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Abstract. Inspired by an old construction due to J. Kalman that relates distributive
lattices and centered Kleene algebras, in this paper we study an equivalence for certain
categories whose objects are algebras with implication (H,∧,∨,→, 0, 1) which satisfy
the following property for every a, b, c ∈ H: if a ≤ b → c, then a ∧ b ≤ c.

1. Introduction

Motivated by results due to Kalman [11], R. Cignoli in [8] proved that

the construction of [11] induces a functor K from the category of bounded

distributive lattices into the category of centered Kleene algebras. It was also

shown in [8] that K has a left adjoint [8, Theorem 1.7]. He also determined

an equivalence between the category of bounded distributive lattices and a

full subcategory of centered Kleene algebras [8, Theorem 2.4]. In particular,

there exists an equivalence between the category of Heyting algebras and the

category of centered Nelson algebras [8, Theorem 3.14]. Later, these results

were extended in [4, 5] in the context of residuated lattices.

A possible generalization of Heyting algebras is provided by the notion of

algebras with implication, DLI -algebras for short [6]. The question naturally

arises whether it is possible to consider some subcategory of DLI -algebras and

some category of centered Kleene algebras with implication in order to obtain

an equivalence between them, making the following diagram commute,

Hey
K ��

� �

��

Nelc� �

��
DLI+ ��� �

��

KLI′� �

��
BDL

K
�� Kl′c
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In this article, we answer this question in the positive. We consider DLI -

algebras (H,∧,∨,→, 0, 1) which also satisfy the following property: for every

a, b, c ∈ H, if a ≤ b → c, then a ∧ b ≤ c; or equivalently, the inequality

a ∧ (a → b) ≤ b, for every a, b ∈ H.

The applications of Kalman’s construction given in [8], together with the

interest in DLI -algebras [6], suggest that it is potentially fruitful to understand

Kalman’s work in the context ofDLI -algebras. We do this in the present paper.

The paper is organized as follows. In Section 2, we present some results

that we use later about Kalman’s functor for bounded distributive lattices and

Heyting algebras. In Section 3, we introduce certain varieties of DLI -algebras

and we study the relation among them. In Section 4, we build up categorical

equivalences for the mentioned varieties extending the original Kalman con-

struction. In Section 5, we establish an order isomorphism for the lattice of

congruences of any DLI -algebra with the additional inequality a∧(a → b) ≤ b.

In Section 6, we make some final remarks.

All the categories considered in this paper have an underlying class of alge-

bras, so we shall use the same notation in both cases.

2. Basic results

In the process of our research on this topic, we have found it useful to place

our problems in the following general context.

We assume the reader is familiar with bounded distributive lattices and

Heyting algebras [1]. A De Morgan algebra is an algebra (H,∧,∨,∼, 0, 1) of

type (2, 2, 1, 0, 0) such that (H,∨,∧, 0, 1) is a bounded distributive lattice and

∼ fulfills the equations ∼∼x = x and ∼(x ∨ y) = ∼x ∧ ∼y. An operation

∼ which satisfies the previous two equations is called a involution. A Kleene

algebra is a De Morgan algebra in which the inequality x∧∼x ≤ y∨∼y holds.

A centered Kleene algebra is a Kleene algebra with an element c such that

c = ∼c. It follows from the distributivity of the lattice that c is necessarily

unique. We write BDL for the category of bounded distributive lattices and

Klc for the category of centered Kleene algebras.

Remark 2.1. If H is a bounded distributive lattice, we define

K(H) := {(a, b) ∈ H ×H : a ∧ b = 0}.

We have that (K(H),∨,∧, c,∼, 0, 1) is a centered Kleene algebra by defining

the following operations:

(a, b) ∨ (d, e) := (a ∨ d, b ∧ e), (a, b) ∧ (d, e) := (a ∧ d, b ∨ e),

∼(a, b) := (b, a), 0 := (0, 1), 1 := (1, 0), c := (0, 0).

Moreover, if f : H → G is a morphism in BDL, then K(f) : K(H) → K(G)

given by K(f)(x, y) = (f(x), f(y)) is a morphism in Klc. Then there is a

functor K from BDL to Klc.
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Applying an extension of Priestley duality, in [8] Cignoli proves that K has a

left adjoint. He also proves that there exists a categorical equivalence between

BDL and a full subcategory of Klc in which the objects satisfy a condition in

its associated Priestley spaces.

Let (T,∨,∧,∼, c, 0, 1) be a centered Kleene algebra. We define

C(T ) := {x ∈ T : x ≥ c}.

We have that (C(T ),∧,∨, c, 1) is a bounded distributive lattice. Moreover, if

g : T → U is a morphism in Klc then C(g) : C(T ) → C(U) given by C(g)(x) =

g(x) is a morphism in BDL. Then we have a functor C from Klc to BDL. See

[4, 5, 8].

Remark 2.2. If H is in BDL, then the map αH : H → C(K(H)) given by

αH(x) = (x, 0) is an isomorphism in BDL. If T ∈ Klc, then βT : T → K(C(T ))

given by βT (x) = (x ∨ c,∼x ∨ c) is an injective map which is a morphism in

Klc. That βT is well defined follows since in any Kleene algebra, we have that

x ∧ ∼x ≤ c, so (x ∨ c) ∧ (∼x ∨ c) = (x ∧ ∼x) ∨ c = c.

Theorem 2.3. With the notation above, we have that the functor K is right

adjoint of C.

Proof. This follows from [4, Theorem 3.6]. See also [8, Theorem 1.7]. �

Let T ∈ Klc. We consider the following algebraic condition:

(CK) For every x, y ≥ c such that x∧ y ≤ c, there exists z such that z ∨ c = x

and ∼z ∨ c = y.

