒ a = b. Hence 
ra ó rb Ó= rb for a Ó= b, by (3.6). As |F×

q | ≥ 4, O is of type F.

Case 4. If u ∈ G is unipotent of type (2, 1, 1, 1), then O = Ou is of type F.

We may assume that u =
1

r1 0
0 id3

2
. Let (ej)j∈I4 be the canonical basis of F4

q and 

Rj = Rej
∩ O; then Rj ó Rk ⊆ Rk for k, j ∈ I4. Let r1 = re1 , r2 = re2 ,

r3 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ =
3

id2 e2,1
0 id3

4
re3

3
id2 e2,1
0 id3

4
,

0 0 0 0 1
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r4 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ =
3

id3 e2,1 + e3,1
0 id2

4
re4

3
id3 e2,1 + e3,1
0 id2

4
.

Then rj ∈ Rj and rj ó rk Ó= rk, j Ó= k ∈ I4. Thus O is of type F. �
By Proposition 3.13, the classes of type (2, 1) in SL3(q), q even, are not of type D. 

Now we show that they are not of type F, hence are chtulhu.

Proposition 3.16. The unipotent classes of type (2, 1) in G = SL3(q) for q even are not 
of type F.

Proof. Let (ra)a∈I4 in G such that Oéra:a∈I4ê
ra Ó= Oéra:a∈I4ê

rb and ra Ó= rb, for all a Ó= b in 
I4. Without loss of generality we may assume r1 = id3 +e1,3. Then, arguing as in the 
proof of Proposition 3.13 we have:

• ra = uanata ó r1, for a ∈ {2, 3, 4}, where ua ∈ UF , ta ∈ TF and na is monomial in 
SL3(2);

• σa := nata ó r = id3 +ξaeia,ja for some ξa ∈ F×
q and (ia, ja) ∈ {(2, 1), (3, 2)}.

Thus, there are a Ó= b in {2, 3, 4} such that (ia, ja) = (ib, jb). We claim that if (ia, ja) =
(ib, jb) = (2, 1) then |rarb| is either 2 or odd. Hence by Remark 2.7, either rarb = rbra
or Oéra,rbê

ra = Oéra,rbê
rb , a contradiction to our assumption. Since matrices in id3 +Fqe2,3

commute with σa and σb, there is no loss of generality in taking ua, ub ∈ id3 +Fqe1,2 +
Fqe1,3. Further,

|rarb| =
--uaσau

−1
a ubσbu

−1
b

-- = --σa

!
(u−1

a ub) ó σb

"--
so to prove the claim we may take ra = σa, rb = (u−1

a ub) ó σb. Then, for u−1
a ub =

id3 +xe1,2 + ye1,3 we have

rb =

⎛⎝ 1 + ξbx ξbx
2 ξbxy

ξb 1 + ξbx ξby

0 0 1

⎞⎠ , rarb =
3
A c
0 1

4
,

where A =
3

1 + ξbx ξbx
2

ξa + ξaξbx + ξb ξaξbx
2 + 1 + ξbx

4
, c =

3
ξbxy

ξaξbxy + ξby

4
.

Now, (rarb)k =
1

Ak (Ak−1+···+id2)c
0 1

2
. Besides, A ∈ SL2(q) so it is either semisimple or 

unipotent, the latter occurring if and only if Tr(A) = 0, if and only if x = 0. In this case, 
rarb = rbra. Otherwise A is semisimple, hence |A| = h is odd and Ah−1 + · · · + id2 = 0, 
so |rarb| = h; the claim follows. �
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Table 2
Collapsing unipotent classes in PSLn(q).

