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A Comparative Study of Commercial Modified Celluloses
as Bread Making Additives

María J. Correa and Cristina Ferrero

CIDCA—Facultad de Ciencias Exactas-UNLP-CCT La Plata (CONICET), La Plata, Argentina

The effect of commercial modified celluloses: microcrystalline cellulose, carboxymethyl cellulose, and
hydroxypropylmethyl cellulose on bread quality attributes and their potential protective effect with
respect to bread staling were analyzed. Two levels of gums were assayed (0.5 and 1.5 g/100 g flour).
The best performance was obtained with carboxymethyl cellulose and hydroxypropylmethyl cellulose F
4 M at both levels; these gums led to higher specific volumes and a better crumb texture as measured
by texture profile analysis. In general, crumbs were softer, more cohesive, and resilient and exhibited
lower chewiness values. Other gums like microcrystalline cellulose and hydroxypropylmethyl cellulose
F50 did not improve bread quality on the same extent. Mechanical spectra obtained by dynamic mechan-
ical analysis assays indicated a marked change in molecular mobility when carboxymethyl cellulose was
present. Bread staling was evaluated by texture profile analysis, moisture loss, and calorimetric assays.
Gums did not avoid retrogradation and even exhibited an accelerating effect, probably due to changes in
water retention and migration during storage. However, in most cases, final crumb hardness in samples
with hydrocolloids was lower than that in the control sample.

Keywords: Wheat bread, Modified celluloses, Texture, Staling, Retrogradation.

INTRODUCTION

Cellulose is the most abundant polysaccharide in nature, constituting the principal component of all
vegetation; it reaches up to the third part of plant dry material. This polymer is also the most impor-
tant renewable resource. Together with hemicelluloses, pectins, and lignin, it plays a significant role
in plant structure, forming the cell walls. It is present up to 50% in woody materials, up to 98% in
cotton linters, and about 30% in other agricultural residues, such as corn stalks and cobs and wheat
straw.[1]

From a structural point of view, cellulose is a linear polysaccharide consisting of glucose residues
linked together by β-1,4 glycoside bonds. Because of their high molecular weight, linear con-
formation and the hydroxyl groups geometry, these molecules have a strong tendency to form
hydrogen-bonding thus rendering rigid crystalline regions. This property can explain the high insol-
ubility of native cellulose and also their stability with respect to chemical or enzymes attacks.
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850 CORREA AND FERRERO

Because of this resistance to enzymatic hydrolysis, cellulose can be considered as dietary fiber,
since it is not digested nor absorbed in the small intestine.[2] As a food additive, native cellulose
has only limited use due to its insolubility. Chemical modifications, particularly the substitution
with different functional groups, can change cellulose properties allowing a more extended appli-
cation. The more spread cellulose derivatives in the food industry are ethers in which substitution
upon one or more of the three available hydroxyl groups in each anhydroglucose monomer have
been performed with alkyl or hydroxyalkyl groups. The substitution facilitates chain separation
and allows further hydration and solubilization. The type and degree of substitution determines
diverse functional properties.[1] The more important derivatives are sodium carboxymethylcellulose
(CMC), methylcellulose (MC), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose
(HPMC). Another derivative is the microcrystalline cellulose (MCC) obtained by acid hydrolysis.
This reaction cleavages the non-crystalline zones and allows concentration of the crystalline ones.
Uses of modified celluloses vary according to their structure. MCC colloidal dispersions are used as
thickeners,[3] for ice crystal control, caloric reduction and fiber addition,[4] and foam and emulsion
stabilization.[5] CMC can be used as a stabilizer in ices and milk beverages,[6] for viscosity devel-
opment and suspension of solids in batters and coatings,[7,8] and as a thickener in pie fillings.[9]

HPMCs have the unique property of gel forming by heating due to their more hydrophobic char-
acter. They are applied in film formation,[10] as stabilizers in salad dressings, as oil barrier in fried
foods,[11] and in frozen foods for inhibiting moisture losses and ice crystal growth.[12] Furthermore,
HPMC is widely used in gluten-free products.[13]