Remark 2.4. Let H ∈ BDL. Given two elements x, y in K(H) such that

x, y ≥ c and x ∧ y ≤ c, they are of the form x = (a, 0) and y = (b, 0), with

a ∧ b = 0. The element z = (a, b) in K(H) satisfies z ∨ c = x and ∼z ∨ c = y.

Therefore, K(H) satisfies (CK).

The condition (CK) is not necessarily satisfied in every centered Kleene

algebra, as we show in the following example.

Example 2.5. Consider the centered Kleene algebra of Figure 1. We have

that x, y ≥ c and x ∧ y = c. However, there is no z such that z ∨ c = x and

∼z ∨ c = y.

We write Kl′c for the full subcategory of Klc whose objects satisfy the con-

dition (CK). For T ∈ Klc, the following remark follows from the definition

of βT .

Remark 2.6. T satisfies (CK) if and only if βT is a surjective map.

Straightforward computations based on previous results of this section prove

the following result.

Theorem 2.7. The functors K and C establish a categorical equivalence be-

tween BDL and Kl′c with natural isomorphisms α and β.
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1

x y

c

∼x ∼y

0

Figure 1. An example of a centered Kleene algebra which

does not satisfy condition (CK).

Remark 2.8. In [8, Theorem 2.4], it was proved that there exists a categorical

equivalence between BDL and the full subcategory of Klc whose objects satisfy

a topological condition called the interpolation property. It was observed by

M. Sagastume [12] that if T ∈ Klc, then T satisfies the interpolation property if

and only if T satisfies (CK). Moreover, Kl′c is the full subcategory of Klc whose

objects satisfy the interpolation property. This result was never published. For

completeness, we give a direct proof of it for the interested reader at the end

of this article.

A quasi-Nelson algebra is a Kleene algebra such that for each pair x, y, there

exists x → (∼x∨y), where → is the Heyting implication. We define the binary

operation ⇒ as x ⇒ y = x → (∼x ∨ y). A Nelson algebra is a quasi-Nelson

algebra satisfying the equation (x ∧ y) ⇒ z = x ⇒ (y ⇒ z). A quasi-Nelson

algebra is a Nelson algebra if and only if it satisfies the interpolation property

[8, Theorem 3.5].

Let (H,∨,∧,→, 0, 1) be a Heyting algebra. We consider the following binary

operation in K(H) (see [10, 14]):

(a, b) ⇒ (d, e) := (a → d, a ∧ e).

The algebra (K(H),∧,∨,⇒, c, 0, 1) is a centered Nelson algebra. We write

Hey for the category of Heyting algebras and Nelc for the category of centered

Nelson algebras. For the following result, see [4, Proposition 3.7] and [8,

Theorem 3.14].

Theorem 2.9. Kalman’s adjunction restricts to an adjoint equivalence:

K � C: Hey → Nelc.

An involutive residuated lattice is a bounded, integral and commutative

residuated lattice (T,∨,∧, ∗,→, 0, 1) such that for every x ∈ T , we have that



 Kleene algebras with implication 379Vol. 00, XX Kleene algebras with implication 5

¬¬x = x, where ¬x := x → 0 and 0 is the least element of T [3]. In an

involutive residuated lattice, we have

x ∗ y = ¬(x → ¬y) and x → y = ¬(x ∗ ¬y).

A Nelson lattice [3] is an involutive residuated lattice (T,∨,∧, ∗,→, 0, 1) which

satisfies the additional inequality (x2 → y) ∧ ((¬y)2 → ¬x) ≤ x → y, where

x2 := x ∗ x. See also [13].

Let (T,∨,∧,⇒,∼, 0, 1) be a Nelson algebra. It follows from [3, Theorem

3.1] that (T,∧,∨, ∗,→, 0, 1) is a Nelson lattice by defining

x ∗ y := ∼(x ⇒ ∼y) ∨ ∼(y ⇒ ∼x),

x → y := (x ⇒ y) ∧ (∼y ⇒ ∼x).

Moreover, ¬x = x → 0 = ∼x.

Let (T,∧,∨, ∗,→, 0, 1) be a Nelson lattice. It follows from [3, Theorem 3.6]

that (T,∨,∧,⇒,∼, 0, 1) is a Nelson algebra by defining

x ⇒ y := x2 → y and ∼x := ¬x.

Moreover, it can be proved that centered Nelson algebras and Nelson lattices

are equationally equivalent (see [3, Theorem 3.11]).

Remark 2.10. Let (H,∨,∧,→, 0, 1) be a Heyting algebra. For (a, b) and

(d, e) in K(H), the operations ∗ and → defined previously take the form

(a, b) ∗ (d, e) = (a ∧ d, (a → e) ∧ (d → b)),

(a, b) → (d, e) = ((a → d) ∧ (e → b), a ∧ e).

We write → both for the implication in H as for the implication in K(H).

A centered Nelson lattice is an algebra (T,∨,∧, ∗,→, c, 0, 1), where the

reduct (T,∨,∧, ∗,→, 0, 1) is a Nelson lattice and c is a constant such that

¬c = c.

Corollary 2.11. There exists an equivalence between Hey and the category of

centered Nelson lattices.

3. Some varieties of DLI-algebras

Recall from [6] that an algebra (H,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0) is a

DLI -algebra if (H,∧,∨, 0, 1) is a bounded distributive lattice and the following

conditions are satisfied:

(I1) (a → b) ∧ (a → d) = a → (b ∧ d),

(I2) (a → d) ∧ (b → d) = (a ∨ b) → d,

(I3) 0 → a = 1,

(I4) a → 1 = 1.