n q Type (λ1, . . . , λk) Criterium

2 odd square > 9 (2) D, 3.6

> 2 odd λ1 ≥ 3 D, 3.8
(2, 2, . . .) D, 3.9 (a)
(2, 1 . . .) D, 3.9 (b)

even λ1 ≥ 5 F, 3.15 (a)
λ1 = 4 D, 3.12 (a)
(3, 3, . . .) D, 3.11
(3, 2, . . .) F, 3.15 (b)
(3, 1, . . .) D, 3.12 (b)
(2, 2, . . .) D, 3.12 (c)
(2, 1, 1, 1, . . .) F, 3.15 (d)

even ≥ 8 λ1 = 3 F, 3.15 (c)
4 D, 3.14

3.5. Collapsing unipotent classes in G = PSLn(q)

We summarize the results in Section 3.3 and 3.4 showing the unipotent classes in 
G that collapse in Table 2. Recall that we assume q Ó= 2, 3, 4, 5, 9, when n = 2. The 
information in Table 2 is minimal; many orbits collapse by different reasons, but we 
omit to discuss this in detail.

Now we deal with the Nichols algebras of irreducible Yetter–Drinfeld modules asso-
ciated to the remaining classes in Table 1. We recall the useful little triangle Lemma. 
Let G be a finite group. A conjugacy class O in G contains a little triangle if there are 
different elements (σi)i∈I3 such that

• σh
1 = σ2σ3 for an odd integer h;

• σiσj = σjσi, i, j ∈ I3;
• there are g2, g3 ∈ G such that σi = giσ1g

−1
i and g3g2, g2g3 ∈ CG(σ1).

Lemma 3.17. (See [16, Lemma 2.3].) If O in G contains a little triangle, then 
dimB(O, ρ) = ∞, for every ρ ∈ IrrCG(σ1). �

Clearly, if OG
x of x ∈ G contains a little triangle and ψ : G → H is a group homomor-

phism, then OH
ψ(x) contains a little triangle. In particular,

• If x ∈ G < H and OG
x of G contains a little triangle, then OH

x also contains a little 
triangle.

• If T is an (outer) automorphism and O in G contains a little triangle, then so does 
T (O).
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Lemma 3.18. Let O be the conjugacy class of x ∈ G. In the cases listed below, 
dimB(O, ρ) = ∞, for every ρ ∈ IrrCG(x).

(a) G = PSL2(q), x of type (2).
(b) G = PSL3(q) with q even, x of type (2, 1).
(c) G = PSL4(q) with q even, x of type (2, 1, 1).

Proof. (a): [15, 3.1] for q even, [16, 4.1, 4.3] for q odd. (b) and (c): PSL3(2) Ä PSL2(7)
contains a copy of A4, so the class of involutions contains a little triangle [16, 4.3]. Now 
the previous remarks apply. �
4. Non-semisimple classes in PSLn(q)

4.1. Preliminaries

In this section we apply the results in Section 3 on unipotent classes to non-semisimple 
classes in G = PSLn(q). Let x ∈ G and pick x ∈ SLn(q) such that π(x) = x; if x = xsxu
is the Chevalley–Jordan decomposition of x, then xs = π(xs) and xu = π(xu) form the 
Chevalley–Jordan decomposition of x. Now xu belongs to K := CSLn(q)(xs), thus xu ∈
K := π(K) and there are morphisms of racks OK

xu Ä OK
xu

ñ→ OG
x . Hence, in many cases it 

will be enough to deal with OK
xu and to start with we describe K = CGLn(q)(xs) ∩SLn(q). 

Up to conjugation by a matrix in SLn(q), we may assume that

xs =

⎛⎜⎜⎜⎝
S1 0 . . . 0
0 S2 . . . 0
...

. . .
...

0 . . . . . . Sk

⎞⎟⎟⎟⎠ , (4.1)

with Si ∈ GLλi
(q) irreducible, that is, its characteristic polynomial χSi is irreducible in 

Fq[X]. Furthermore, 
r

i∈Ik
det Si = 1. Now, if σ ∈ Sk, then there is T ∈ SLn(q) such 

that TxsT−1 =

⎛⎜⎝
Sσ(1) 0 ... 0

0 Sσ(2) ... 0
...

. . .
...