Modified celluloses can be also applied in bakery products. There have been reported beneficial
effects of HPMCs on specific volume and crumb texture of common bread as well as on shelf life
of partially baked bread.[14,15] It has been reported that HPMCs can interact with gluten proteins[16]

and with starch affecting gelatinization.[17] Carboxymethylcellulose (CMC) has been studied by
several authors as an improver for fresh or frozen dough and in fiber enriched fresh breads.[18−20]

However, information about the effect of microcrystalline cellulose (MCC) on bread products is
scarce. In a previous work,[21] a comparative study of the effect of different modified celluloses on
wheat dough characteristics has been performed. Salt was found to be relevant for the quality of
gluten network, depending on the type of cellulose. A more stable protein matrix was obtained with
CMC in the presence of salt (NaCl). On the other hand, with more hydrophobic modified celluloses
like HPMCs a less stable network was observed when salt was added. Gum addition also affected
textural attributes of dough, such as adhesiveness, hardness, and consistency, and an increase in
viscous behavior was observed by rheometric assays when these hydrocolloids were added. The
degree of these effects was strongly dependent on salt presence. The objectives of the present work
were: (a) to compare the effect of commercial modified celluloses (MCC, CMC, and HPMC) on
bread quality attributes; and (b) to evaluate their potential protective effect with respect to bread
staling.

MATERIALS AND METHODS

Materials

Wheat commercial flour of standard quality provided by Molino Campodónico S.A. (La
Plata, Argentina) was used for dough preparation. Flour composition was as follows: proteins,
11.4 g/100 g flour (Kjeldahl factor = 5.7); lipids, 1.4 g/100 g flour; moisture, 14.2 g/100 g flour; and
ash, 0.678 g/100 g flour. Alveographic parameters of flour were: P = 96 mm H2O, L = 93 mm, W =
326 10− 4 J, and the falling number (FN) was 486 s. The modified celluloses employed were: micro-
crystalline cellulose (MCC; FMC Biopolymer, Philadelphia, PA, USA), carboxymethyl cellulose
(CMC; Latinoquímica Amtex S.A., Argentina), and two different types of hydroxypropylmethylcel-
lulose (HPMC F 4 M and HPMC F 50, Dow Chemical Company, USA). HPMC F 4 M has a degree
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MODIFIED CELLULOSES AS BREAD MAKING ADDITIVES 851

of substitution with methoxyl groups of 29.3% and a degree of substitution with hydroxypropyl
groups of 6.0%. For HPMC F 50, these values are 28.6 and 5.4%, respectively. Commercial desig-
nations for HPMCs are based on viscosity values for 2% gum solutions in water at 20◦C, according
to ASTM method D1347.[22] For the types used in this work, viscosities were 4477 mPa.s for HPMC
F 4 M and 46 mPa.s for HPMC F 50. Commercial MCC contains 12% w/w of CMC for a better
dispersion. Distilled water and commercial salt (NaCl) were used to prepare dough.

METHODS

Breadmaking

Dough formulation

Dough formulation on 100 g flour basis was compressed yeast 3.0% (Calza, Argentine), salt
2.0%, modified celluloses: 0.25, 0.5, 1.0, and 1.5% and water according to farinograph absorp-
tion of each formulation. Dough without modified celluloses was used as the control. Batches of
approximately 650 g were prepared in a planetary kneader (Kenwood, Italy). Dry ingredients were
premixed and the yeast was dissolved in part of the added water. Mixing times were fixed according
to development times obtained from farinograph assays.

Fermentation times

For determining optimum fermentation time for each formulation, dough prepared as described
above was divided into pieces (50 g), placed at the bottom of a graduated probe, and were left in
a 30◦C chamber (Brito Hnos, Argentine). Assays were performed by duplicates. The increase in
volume (1V) was defined as the difference between the volume at a certain time and the initial
volume and it was registered as function of time. Measurements were performed until the highest
increase in volume (1Vmax) was obtained. In Fig. 1a, a fermentation curve is showed and 1Vmax

is indicated. Values were fitted with an exponential equation (Chapman) including three parameters
(Eq. 1):

FIGURE 1 (A) Typical fermentation curve where 1Vmax is indicated.
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852 CORREA AND FERRERO

FIGURE 1 (B) Maximum increment of fermentation volume as obtained from Eq. (1). Symbols: (◦) CMC, (•)
MCC, (M) HPMC F 50, (H) HPMC F 4 M. Bars indicate standard deviation for the parameter “a” (1Vmax) in
Eq. (1).