Remark 3.1. Let H be a DLI -algebra. It follows from (I1) that if a ≤ b, then

d → a ≤ d → b, and it follows from (I2) that if a ≤ b, then b → d ≤ a → d.
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We write DLI+ for the variety of DLI -algebras whose algebras satisfy the

following equation:

(I5) a ∧ (a → b) ≤ b.

Remark 3.2. In any DLI -algebra the equation (I5) is equivalent to the fol-

lowing condition: for every a, b, d, if a ≤ b → d, then a ∧ b ≤ d.

In every bounded distributive lattice H, if we define a binary operation →
by a → b = 1 for every a, b, then (H,→) is is a DLI -algebra [7]. Taking

into account this property, we can show that DLI+ is a proper subvariety of

the variety of DLI -algebras. In order to prove this, consider the chain of two

elements H2 = {0, 1} with the above mentioned implication. We have that

1 ∧ (1 → 0) = 1 � 0. Hence, DLI+ is a proper subvariety of the variety

of DLI -algebras. Furthermore, in every bounded distributive lattice H, it is

possible to define a binary operation with the property that (H,→) ∈ DLI+

as we show in the following example.

Example 3.3. Let H be a bounded distributive lattice. Then (H,→) ∈ DLI+

by defining

a → b =

{
1, if a = 0;

b, if a �= 0.

Let H ∈ DLI+. We consider the following equation:

(I6) a → a = 1.

We write DLI+1 for the subvariety of DLI+ whose objects satisfy (I6).

Example 3.4. Consider the chain of three elements H3 = {0, a, 1} such that

0 < a < 1. We have that (H3,→) ∈ DLI+, where → is the binary operation

given in Example 3.3. Since a → a = a �= 1, then (H3,→) /∈ DLI+1 . Hence, we

have that DLI+1 is a proper subvariety of DLI+.

Let H ∈ DLI+1 . Consider the following inequality:

(I7) (a → b) ∧ (b → d) ≤ a → d.

A weak Heyting algebra, or WH-algebra [2, 7], is an ordered algebraic struc-

ture (H,∧,∨,→, 0, 1), where the reduct (H,∧,∨, 0, 1) is a bounded distributive

lattice and → is a binary operation on A satisfying for all a, b, c ∈ H the follow-

ing conditions: (a → b)∧(a → d) = a → (b∧d), (a → d)∧(b → d) = (a∨b) → d,

(a → b) ∧ (b → d) ≤ a → d, and a → a = 1.

Some examples of WH -algebras that appear in the literature are the

RWH -algebras [7] and the subresiduated lattices introduced by G. Epstein

and A. Horn in [9]; these last structures were introduced as a generalization of

Heyting algebras. A RWH -algebra is a WH -algebra that in addition satisfies

the inequality (I5). A subresiduated lattice is a RWH -algebra that in addition

satisfies the inequality

(I8) a → b ≤ d → (a → b).
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We write RWH for the variety of RWH -algebras, and SRL for the variety

of subresiduated lattices. Note that RWH is the subvariety of DLI+1 whose

algebras satisfy (I7), and SRL is the subvariety of DLI+ whose algebras satisfy

(I7) and (I8).

Example 3.5. Consider the chain of four elements H4 = {0, a, b, 1} with

0 < a < b < 1. We consider the following binary operation:

→ 0 a b 1

0 1 1 1 1

a 0 1 1 1

b 0 a 1 1

1 0 0 b 1

Straightforward computations show that (H4,→) ∈ DLI+1 . However, we have

that 1 → b = b and b → a = a, so (1 → b) ∧ (b → a) = a � 0 = 1 → a. Hence,

RWH is a proper subvariety of DLI+1 .

Let H ∈ DLI+. We consider the following condition:

(A) For every a, b, if a ∧ b = 0, then a ≤ b → 0.

We write DLI+¬ for the class of algebras of DLI+ whose algebras satisfy the

condition (A). It is immediate that in every algebra of DLI+¬ we have that

a ∧ b = 0 if and only if a ≤ b → 0. Moreover, it follows from [1, Theorem 1,

Sec. 3, Ch. VIII] that DLI+¬ is a variety.

Example 3.6. Consider the boolean lattice B2, whose atoms are a and b. We

have that (B2,→) ∈ DLI+, where → is the implication given in Example 3.3.

Moreover, a ∧ b = 0 and a → 0 = 0. Thus, b � a → 0. Hence, the condition

(A) is not satisfied for this algebra. Therefore, DLI+¬ is a proper subvariety of

DLI+.

Let (H3,→) be the algebra given in Example 3.4, which is not in DLI+1 .

Straightforward computations show that (H3,→) ∈ DLI+¬ .

Finally, consider the bounded distributive lattice B2 given in Example 3.6.

Define the following binary operation:

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b 0 0 1 1

1 0 0 b 1

Then (B2,→) ∈ SRL and it is not an algebra of DLI+¬ because a ∧ b = 0,

b → 0 = 0 and a � 0.

The relation among all mentioned varieties is depicted in Figure 2.
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DLI+

DLI+1 DLI+¬

RWH

SRL

Hey

Figure 2. The relations among some of the varieties men-

tioned in this work.

4. Kalman’s functor

The fact that Kalman’s construction can be extended consistently to Heyt-

ing algebras led us to believe that some of this picture could be lifted to the

variety DLI+. In this section, we study this level of generality.