0 ... ... Sσ(k)

⎞⎟⎠.

If S ∈ GLΛ(q) is irreducible, then the subalgebra CS of matrices commuting with S is 
a division ring by Schur Lemma; being finite, is isomorphic to Fqμ for some μ ∈ N. We 
claim that μ = Λ. Indeed, the characteristic and minimal polynomials of S coincide and 
have degree Λ, so standard arguments for finite fields imply the claim.

Remark 4.1. Let S, R ∈ GLΛ(q) be semisimple and conjugate in GLΛ(k). Then there 
exists T ∈ SLΛ(q) such that TST−1 = R; that is, S and R are conjugate under SLΛ(q).

Indeed, R and S are conjugate in GLΛ(q) by [19, 8.5], [23, I.3.5]. Also we may assume 
that S is irreducible. Let T0 ∈ GLΛ(q) such that T0ST−1

0 = R. Since det : C×
S → F×

q
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equals the norm N : F
×
qΛ

→ F×
q which is surjective, we may pick T1 ∈ CS such that 

detT1 = detT−1
0 . Then T = T0T1 does the job.

Assume that S is irreducible but not in Fq; then χS(Sq) = (χS(S))q = 0, so S and Sq

are conjugate under SLΛ(q), but S Ó= Sq. Indeed, it can be shown that Sqi , i ∈ IΛ, are 
all the roots of χS in Fq[S] Ä FqΛ .

Remark 4.2. Let π : GLΛ(q) → PGLΛ(q) and let S ∈ GLΛ(q) irreducible with Λ > 1; 
hence S Ó= Sq. Then π(S) = π(Sq) if and only if χS belongs to

I(q) =
)
F ∈ Fq[X] irreducible : F |Xq−1 − c,

for some c ∈ F
×
q , c Ó= 1, cdeg F = 1

*
. (4.2)

4.2. Centralizers

By the previous considerations, we may regroup the blocks so that there exist integers 
h1, . . . , hü such that Si and Sj are conjugate under SLλi

(q) if and only if there exists a 
(unique) t ∈ Iü such that i, j ∈ Jt, where

Jt = {i ∈ N : h1 + . . . + ht−1 + 1 ≤ i ≤ h1 + . . . + ht}. (4.3)

So, we set Λt = λi, if i ∈ Jt, t ∈ Iü. In other words, h1 is the number of blocks Si that 
are isomorphic to S1, all of size Λ1; h2 is the number of blocks Si that are isomorphic to 
Sh1+1, all of size Λ2, and so on.

Proposition 4.3. (See [12].) CGLn(q)(xs) Ä GLh1(qΛ1) × . . .× GLhü
(qΛü).

Proof. Let S ∈ GLN (q), R ∈ GLP (q) be irreducible. Let Z =
!
A B
C D

"
∈ MN+P (q), where 

A is of size N ×N . Then Z commutes with 
! S 0

0 R

"
iff

AS = SA, BR = SB, CS = RC, DR = RD.

So that A ∈ CS Ä FqΛ , D ∈ CR Ä Fqν . If S and R are not conjugated, then B = 0, 
C = 0 by Schur Lemma. Otherwise, N = P ; we may assume S = R, hence A, B, C, D ∈
CS Ä FqΛ . The claim follows from this. For, assume that xs is of the form (4.1). Let 
Z = (Zij) ∈ GLn(q), where Zij ∈ F

λi×λj
q , i, j ∈ Ik. Then Z ∈ CGLn(q)(xs) iff Zij = 0

unless i, j ∈ Jt for some t, in which case Zij ∈ FqΛt . Thus every Z ∈ CGLn(q)(xs) is a 
matrix of blocks

Z =

⎛⎜⎜⎜⎝
W1 0 . . . 0
0 W2 . . . 0
...

. . .
...