1V = a ∗ (1 − exp(−b ∗ t))c, (1)

where a = 1Vmax, optimum fermentation time for each formulation was defined as the time required
to reach up to three quarts of 1Vmax.

Breadmaking process

For French-type bread preparation, two levels of hydrocolloids were assayed. After kneading,
dough was left to rest for 10 min at room temperature, sheeted four times, and left to rest again.
Then, it was divided into 90-g pieces. Each portion was rounded by hand, left to rest for 10 min,
and then shaped into bread loaves by means of a sheeter molder. These pieces were proofed at 30◦C
according to the optimum fermentation time and baked in a convection oven for 26 min at 210◦C.
After at least 3 h, breads were packaged into plastic bags and stored for 1 and 3 days at 20◦C.

Bread characterization

Specific volume. After cooling, bread pieces were weighted and each volume was deter-
mined by rapeseed displacement. The specific volume was calculated as volume/piece weight.
Measurements were performed by 15 replicates.

Crumb moisture. It was determined on fresh bread and after 1 and 3 days of storage at 20◦C.
The assay was performed according the AACC 44-19 method.[23]

Crust color. It was measured using a colorimeter (Chroma Meter CR-400C, Minolta, Osaka,
Japan). The Hunter scale parameters were determined: L (lightness, ranging from 0 to 100, from
black to white), a (positive values indicating redness and negative values, greenness), and b (positive
values indicate yellowness and negative values, blueness).

Crumb image analysis. Crumb grain characteristics of bread were assessed using a digital
image analysis (DIA) system. Images of the center of each slice were previously acquired at a
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MODIFIED CELLULOSES AS BREAD MAKING ADDITIVES 853

resolution of 350 dots per inch with a HP scanner 4070 model. Images were binarized using Image
J 1.43u software. The crumb grain characteristics studied were mean cell area (cm2), circularity,
perimeter (cm), and cell to total area ratio (or void fraction).

Crumb texture profile analyses. Texture profile analysis (TPA) of bread slices was performed
on fresh bread and after 1 and 3 days of storage at 20◦C. From the middle part of each bread piece,
two slices of 2 cm thickness were obtained. A texture analyzer TA.XT2i (Stable Micro Systems,
Surrey, UK) equipped with a 25-kg load cell was used to perform the TPA of crumb. The slices were
subjected to a double compression cycle up to 40% of the original height using a 2.5-cm diameter
cylindrical probe and 0.5 mm s−1 crosshead speed. Fifteen slices for each formulation were tested.
The parameters determined were hardness, cohesiveness, consistency, springiness, resilience, and
chewiness. Hardness is defined as the maximum force registered during the first compression cycle.
Cohesiveness was determined as the ratio between the positive area of the second cycle and the
positive area of the first cycle. Consistency was calculated as the area of the first peak plus the area
of the second peak. Springiness was calculated as the distance between the beginning and the peak of
the second cycle divided by the corresponding distance of the first cycle. Resilience or instantaneous
elasticity was calculated as the area during the withdrawal of the first compression, divided by the
area up to the maximum of the first cycle. Chewiness is calculated as the product of Hardness ∗

Cohesiveness ∗ Springiness.

Crumb dynamic mechanical analysis (DMA). Crumb samples for DMA assays were pre-
pared following the technique described by Ribotta and Le Bail.[24] Crumb pieces of approximately
1 cm thick were obtained from the central portion of each bread and then compressed up to 90%
of the initial height in a texture analyzer TA.XT2i (Stable Micro Systems, Surrey, UK). Samples
were molded to slabs of 60 mm long, 15 mm wide, and approximately 3 mm thick. The slabs were
wrapped with a plastic film to avoid dehydration and then they were frozen at –18◦C till measure-
ment. A Q 800 dynamic mechanical analyzer (TA Instruments, USA) was used with dual cantilever
geometry. The equipment was operated in a controlled force mode to obtain the linear viscoelastic
range and in the multi-frequency controlled strain mode to measure dynamic viscoelastic properties
of bread crumb samples. The measurements were performed at an amplitude of 15 µm within the
linear viscoelastic range. Samples were heated from –100 to 40◦C at 5◦C/min. Storage modulus
(E0), loss modulus (E00), and loss tangent (tan δ) were obtained as a function of three frequencies: 1,
5, and 10 Hz. The assay was performed in duplicate.