Let H ∈ DLI+. Write → for the implication of H. We define a binary

operation on K(H) (also written →) by

(a, b) → (d, e) := ((a → d) ∧ (e → b), a ∧ e). (4.1)

This definition is motivated by Remark 2.10. Since a ∧ b = d ∧ e = 0,

then (a → d) ∧ (e → b) ∧ a ∧ e = 0. Hence, → is well defined in K(H).

Thus, we can consider algebras (K(H),∧,∨,→,∼, (0, 0), (0, 1), (1, 0)) of type

(2, 2, 2, 1, 0, 0, 0) where the reduct (K(H),∧,∨,∼, (0, 0), (0, 1), (1, 0)) is a cen-

tered Kleene algebra with the operations defined in Remark 2.1. The next

definition is motivated by the original Kalman construction.

Definition 4.1. We write KLI for the category whose objects are algebras

(T,∧,∨,→,∼, c, 0, 1) of type (2, 2, 2, 1, 0, 0, 0) such that (T,∧,∨,∼, c, 0, 1) is a

centered Kleene algebra and → is a binary operation on T which satisfies the

following conditions.

(KLI1) (T,∧,∨,→, 0, 1) is a DLI-algebra.

(KLI2) (x ∧ (x → y)) ∨ c ≤ y ∨ c for every x, y.

(KLI3) c → c = 1.

(KLI4) (x → y) ∧ c = (∼x ∨ y) ∧ c for every x, y.

(KLI5) (x → ∼y) ∨ c = ((x → (∼y ∨ c)) ∧ (y → (∼x ∨ c)), for every x, y.

The objects of this category are called Kleene lattices with implication.
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Remark 4.2. Let H be a Kleene algebra endowed with a binary operation

→. We define another binary operation on H by x ∗ y = ∼(x → ∼y). Note

also that ∗ defines →. More concretely, x ∗ y = ∼(x → ∼y) implies that

x → y = ∼(x ∗ ∼y).

Let T be a centered Kleene algebra endowed with two binary operations,

→ and ∗, related as in Remark 4.2. Then (KLI1) holds on T if and only if

(T,∧,∨, ∗, 0, 1) is a DLF-algebra [6], (KLI2) holds on T if and only if we have

x∧ c ≤ (∼y∨ (y ∗ c))∧ c for every x, y, (KLI3) holds on T if and only c ∗ c = 0,

(KLI4) holds on T if and only if (x ∗ y) ∨ c = (x ∧ y) ∨ c for every x, y, and

(KLI5) holds on T if and only if (x ∗ y) ∧ c = (x ∗ (y ∧ c)) ∨ (y ∗ (x ∧ c)) for

every x, y.

Proposition 4.3. Let H ∈ DLI+. Then K(H) admits the structure of a

Kleene lattice with the operations defined in Remark 2.1 and the implication

given in (4.1). Furthermore, K extends to a functor from DLI+ to KLI, which

we also will write K.

Proof. It is a routine exercise to prove the condition (KLI1) (it is an immediate

consequence of the fact that H is a DLI -algebra).

Let (a, b), (d, e) ∈ K(H). In order to prove (KLI2), we use (I5):

((a, b) ∧ ((a, b) → (d, e))) ∨ c = ((a, b) ∧ ((a → d) ∧ (e → b), a ∧ e)) ∨ c

= (a ∧ (a → d) ∧ (e → b), 0) ≤ (d ∧ (e → b), 0) ≤ (d, 0) = (d, e) ∧ c.

Straightforward computations prove (KLI3). In order to prove (KLI4), note

that ((a, b) → (d, e)) ∧ c = (0, a ∧ e) and

(∼(a, b) ∨ (d, e)) ∧ c = ((b, a) ∨ (d, e)) ∧ c = (0, a ∧ e).

Hence, we have that ((a, b) → (d, e)) ∧ c = (∼(a, b) ∨ (d, e)) ∧ c. Finally, we

shall prove (KLI5). We have that

((a, b) → ∼(d, e)) ∨ c = ((a, b) → (e, d)) ∨ c = ((a → e) ∧ (d → b), 0).

Moreover, we have that

((a, b) → (∼(d, e) ∨ c)) ∧ ((d, e) → (∼(a, b) ∨ c)) = (a → e, 0) ∧ (d → b, 0)

= ((a → e) ∧ (d → b), 0).

Thus,

((a, b) → ∼(d, e)) ∨ c = ((a, b) → (∼(d, e) ∨ c)) ∧ ((d, e) → (∼(a, b) ∨ c)).

Then K(H) is a Kleene lattice.

Let f : H → G be a morphism in DLI+. As before, let K(f) : K(H) → K(G)

be defined by K(f)(a, b) = (f(a), f(b)). Straightforward computations show

that K(f) preserves the implication operation, which implies that K(f) is a

morphism in KLI. �

Proposition 4.4. The category of centered Nelson lattices is a full subcategory

of KLI.
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Proof. Let T be a centered Nelson lattice. Using Theorem 2.9, it can be proved

that T ∼= K(C(T )) in the category of centered Nelson lattices. But C(T ) is a

Heyting algebra, so we have C(T ) ∈ DLI+. Since K is a functor from DLI+ to

KLI, we have that K(C(T )) ∈ KLI. Therefore, T ∈ KLI. �

The following lemma will be used throughout the paper.

Lemma 4.5. Let T ∈ KLI. The binary operation ∗ is monotonic.

Proof. Let x, y, z ∈ T such that x ≤ y. Taking into account that T is a DLI -

algebra, we obtain that (x → ∼z)∧ (y → ∼z) = (x∨ y) → ∼z. But x∨ y = y,

so y → ∼z ≤ x → ∼z, i.e., ∼(y ∗ z) ≤ ∼(x ∗ z). This implies that x ∗ z ≤ y ∗ z,
which was our aim. �

In what follows, we give some algebraic properties of the variety KLI which

we shall use later.