⎞⎟⎟⎟⎠ (4.4)
0 . . . . . . Wü
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where in turn Wt is a matrix of h2
t blocks, each of size Λt×Λt and belonging to CSi Ä FqΛt , 

if i ∈ Jt, t ∈ Iü. Thus Wt can be thought of as a matrix æWt ∈ Mht
(qΛt), and the 

map ψt : Wt Ô→ æWt is an isomorphism of monoids. Also, detZ Ó= 0 iff detWt Ó= 0 in 
GLhtΛt

(q) for all t ∈ Iü, iff detæWt Ó= 0 in GLht
(qΛt) for all t ∈ Iü. Thus ψt gives rise to 

an isomorphism from the group Gt of matrices (4.4) with all Wr = id, except for r = t, 
to GLht

(qΛt). �
Let Ψ : CGLn(q)(xs) → GLh1(qΛ1) × . . . × GLhü

(qΛü) be the isomorphism given by 
Proposition 4.3. Then

K Ä
)
X ∈ GLh1

!
qΛ1
"
× . . .× GLhü

!
qΛü
"

: det ◦Ψ−1(X) = 1
*
. (4.5)

In particular, if SLht
(qΛt) Ó= SL2(2), SL2(3), then it is perfect, hence

SLht

!
qΛt
"
ñ→ K, 1 ≤ t ≤ ü. (4.6)

If SLht
(qΛt) = SL2(2) or SL2(3), then (4.6) also holds, being Λt = 1.

4.3. End of the proof of Theorem 1.3

Proposition 4.4. Let x ∈ G be neither semisimple nor unipotent. Then OG
x collapses.

Proof. Let x ∈ SLn(q) with x = π(x), and let x = xsxu be its Chevalley–Jordan decom-
position. By our assumption xs is not central and xu Ó= e.

We assume that xs is in the form (4.1); then there are natural numbers h1, . . . , hü, 
Λ1, . . . , Λü such that the structure of K is given by (4.5). Then xu = (u1, . . . , uü) with 
ut ∈ GLht

(qΛt) unipotent, t ∈ Iü. For simplicity, we write also xs = (S1, . . . , Sü). Up to 
a further reordering, there exists M ∈ Iü such that ut Ó= id iff t ≤ M , and h1 ≥ . . . ≥
hM > 1; since xu Ó= e, M > 0. Recall that OSLht (q

Λt )
ut is a subrack of OK

xu for all t by 
(4.6).

By the unipotent part of Theorem 1.3, we may assume that ht ≤ 4 and ut appears in 
Table 1 or it is of type (2) and q is in {2, 3, 4, 5, 9}, for all t ∈ IM . Let X be a unipotent 
orbit either of type (3) with qΛ = 2; or else of type (2) with qΛ even or 9 or odd not a 
square; or else of type (2, 1) or (2, 1, 1) with qΛ even. By inspection, we see that

(a) There exist x1, x2 ∈ X such that (x1x2)2 Ó= (x2x1)2.
(b) There exist y1, y2 ∈ X such that y1y2 = y2y1, except when X is of type (2) with 

qΛ = 2 or 3.

Case 1. M = 1 = ü. Then OG
x is of type D.
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In this case xu = u1. In addition, Λ = Λ1 > 1 since xs is not central; so qΛ Ó= 2. 
Hence type (3) and (2) with qΛ = 2 are excluded. Let S = S1. Assume that χS /∈ I(q). 
By Remarks 4.1 and 4.2,

!
OK

xu

"(2) 2.10= OK
xu ð OK

xu Ä π(S)OK
xu

ð π(Sq)OK
xu

ñ→ OG
x .

By (a), OG
x is of type D. Now, if χS ∈ I(q), then S is conjugated to Sq = cS for some 

c ∈ F×
q − 1. Pick Y ∈ SLΛ(q) such that Y SY −1 = cS. If xu is of type (2), then take

r =
3
S S
0 S

4
, s =

3
id 0
0 Y

4
ó r =

3
S SY −1

0 cS

4
;

R1 =
;3

S ∗
0 S

4
∈ F

2Λ×2Λ
q

<
, R = π(R1) ∩ O Ð π(r);

S1 =
;3

S ∗
0 cS

4
∈ F

2Λ×2Λ
q

<
, S = π(S1) ∩ O Ð π(s).