Bread Staling

Breads were stored at room temperature in plastic bags for 1 and 3 days. At each storage time, crumb
moisture and texture parameters were obtained as described above.

Crumb moisture loss

Moisture loss was calculated as the difference between moisture at the 3rd day with respect to
moisture of fresh bread (day 0) divided by moisture at day 0.

Differential scanning calorimetry

Calorimetric assays were performed to evaluate amylopectin retrogradation in control dough and
in doughs with modified celluloses at 1.5%. A TA Q100 calorimeter (TA Instruments, USA) was
used to obtain the thermograms. Small aliquots of dough (approximately 10 mg) exactly weighed
were put into the pans and then these were hermetically sealed. Samples were heated from 5 to
105◦C at 10◦C/min, simulating the baking process, and then allowed to rest at room temperature for
3 and 7 days. At each storage time a sample was heated from 5 to 140◦C at 5◦C/min. Onset, peak,
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854 CORREA AND FERRERO

and final temperature and retrogradation enthalpies were measured. Also, the retrogradation index
(RI) was calculated according to the following equation:

RI% = 1Hafter storage

1Hgelatinization
∗100. (2)

For each formulation, a run of a sample without storage was performed as a control.

Statistical Analysis

To discriminate among means, Bonferroni’s multiple comparison procedure was applied at 95%
confidence level. Statgraphics Plus software was used.

RESULTS AND DISCUSSION

Optimum Fermentation Times

At the maximum level of gum, doughs that reached up to greater volumes also required longer
fermentation times. In Fig. 1b, maximum increments (1Vmax) attained are plotted as a function of
the additive level. Doughs with MCC exhibited a lower 1Vmax and shorter fermentation times than
the control sample. This could be related to the fact that MCC particles are not soluble; thus, it
could act as filler in the gluten matrix with loss of elasticity. On the other hand, doughs with CMC
reached up to higher volumes than the control. With CMC of 1.5%, the highest 1Vmax was obtained.
Doughs with both HPMCs at the lowest levels showed a behavior similar to control dough. When
using HPMC F 4 M 1.5%, only a slight volume increase was observed compared with the sample
without gum. Rosell et al.[14] reported that dough stability during fermentation was improved by the
addition of HPMC. Besides, a better gas retention was observed when HPMC was used. CMC was
the gum that most improved dough behavior during fermentation since it allowed attaining higher
fermentation volumes. However, this could not be correlated with a higher farinographic stability,
reported in a previous work.[21] Taking into account these results, two levels for each hydrocolloid
were applied to analyze bread quality: the lowest level at which no significant differences were
detected among most formulations and a higher level at which each modified cellulose had a distinct
effect on dough. Selected levels were 0.5 and 1.5%. At 0.5%, most gums exhibited a maximum
volume slightly higher than the control. As seen in Fig. 1b, at 1.5% hydrocolloid level, samples
with HPMC F 4 M and CMC showed a 1Vmax much higher than the control (147.0, 162.9, and
134.3 cm3, respectively), HPMC F 50 1Vmax was similar to control one (132.2 cm3), and that of
MCC was inferior to it (114.7 cm3). The inferior performance of MCC can be probably attributed
to the insolubility of this gum; dispersed MCC particles could disrupt gluten matrix rendering a less
elastic dough.