Lemma 4.6. Let T ∈ KLI.

(1) For every x, c ∗ x ≤ c. In particular, c ≤ c → x for every x.

(2) For every x, x ∗ y = y ∗ x.
(3) For every x, x ∗ (x → c) ≤ c. In particular, for every x, y, if x ≤ y → c,

then x ∗ y ≤ c.

(4) For every x, (c → x) ∗ ∼x ≤ c.

(5) For every x, c → (c ∨ x) = 1.

(6) For every x, x → y = ∼y → ∼x.

(7) c → 0 = c. Equivalently, c ∗ 1 = c.

Proof. (1): Let x ∈ T . Then c ∗ x ≤ c ∗ 1 = c, so c ∗ x ≤ c. In order to prove

that c ≤ c → x, note that c ∗ ∼x ≤ c. So, c ≤ c → x.

(2): Let x, y ∈ T . From (KLI4) and (KLI5), we have (x ∗ y)∧ c = (y ∗x)∧ c

and (x ∗ y) ∨ c = (y ∗ x) ∨ c. So, we have that x ∗ y = y ∗ x.
(3): Let x, y ∈ T . It follows from (KLI4) that we have

(x ∗ (x → c)) ∨ c = (x ∧ (x → c)) ∨ c = c,

so x∗ (x → c) ≤ c. Now suppose that x ≤ y → c. Then x∗y ≤ y ∗ (y → c) ≤ c,

i.e., x ∗ y ≤ c.

(4): Let x ∈ T . Since c → x = ∼x → c, by (3) we have (c → x) ∗ ∼x ≤ c.

(5): Let x ∈ T . We have that c ∧ ∼x ≤ c, so c ∗ (c ∧ ∼x) ≤ c2 = 0. Hence,

we have that c ∗ (c ∧ ∼x) = 0, i.e., c → (c ∨ x) = 1.

(6): Let x, y ∈ T . By (KLI4) and (KLI5), (x → y) ∧ c = (∼y → ∼x) ∧ c

and (x → y) ∨ c = (∼y → ∼x) ∨ c, so x → y = ∼y → ∼x.

(7): We shall prove that c → 0 = 0, which is equivalent to 1 → c = c. It

follows from (KLI2) that (1 ∧ (1 → c)) ∨ c ≤ c ∨ c, so (1 → c) ∨ c = c. Then

1 → c ≤ c. Also, it follows from (KLI4) that (1 → c) ∧ c = (∼1 ∨ c) ∧ c, i.e.,

(1 → c) ∧ c = c. Then c ≤ 1 → c. Therefore, 1 → c = c. �

By Lemma 4.6 we can prove the following
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Proposition 4.7. If (T,∨,∧,∼,→, c, 0, 1) ∈ KLI, then (C(T ),∨,∧,→, c, 1) ∈
DLI+. If f : T → U is a morphism in KLI, then C(f) : C(T ) → C(U), given

by C(f)(x) = f(x), is a morphism in DLI+.

Proof. We have that C(T ) is closed under the operation →. In order to prove

it, let x, y ≥ c. Then x ∗ ∼y ≤ x ∗ c = c ∗ x ≤ c, so x → y = ∼(x ∗ ∼y) ≥ c.

Let x ≥ c. Then ∼x ≤ c, so c ∗ ∼x ≤ c2 = 0. Thus, we have that c → x = 1.

Finally, let x, y ≥ c. Since x ∧ (x → y) = (x ∧ (x → y)) ∨ c ≤ y ∨ c = y, then

x ∧ (x → y) ≤ y. The rest of the proof is immediate. �

It can be seen that C defines a functor from KLI to DLI+.

Remark 4.8. For H ∈ DLI+ and a, b ∈ H, αH(a → b) = αH(a) → αH(b),

where αH is the map defined in Remark 2.2. Then αH is an isomorphism in

DLI+.

For the case of the category KLI, we can show the following

Proposition 4.9. Let T ∈ KLI. Then βT is a morphism in KLI, where βT is

the map defined in Remark 2.2.

Proof. We need to prove that βT (x → y) = βT (x) → βT (y) for every x, y.

Equivalently, we need to prove that βT (x → ∼y) = βT (x) → βT (∼y) for every

x, y. First note that

βT (x → ∼y) = ((x → ∼y) ∨ c,∼(x → ∼y) ∨ c)

= (∼(x ∗ y) ∨ c, (x ∗ y) ∨ c) = (∼((x ∗ y) ∧ c), (x ∗ y) ∨ c).

It follows from Lemma 4.6 that c → (∼x∨ c) = 1 and c → (∼y∨ c) = 1. Then

we also have that

βT (x) → βT (∼y) = ((x → (∼y ∨ c) ∧ (y → (∼x ∨ c)), (x ∧ y) ∨ c)

= (∼((x ∗ (y ∧ c)) ∧ (y ∗ (x ∧ c)), (x ∧ y) ∨ c).

Thus, from (KLI4) and (KLI5), we have βT (x → ∼y) = βT (x) → βT (∼y). �

For every (T,∧,∨,∼, c, 0, 1) ∈ Klc, it is possible to define a binary operation

→ such that (T,∧,∨,→,∼, c, 0, 1) ∈ KLI. We do this in the following example.

Example 4.10. Let (T,∧,∨,∼, c, 0, 1) ∈ Klc. Define on T the following binary

map:

x → y =




1, if x ≤ c and y ≥ c;

∼x, if x ≤ c and y � c;

y, if x � c and y ≥ c;

((y ∨ c) ∧ ∼x) ∨ ((∼x ∨ c) ∧ y), if x � c and y � c.