Then r and s are conjugated in SL2Λ(qΛ) and R ð S ñ→ OG
x is decomposable. Also 

(rs)2 = (sr)2 means that3
S4 (c + c2)S4 + S4Y −1 + cS2Y −1S2

0 c2S4

4
=
3
S4 (c + 1)S4 + S3Y −1S + cSY −1S3

0 c2S4

4
⇐⇒ S4Y −1 + c2S4 + cS2Y −1S2 = S3Y −1S + S4 + cSY −1S3

⇐⇒ c2(c2 − 1) id = (1 − c2)Y

⇐⇒ c2 = 1,

where we have used SY −1 = cY −1S and that Y is not a scalar matrix. Thus, if q is 
even, then c = 1, a contradiction; and if q is odd and c Ó= 1, then ord c = 2, hence Λ is 
even and qΛ is a square. Hence OG

x is of type D, except when qΛ = 9. If qΛ = 9, then 
q = 3 and Λ = 2. Let S =

! 0 1
2 0

"
, R =

! 1 1
1 2

"
∈ SL2(3); they are conjugated in SL2(3) and 

SR = −RS, so that π(S)π(R) = π(R)π(S). It is enough to deal with O = OG
x where

x = r =
3
S S
0 S

4
, s =

3
0 id2

2 id2 0

4
ó

3
R R
0 R

4
=
3

R 0
2R R

4
;

R1 =
;3

aS bS
dS cS

4
∈ SL4(9) : a, b, c, d ∈ F3

<
, R = π(R1) ∩ O Ð π(r);

S1 =
;3

aR bR
dR cR

4
∈ SL4(9) : a, b, c, d ∈ F3

<
, S = π(S1) ∩ O Ð π(s).

Then r and s are conjugated in SL4(9), (rs)2 Ó= (sr)2, R ð S ñ→ OG
x and O is of type D. 

The types (2, 1) and (2, 1, 1) are treated as above, with
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r =

⎛⎝ S S 0
0 S 0
0 0 S

⎞⎠ , respectively r =

⎛⎜⎜⎝
S S 0 0
0 S 0 0
0 0 S 0
0 0 0 S

⎞⎟⎟⎠ ,

s =

⎛⎝ id 0 0
0 Y 0
0 0 id

⎞⎠ ó r =

⎛⎝ S SY −1 0
0 cS 0
0 0 S

⎞⎠ , respectively s =

⎛⎜⎜⎝
S SY −1 0 0
0 cS 0 0
0 0 S 0
0 0 0 S

⎞⎟⎟⎠ .

Case 2. M = 1 < ü. Then OG
x is of type D.

In this case xu = (u1, 1, ..., 1). Assume that Λi > 1 for some i. Then ys =
(S1, . . . , S

q
i , . . . , Sü) (all Sh equal to Si raised to the q), is conjugated to xs; clearly 

π(xs) Ó= π(ys). By Remarks 4.1 and 4.2

!
OK

xu

"(2) 2.10= OK
xu ð OK

xu Ä π(xs)OK
xu

ð π(ys)OK
xu

ñ→ OG
x .

By (a), OG
x is of type D. Assume then that Λi = 1 for all i ∈ Iü. Since ü > 1 the case 

u1 of type (3) with q = 2 is excluded, so u1 is of type (2), (2, 1) or (2, 1, 1). We consider 
first the case when ü = 2 and u1 is of type (2). Let

r =

⎛⎝ S1 S1 0
0 S1 0
0 0 S3

⎞⎠ , s =

⎛⎝ S3 0 0
0 S1 S1
0 0 S1

⎞⎠ ;

R1 =

⎧⎨⎩
⎛⎝ S1 ∗ ∗

0 S1 ∗
0 0 S3

⎞⎠ ∈ F
3×3
q

⎫⎬⎭ , R = π(R1) ∩ O Ð π(r);

S1 =

⎧⎨⎩
⎛⎝ S3 ∗ ∗

0 S1 ∗
0 0 S1

⎞⎠ ∈ F
3×3
q

⎫⎬⎭ , S = π(S1) ∩ O Ð π(s).