Fresh Bread Quality

Among the quality attributes of bread, a specific volume is highly dependent on gluten network
quality and its ability to retain the carbon dioxide produced during fermentation. Specific volumes
of breads are shown in Fig. 2. CMC and HPMC F 4 M at both levels allowed to significantly increase
the specific volume. On the other hand, no significant differences were found among breads contain-
ing MCC and control breads. This is in accordance with the trend observed in fermentation stage.
Breads with HPMC F 50 at 1.5% had no significant differences with respect to control, whereas at
the lowest level of hydrocolloid, a higher specific volume was obtained. In the case of CMC and
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MODIFIED CELLULOSES AS BREAD MAKING ADDITIVES 855

FIGURE 2 Specific volume of bread. Different letters indicate significant differences (p < 0.05). Error bars
correspond to standard error.

HPMC F 4 M, a tendency was observed to higher volumes with increasing concentration of cel-
lulose. These tendencies had not been reflected in farinographic stability, since this parameter was
not affected or diminished by the presence of celluloses.[21] These beneficial effects of HPMC and
CMC are in agreement with those reported by other authors.[14,19,25]

Crust color is another quality parameter that highly affects bread acceptance. In general, this
attribute was not affected by cellulose addition. L values ranged from 56.5 to 63.3, a ranged from
9.7 to 13.1, and b ranged from 32.5 to 36.5. In most cases, no significant differences with respect
to control were detected, and though in some cases color differences could be distinguished by the
colorimeter, they were not detectable for the human eye. Crumb appearance was dependent on the
number and size of alveoli. For a high quality bread, alveoli should be numerous and uniformly sized
and distributed. In this case, no significant differences were found in the crumb grain characteristics
among the different samples (Table 1). In spite of the differences found in the specific volume, the
percentage of void area (which is related to a more aerated crumb) was not significantly different
among samples nor the mean area of alveoli. However, a trend to higher values of void area was
found in samples with 1.5% CMC, and to less aerated crumb in samples with MCC at 0.5%. One
reason for this high uniformity among samples is the fact that specimens for digital analysis were
taken from the central region of each slice, which is the more aerated part. A more compact crumb
was found in the bottom and near the surface of the bread. Taking into account this limitation, a
specific volume gives a more precise approach to bread quality.

TABLE 1
Crumb appearance

Mean cell area Perimeter Circularity
Sample (cm2) % Void (cm) (adim)

Control 0.013 ± 0.003ab 43.4 ± 3.2ab 0.67 ± 0.06b 0.40 ± 0.04a

MCC 0.5% 0.014 ± 0.003ab 40.9 ± 1.1a 0.67 ± 0.06b 0.42 ± 0.01a

MCC 1.5% 0.012 ± 0.001ab 42.6 ± 3.3ab 0.64 ± 0.03ab 0.41 ± 0.05a

CMC 0.5% 0.011 ± 0.001a 42.8 ± 2.5ab 0.57 ± 0.05a 0.45 ± 0.03a

CMC 1.5% 0.014 ± 0.001ab 45.8 ± 2.7b 0.68 ± 0.04b 0.42 ± 0.02a

HPMC F 4 M 0.5% 0.014 ± 0.001ab 42.1 ± 2.1ab 0.67 ± 0.05b 0.41 ± 0.03a

HPMC F 4 M 1.5% 0.014 ± 0.002b 43.1 ± 1.1ab 0.67 ± 0.07b 0.43 ± 0.02a

HPMC F 50 0.5% 0.015 ± 0.002b 42.7 ± 1.5ab 0.67 ± 0.03b 0.43 ± 0.02a

HPMC F 50 1.5% 0.012 ± 0.002ab 41.2 ± 2.3a 0.64 ± 0.05ab 0.43 ± 0.02a

± SD. Different letters indicate significant differences within the same column.
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856 CORREA AND FERRERO

FIGURE 3 Crumb hardness (A), cohesiveness (B), springiness (C), and chewiness (D) for fresh bread and for bread
stored 1 day and 3 days at 20◦C. Different letters within the same group of bars indicate significant differences (p <

0.05). Error bars correspond to standard error.

Instrumental texture profile analysis (TPA) of fresh bread crumb showed that the addition of MCC
and HPMC F 50 at 1.5% level led to similar hardness than the control sample (Fig. 3a). In all other
cases crumbs were softer than the control, particularly in the case of CMC at 1.5%. It is noteworthy
that the increment on gum level did not cause the same effect in all cases. It led to softer crumbs in
the case of CMC and HPMC F 4 M, but the increase in concentration of MCC and HPMC F 50 led
to harder crumbs.