It can be seen that (T,∧,∨,→,∼, c, 0, 1) ∈ KLI.

Remark 4.11. Note that for the centered Kleene algebra of the Example 2.5,

Example 4.10 yields an algebra of KLI which does not satisfy the condition

(CK).
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We write KLI′ for the full subcategory of KLI whose objects satisfy the

condition (CK).

Theorem 4.12. There exists a categorical equivalence K � C: DLI+ → KLI′.

Proof. This follows from Theorem 2.7, Proposition 4.3, Proposition 4.7, Propo

sition 4.9, and Remark 4.8. �

Remark 4.13. For algebras of KLI′, the involution can not necessarily be

defined in terms of the implication and some constant. Consider the boolean

algebra of four elements {0, a, b, 1}, where a and b are the atoms. For the

underlying bounded lattice, consider the implication given in Example 3.3,

and write B4 for this algebra. We have that K(B4) ∈ KLI′. For x = (a, b),

the only y ∈ K(L) such that x → y = ∼x is y = ∼x. However, c → ∼c �= ∼c.

Therefore, there is no y ∈ K(L) such that x → y = ∼x for every x ∈ K(L).

In the rest of this section, we shall study the restriction to the equivalence

given in Theorem 4.12 to subvarieties of DLI+ defined at the end of Section 3.

4.1. The variety DLI+1 . Let T ∈ KLI′. We also write (I6) for the equation

x → x = 1 on T . Let H ∈ DLI+ and T ∈ KLI′. If H satisfies (I6), then K(H)

satisfies (I6), and if T satisfies (I6), then C(T ) satisfies (I6).

Corollary 4.14. There exists a categorical equivalence between DLI+1 and the

full subcategory of KLI′ whose objects satisfy (I6).

Proof. This follows from Theorem 4.12. �

4.2. The variety RWH. For T ∈ KLI, we consider the following equation:

(KLI7) (x → y) ∧ (y → z) ≤ (x → z) ∨ c.

Lemma 4.15. Let H ∈ DLI+ and T ∈ KLI. If H satisfies (I7), then K(H)

satisfies (KLI7), and if T satisfies (KLI7), then C(T ) satisfies (I7).

Proof. First we suppose that H satisfies (I7). Let (a, b), (d, e), (f, g) ∈ K(H).

We have that

((a, b) → (d, e)) ∧ ((d, e) → (f, g))

≤ ((a → d) ∧ (d → f) ∧ (g → e) ∧ (e → b), 0)

≤ ((a → f) ∧ (g → b), 0) = ((a, b) → (f, g)) ∨ c.

Conversely, assume that T satisfies (KLI7). Let x, y, z ≥ c. Then

(x → y) ∧ (y → z) ≤ x → z = (x → z) ∨ c. �

Corollary 4.16. There exists a categorical equivalence between RWH and the

full subcategory of KLI′ whose objects satisfy (I6) and (KLI7).

Proof. This follows from Lemma 4.15 and Theorem 4.12. �
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4.3. The variety SRL. For T ∈ KLI we consider the following equation:

(KLI8) x → y ≤ (z ∨ c) → (x → y).

Lemma 4.17. Let H ∈ DLI+ and T ∈ KLI. If H satisfies (I8) then K(H)

satisfies (KLI8), and if T satisfies (KLI8) then C(T ) satisfies (I8).

Proof. First suppose that H satisfies (I8). Let (a, b), (d, e), (f, g) ∈ K(H). We

have that

(a, b) → (d, e) = ((a → d) ∧ (e → b), a ∧ e)

≤ (f → ((a → d) ∧ (e → b)), a ∧ e).

The implication (f, 0) → ((a → d) ∧ (e → b), a ∧ e) yields

(f → ((a → d) ∧ (e → b)) ∧ ((a ∧ e) → 0), f ∧ a ∧ e).

Then one has, as desired,

(f → ((a → d) ∧ (e → b)) ∧ ((a ∧ e) → 0), f ∧ a ∧ e)

≤ (f → ((a → d) ∧ (e → b)), f ∧ a ∧ e).

Conversely, let T satisfies (KLI8). Let x, y, z ≥ c. Then z ∨ c = z. Hence,

x → y ≤ (z ∨ c) → (x → y) = z → (x → y). �

Corollary 4.18. There exists a categorical equivalence between SRL and the

full subcategory of KLI′ whose objects satisfy (I6), (KLI7) and (KLI8).

Proof. This follows from Lemma 4.17 and Corollary 4.16. �

4.4. The variety DLI+¬ . Let T ∈ KLI. We consider the following condition:

(B) For every x, y, if x, y ≥ c and x ∧ y ≤ c, then y ≤ x → c.

Lemma 4.19. If H ∈ DLI+ satisfies (A), then K(H) satisfies (B). Con-

versely, if T ∈ KLI satisfies (B), then C(T ) satisfies (A).

Proof. Let H ∈ DLI+ satisfy (A). Let x = (a, d), y = (b, e) ∈ K(H) such that

x, y ≥ c and x ∧ y ≤ c. Hence, x = (a, 0), y = (b, 0) and a ∧ b = 0. Thus, it

follows from (A) that a ≤ b → 0. But we have that y → c = (b → 0, 0), so

x ≤ y → c. Conversely, suppose that T ∈ KLI satisfies (B). Let x, y ∈ C(T )

such that x∧ y = c. It follows from (B) that y ≤ x → c. Therefore, we obtain

the condition (A) in C(T ). �

Lemma 4.20. Let T ∈ KLI. If T satisfies (B), then T satisfies (CK).