Then r and s are conjugated in SL3(q), R ð S ñ→ OG
x is decomposable,

(rs)2 =

⎛⎝ S2
1S2

3 S3
1(S1 + S3) S3

1(S1 + 2S3)
0 S4

1 S3
1(S1 + S3)

0 0 S2
1S2

3

⎞⎠
(sr)2 =

⎛⎝ S2
1S2

3 S2
1S3(S1 + S3) S2

1S2
3

0 S4
1 S2

1S3(S1 + S3)
0 0 S2

1S2
3

⎞⎠ .

Hence (π(r)π(s))2 Ó= (π(s)π(r))2 and thus OG
x is of type D. The other cases are dealt 

with in a similar way.
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Case 3. M > 1, and qΛt Ó= 3 for some t ∈ IM . Then OG
x is of type D.

Assume q is odd. Since M > 1 there is k ∈ IM − {t} such that uk Ó= 1. We set 
X = OSLhk

(qΛk )
uk , Y = OSLht (q

Λt )
ut . By Lemma 2.10, (a) and (b) X × Y , and OK

xu , are of 
type D.

If q is even, then the same argument applies except when ut is of type (2) with qΛt = 2
for all t ∈ IM . But here St ∈ F

×
2 , i.e., St = 1 so M = 1, a contradiction.

Case 4. M > 1, and qΛt = 3 for all t ∈ IM . Then OG
x is of type D.

According to our reduction we need only to consider the case in which ht = 2 and 
ut is of type (2) for every t ∈ IM . Then St ∈ CSt

Ä FqΛt = F3, so S1 = S2 = 1, 
S3 = S4 = 2 and M = 2. The rack of unipotent conjugacy classes in SL2(3) is the union 
of two conjugacy classes O1 Ð r1 and O2, both isomorphic to the tetrahedral rack. If 
M < ü, then K ⊇ {(g1, g2, g3) ∈ GL2(3) × GL2(3) × F

×
3 : det g1 det g2 = g−1

3 }; thus 
OK

(r1,r1) =
à

i,j∈I2
Oi ×Oj is of type D, being O1 ×O1 ð O1 ×O2 of type D.

If M = ü = 2, then OK
(r1,r1) is cthulhu, so we consider O = OG

x . There are two different 

conjugacy classes with the same xs, namely those with representative r =
A 1 1 0 0

0 1 0 0
0 0 2 2
0 0 0 2

B
, 

respectively 

A 1 2 0 0
0 1 0 0
0 0 2 2
0 0 0 2

B
, but they are isomorphic as racks being conjugated in PGL3(4).

Now let s =
A 1 0 0 0

0 0 1 0
0 0 0 1
0 1 0 0

B
ó r =

A 1 0 0 1
0 2 2 0
0 0 2 0
0 0 0 1

B
; hence (π(r)π(s))2 Ó= (π(s)π(r))2. Let

R1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 2 ∗
0 0 0 2

⎞⎟⎟⎠ ∈ F
4×4
3

⎫⎪⎪⎬⎪⎪⎭ , R = π(R1) ∩ O Ð π(r);

S1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 ∗ ∗ ∗
0 2 ∗ ∗
0 0 2 ∗
0 0 0 1

⎞⎟⎟⎠ ∈ F
4×4
3

⎫⎪⎪⎬⎪⎪⎭ , S = π(S1) ∩ O Ð π(s).

Then R ð S ñ→ O is a decomposable subrack, and O is of type D. �
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