Cohesiveness increased with the addition of hydrocolloids in all cases (Fig. 3b). This is a positive
effect since more cohesive crumbs are less susceptible to disintegration. Springiness (elasticity) is
a positive attribute in crumb and it was improved by the addition of gums (Fig. 3c). Resilience
(instant elasticity) of fresh bread was also increased by the addition of gums, ranging from 0.436 to
0.496, while the value for the control sample was 0.363 (results not shown). This indicates that
hydrocolloids contribute to improve the recovery after a deformation. Chewiness showed the same
trend than hardness, with lower values for CMC and HPMC F 4 M samples (Fig. 3d). The highest
levels of these gums had a positive effect, decreasing this parameter. On the other hand, with MCC
and HPMC F 50, the highest level of hydrocolloid led to higher values in chewiness.

According to Attenburrow et al.,[26] the Young’s modulus (E) of a food sponge as bread crumb
is a function of the Young’s modulus of the cell walls (Es) and the relative density of the bread
crumb (ratio between bulk density of foam and the density of cell wall material) according to the
expression: E ∞ Es [ρ/ρs]2. By analyzing the specific volume and the crumb hardness it is observed
that, in general, samples with higher specific volumes led to softer crumbs. This was confirmed by
the correlation coefficient (0.7). However, samples with the same specific volume CMC (both levels),
HPMC F 4 M (both levels), and HPMC F 50 (at 0.5%) exhibited significant differences in hardness
(the lower values corresponded to CMC and HPMC F 4 M at 1.5% level). If the bulk density is the
same, differences in global Young modulus should be attributed to density and Young modulus of the
alveoli walls according to the above expression. More density and/or less elasticity (a lower Young
modulus) of cell wall materials would be related to a less elastic crumb. In a previous work, it was
reported that hydrocolloids led to softer doughs, and disruption of gluten networks was observed in
some cases.[21]

Mechanical spectrum of control and CMC bread crumbs are shown in Fig. 4a and 4b, respectively.
In all cases a decrease in the storage modulus and an increase of tan(δ) was observed indicating a
more viscous behavior during heating. The loss modulus exhibits two or three peaks depending on
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MODIFIED CELLULOSES AS BREAD MAKING ADDITIVES 857

FIGURE 4 Mechanical spectrum of fresh bread crumb by DMA: (A) control, (B) CMC 1.5%. Tan δ, storage, and
loss moduli are shown.

the sample. The peak near to 0◦C is due to ice melting (Tm), the peak near to –30◦C is attributed to α-
relaxation that is associated with the glass transition, and the peak near to –70◦C (Tβ) is associated
to a β-relaxation below the glass transition.[27] The β-relaxation has been attributed to localized
molecular motion in the glassy state, particularly with side chains rotations or with conformational
changes of the main chain.[28,29]

In samples with CMC or MCC, the peak corresponding to glass transition (Tα) was observable
and could be measured. A small peak was observed in the case of HPMC F 4 M and this transition
was not noticeable in the control sample nor when HPMCF F 50 was added (results not shown).
On the other hand, the β-relaxation was present in all samples indicating that matrix in the glass
state exhibits rotational mobility in a higher or lower degree. The type of mechanical spectrum
found in CMC samples, with more pronounced peaks, is indicating a less rigid matrix; this fact
could affect the stiffness of alveoli walls.

Effect of Storage

Table 2 shows crumb moisture of fresh and stored bread. In spite of the fact that no differences were
found in bread with celluloses, with respect to control for the first day, increased water retention was
observed during storage in breads with additives. This fact is beneficial for breadmaking since water
retention contributes to preserve crumb texture for longer periods.