Proof. Let x, y ≥ c such that x ∧ y ≤ c. It follows from (B) that x ≤ y → c.

Let z = x ∧ (y → ∼y). Then it follows from (KLI4) that

c ∧ z = c ∧ x ∧ (y → ∼y) = c ∧ (y → ∼y) = c ∧ ∼y = ∼y.
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Then we have that ∼z ∨ c = y. From (KLI5) and Lemma 4.6, we have

z ∨ c = (x ∧ (y → ∼y)) ∨ c = (x ∧ (y → ∼y)) ∨ (c ∧ x)

= x ∧ ((y → ∼y) ∨ c) = x ∧ (y → (∼y ∨ c)) ∧ (y → (∼y ∨ c))

= x ∧ (y → (∼y ∨ c)) = x ∧ (y → c) = x.

Thus, we obtain that z ∨ c = x. Therefore, T satisfies (CK). �

The next theorem follows from Theorem 4.12, Lemma 4.19 and Lemma 4.20.

Theorem 4.21. There exists an equivalence between DLI+¬ and the full sub-

category of KLI whose objects satisfies (B).

Let T ∈ KLI. Does (CK) imply (B)? Suppose that (CK) implies (B). By

previous results of this paper, we obtain DLI+ = DLI+¬ , which is a contradic-

tion. Therefore, (CK) does not necessarily imply (B).

4.5. Conclusions. Let L ∈ DLI+. Then K(L) ∈ Kl′c. In what follows, we

summarize in a table part of the results of this section.

Condition in L Condition in K(L)

(I6) (I6)

(I7) (KLI7)

(I8) (KLI8)

(A) (B)

The condition on the left holds in L if and only if the condition on the right

holds in K(L).

5. Congruences

Write Con(H) for the lattice of congruences of an algebra H. It was proved

in [4] that if H is a bounded distributive lattice, then there exists an order iso-

morphism between Con(H) and Con(K(H)). In this section, we make explicit

this construction in order to extend this property to the case of DLI+.

Let H be a DLI -algebra. We say that F is a filter of H if F is a lattice

filter of H, meaning that 1 ∈ F , x∧y ∈ F whenever x, y ∈ F , and if x ≤ y and

x ∈ F , then y ∈ F . It is known that in any Heyting algebra H, there exists

an order isomorphism between Con(H) and the filters of H [1]. Moreover, it

was proved in [7, Proposition 6.12] that for H ∈ RWH, there exists an order

isomorphism between Con(H) and the filters F of H such that 1 → f ∈ F

whenever f ∈ F . In this section, we also generalize these properties proving

that there exists an order isomorphism between Con(H) and certain family of

filters of H, whenever H ∈ DLI+1 .

We start with some preliminary definitions.
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Definition 5.1. Let H be a bounded distributive lattice and θ a congruence

of H. We define in K(H) the following congruence:

((a, b), (d, e)) ∈ τθ if and only if (a, d) ∈ θ and (b, e) ∈ θ.

If τ is a congruence in K(H), we define in H the following congruence:

(a, b) ∈ θτ if and only if ((a, 0), (b, 0)) ∈ τ .

Then we have the following lemma, which is inspired by [4, Remark 7.12].

Lemma 5.2. For a bounded distributive lattice H, f : Con(H) → Con(K(H)),

given by f(θ) = τθ, is an order isomorphism.

Proof. Let θ1, θ2 ∈ Con(H) such that τθ1 = τθ2 , and let (a, b) ∈ θ1. Since

((a, 0), (b, 0)) ∈ τθ1 , then (a, b) ∈ θ2. Thus, f is an injective map.

Let τ ∈ Con(K(H)). We prove that f(θτ ) = τ . Let ((a, b), (d, e)) ∈ f(θτ ),

i.e., (a, d) ∈ θτ and (b, e) ∈ θτ , which means that ((a, 0), (d, 0)) ∈ τ and

((b, 0), (e, 0)) ∈ τ . Since ((a, b) ∧ c, (d, e) ∧ c), ((a, b) ∨ c, (d, e) ∨ c) ∈ τ , then

((a, b), (d, e)) ∈ τ . Thus, f(θτ ) ⊆ τ . In order to prove the converse inclusion,

let ((a, b), (d, e)) ∈ τ . We need to show that (a, d) ∈ θτ and (b, e) ∈ θτ , which

means that ((a, 0), (d, 0)) ∈ τ and ((b, 0), (e, 0)) ∈ τ . As ((a, b), (d, e)) ∈ τ ,

we obtain that ((a, b) ∨ c, (d, e) ∨ c) ∈ τ and ((a, b) ∧ c, (d, e) ∧ c) ∈ τ , i.e.,

((a, 0), (d, 0)) ∈ τ and ((0, b), (0, e)) ∈ τ . In particular, (∼(0, b),∼(0, e)) ∈ τ ,

i.e., ((b, 0), (e, 0)) ∈ τ . Then τ ⊆ f(θτ ). Hence, f(θτ ) = τ , which implies that

f is a surjective map.

Finally, taking into account that θ1 ⊆ θ2 if and only if f(θ1) ⊆ f(θ2), we

conclude that f is an order isomorphism. �

Lemma 5.3. Let H ∈ DLI+, θ ∈ Con(H), and τ ∈ Con(K(H)). Then

τθ ∈ Con(K(H)) and θτ ∈ Con(H).