TABLE 2
Crumb moisture in fresh bread and after 1 and 3 days in storage

Sample Day 0 Day 1 Day 3 Loss (%)

Control 44.3 ± 0.5bcd 42.4 ± 0.5a 37.8 ± 0.6a 14.6
MCC 0.5% 43.0 ± 0.2a 42.7 ± 1.1ab 38.3 ± 1.0ab 10.9
MCC 1.5% 43.6 ± 0.3ab 42.6 ± 0.5a 40.7 ± 0.5cd 6.8
CMC 0.5% 44.6 ± 0.1d 43.2 ± 0.5abc 40.6 ± 0.5cd 9.0
CMC 1.5% 44.3 ± 0.3cd 43.7 ± 0.8abc 42.1 ± 0.5d 9.5
HPMC F 4 M 0.5% 44.7 ± 0.5d 44.5 ± 0.1bc 40.2 ± 0.8cd 10.0
HPMC F 4 M 1.5% 44.6 ± 0.3d 44.5 ± 0.3c 39.9 ± 1.0bc 10.6
HPMC F 50 0.5% 43.6 ± 0.5abc 43.5 ± 0.9abc 40.9 ± 0.2cd 6.1
HPMC F 50 1.5% 44.3 ± 0.8d 44.0 ± 1.2c 40.9 ± 1.0cd 7.7

± SD. Different letters indicate significant differences within the same column.
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858 CORREA AND FERRERO

During storage, crumb hardness was increased (Fig. 3a). For the control sample, the increment in
hardness at the first day of storage was 29.9%. When hydrocolloids were used, increments ranged
from 50.6 to 99.5. At day 3, increments were between 65.5 and 241.2%, while for control without
gum the increment was 81.5%. The lowest rate in increasing hardness was observed for MCC and
HPMC F 50 at 1.5%. This indicates that celluloses were not efficient in preventing crumb hardening
induced by retrogradation and they even promoted them.

During storage cohesiveness is partially lost, and at day 3 no significant differences were observed
between samples without and with hydrocolloids. Percent decrease after 3 days of storage ranged
from 27.9 to 32.1% (Fig. 3b). At the 3rd day of storage, resilience of samples with hydrocolloids
diminished up to 61.7% with respect to day 0, while for control bread, the diminution was 50.5%.
Elasticity (springiness) exhibited a similar trend, diminishing with storage but in a lesser extent
than resilience (Fig. 3c). At the 3rd day of storage, a decrease in springiness in the presence of
hydrocolloids reached up to 19.6% with respect to day 0, while control diminished only by 4% with
respect to day 0.

Chewiness exhibited a trend to increase during storage (Fig. 3d). As chewiness is the product of
hardness × cohesiveness × springiness, but the degree of variation in these three attributes is not
the same (hardness increases in a higher degree), the global result is an increase of chewiness. These
results indicate that hydrocolloids can render softer and more elastic and resilient crumbs but they
also would promote the partial loss of these characteristics during storage. However, since initial
values for these attributes are improved in the presence of gums, the final texture of bread with
hydrocolloids results are more acceptable than that of the control sample.[14,30,31]

These textural changes in crumb during storage can be related to starch retrogradation. As the
presence of hydrocolloids can lead to less rigid matrices and increased water retention, diffusion
dependent processes, such as starch retrogradation, could be favored.

In Table 3, amylopectin retrogradation parameters after 3 and 7 days of storage are shown. Peak
and endset temperatures were not significantly different with respect to control except for MCC and
CMC samples that showed a higher temperature. At the 3rd day, the more pronounced differences
with respect to the control were found for HPMC F 4 M, particularly in enthalpy value and onset
temperature. In general, after 7 days of storage, no significant differences with respect to control
were found in temperatures nor in enthalpy. However, enthalpy value for the HPMC F 4 M sample
remains the highest.

RI has been used by several authors to compare the retrogradation process among samples.[31,32]

Breads with HPMC F 4 M exhibited the highest RI, whereas no significant differences were found
for other samples with respect to control at the same time of storage. When RI% was compared
between the 3rd and the 7th day of storage an increment was found in the case of control, MCC, and
HPMC F 50 samples. These results indicate that, in general, the incidence of modified celluloses on
amylopectin retrogradation is low. Since hydrocolloids could not directly interact with amylopectin
that remains inside the granule, their incidence on retrogradation is related to the surrounding matrix,
leading to textural changes.

CONCLUSIONS

Modified celluloses can change fresh bread attributes leading to higher volumes and softer crumbs.
These can be related to the type of gluten-hydrocolloid matrix that is formed. Particularly, this
effect was observed with CMC and HPMC F 4 M (higher specific volume, better crumb texture—
softer and more cohesive and resilient crumbs). Other gums, like MCC and HPMC F50, did not
improve bread quality to the same extent. Concerning bread staling, gums had an accelerating effect
on retrogradation, probably due to changes in water retention and water migration ability during
storage. However, after storage final hardness was lower in most crumbs, and positive characteristics,
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such as cohesiveness, resilience, and elasticity, were better maintained, indicating a beneficial effect
of modified celluloses.
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hydrocolloids on dough and bread performance of samples made from frozen dough. Journal of Food Science 2007,
72, 235–241.

20. Angioloni, A.; Collar, C. Gel, dough and fibre enriched fresh breads: Relationships between quality features and staling
kinetics. Journal of Food Engineering 2009, 91, 526–532.

21. Correa, M.J.; Añón, M.C.; Perez, G.T.; Ferrero, C. Effect of modified celluloses on dough rheology and microstructure.
Food Research International 2010, 43, 780–787.

22. ASTM International. Monograph D1347-72. In: Test Methods for Methylcellulose; American Society for Testing and
Materials Monographs: West Conshohocken, PA, 1995.

23. AACC International. Methods 54-21, 38-12, 44-19. In: Approved Methods of the American Association of Cereal
Chemists, 10th Ed.; The American Association of Cereal Chemists, Inc.: St. Paul, MN, 2000.

24. Ribotta, P.D.; Le Bail, A. Thermo-physical and thermo-mechanical assessment of partially baked bread during chill-
ing and freezing process. Impact of selected enzymes on crumb contraction to prevent crust flaking. Journal of Food
Engineering 2007, 78, 913–921.

25. Guarda, A.; Rosell, C.M.; Benedito, C.; Galotto, M.J. Different hydrocolloids as bread improvers and antistaling agents.
Food Hydrocolloids 2004, 18, 241–247.

26. Attenburrow, G.E.; Goodband, R.M.; Taylor, L.J.; Lillford, P.J. Structure, mechanics and texture of a food sponge.
Journal of Cereal Science 1989, 9, 61–70.

27. Champion, D.; Le Meste, M.; Simatos, D. Towards an improved understanding of glass transition and relaxations in
foods: Molecular mobility in the glass transition range. Trends in Food Science and Technology 2000, 11, 41–55.

28. Johari, G.P. Glass transition and secondary relaxations in molecular liquids and crystals. Annals of New York Academic
Science 1976, 279, 117–140.

29. Scandola, M.; Ceccorulli, G.; Pizzoli, M. Molecular motions of polysaccarides in the solid state: Dextran, pullulan and
amylose. International Journal of Biological Macromolecules 1991, 13, 254–260.

30. Bárcenas, M.E.; Rosell, C.M. Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food
Hydrocolloids 2005, 19, 1037–1043.

31. Armero, E.; Collar, C. Crumb firming kinetics of wheat breads with anti-staling additives. Journal of Cereal Science
1998, 28, 165–174.

32. León, A.; Durán, E.; Benedito de Barber, C. A new approach to study starch changes occurring in the dough-baking
process and during bread storage. Zeitschrift für Lebensmittel Untersuchung und Forschung 1997, 204, 116–120.

D
ow

nl
oa

de
d 

by
 [C

ris
tin

a 
Fe

rr
er

o]
 a

t 1
3:

24
 2

9 
Ja

nu
ar

y 
20

15
 


	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Materials

	METHODS
	Breadmaking
	Dough formulation
	Fermentation times
	Breadmaking process
	Bread characterization

	Bread Staling
	Crumb moisture loss
	Differential scanning calorimetry

	Statistical Analysis

	RESULTS AND DISCUSSION
	Optimum Fermentation Times
	Fresh Bread Quality
	Effect of Storage

	CONCLUSIONS
	ACKNOWLEDGMENTS
	FUNDING
	REFERENCES