Proof. Let ((a1, b1), (d1, e1)) ∈ τθ, ((a2, b2), (d2, e2)) ∈ τθ, i.e., (a1, d1) ∈ θ,

(a2, d2) ∈ θ, (b1, e1) ∈ θ and (b2, e2) ∈ θ. Hence, (a1 → a2, d1 → d2) ∈ θ,

(b2 → b1, e2 → e1) ∈ θ and (a1 ∧ b2, d1 ∧ e2) ∈ θ. Moreover, we have that

((a1 → a2)∧ (b2 → b1), (d1 → d2)∧ (e2 → e1)) ∈ θ. Since (a1 ∧ b2, d1 ∧ e2) ∈ θ,

from the definition of τθ we have ((a1, b1) → (a2, b2), (d1, e1) → (d2, e2)) ∈ τθ.

Then, τθ ∈ Con(K(H)).

Finally let τ ∈ Con(K(H)). Let (a, b) ∈ θτ and (d, e) ∈ θτ . Hence,

((a, 0), (b, 0)), ((d, 0), (e, 0)) ∈ τ . Thus, ((a, 0) → (d, 0), (b, 0) → (e, 0)) ∈ τ .

But (a, 0) → (d, 0) = (a → d, 0) and (b, 0) → (e, 0) = (b → e, 0), so we have

that (a → d, b → e) ∈ θτ . Therefore, θτ ∈ Con(H). �

Corollary 5.4. Let H ∈ DLI+. The map f : Con(H) → Con(K(H)), given

by f(θ) = τθ, is an order isomorphism.

As we have said before, congruences in DLI+1 are in correspondence with

certain family of filters. In what follows, we are going to make this statement

precise.
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Definition 5.5. Let H ∈ DLI+1 and F a filter. We say that F is an open filter

if 1 → f ∈ F whenever f ∈ F .

The following family of filters will play an important role.

Definition 5.6. Let H ∈ DLI+1 and F a filter. We say that F is a 1-filter if

((a ∧ f) → b) → (a → b) ∈ F whenever a, b ∈ H and f ∈ F .

Let H ∈ DLI+1 . For θ ∈ Con(H) and F a filter of H, we define

Θ(F ) = {(a, b) ∈ H ×H : a ∧ f = b ∧ f for some f ∈ F}.

If a ∈ H and θ ∈ Con(H), we write a/θ for the equivalence class of a associated

to θ. Straightforward computations show that 1/θ is a filter, θ = Θ(1/θ),

F = 1/Θ(F ), and Θ(F ) is a congruence with respect to the lattice operations.

Moreover, if F and G are filters, then F ⊆ G if and only if Θ(F ) ⊆ Θ(G).

Proposition 5.7. Let H ∈ DLI+1 . The correspondence F �→ Θ(F ) defines an

order isomorphism between the lattice of 1-filters of H and Con(H).

Proof. Let θ ∈ Con(H). We shall prove that for every a, b ∈ H and f ∈ 1/θ,

((a∧f) → b) → (a → b) ∈ 1/θ. Let f ∈ 1/θ, i.e., (f, 1) ∈ θ. Then (a∧f, a) ∈ θ.

Hence, ((a ∧ f) → b, a → b) ∈ θ. But (a → b) → (a → b) = 1, so we have that

(((a ∧ f) → b) → (a → b), 1) ∈ θ, i.e., ((a ∧ f) → b) → (a → b) ∈ 1/θ.

Let F be a 1-filter, and let (a, b), (d, e) ∈ Θ(F ). We only need to prove that

(a → d, b → e) ∈ Θ(F ). Since (a, b), (d, e) ∈ Θ(F ), then there exist f1, f2 ∈ F

such that a ∧ f1 = b ∧ f1 and d ∧ f2 = e ∧ f2. Let f = f1 ∧ f2 ∈ F , so

a ∧ f = b ∧ f and d ∧ f = e ∧ f . Let g = (((a ∧ f) → e) → (b → e)). Our aim

is to prove that (a → d)∧ g = (b → e)∧ g. First note that (a∧ f) → (e∧ f) =

((a∧ f) → e)∧ ((a∧ f) → f). But (a∧ f) → f = 1 because a∧ f ≤ f implies

that (a ∧ f) → f ≥ f → f = 1. Then (a ∧ f) → (e ∧ f) = (a ∧ f) → e. Thus,

g = ((a ∧ f) → (e ∧ f)) → (b → e). (5.1)

Moreover, we have that

a → d ≤ (a ∧ f) → d (5.2)

because a ∧ f ≤ a. Taking into account equations (5.1), (5.2), the equality

(a ∧ f) → (d ∧ f) = (a ∧ f) → d and the inequality h ∧ (h → i) ≤ i we have

(a → d) ∧ g ≤ ((a ∧ f) → d) ∧ (((a ∧ f) → (e ∧ f)) → (b → e))

= ((a ∧ f) → d) ∧ (((a ∧ f) → (d ∧ f)) → (b → e))

= ((a ∧ f) → d) ∧ (((a ∧ f) → d) → (b → e)) ≤ b → e.

Hence, (a → d) ∧ g ≤ (b → e) ∧ g. Similarly, (b → e) ∧ g ≤ (a → d) ∧ g. Thus,

we obtain (a → d)∧ g = (b → e)∧ g. Therefore, (a → d, b → e) ∈ Θ(F ), which

was our aim. �

Corollary 5.8. Let H ∈ DLI+1 . The map τ �→ 1/θτ from Con(K(H)) to the

set of 1-filters of H is an order isomorphism.

Proof. This follows from Corollary 5.4 and Proposition 5.7. �
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Remark 5.9. Let H ∈ DLI+1 . Then any 1-filter is an open filter since we have

the inequality ((1 ∧ f) → f) → (1 → f) = 1 → (1 → f) ≤ 1 → f .

Lemma 5.10. Let H ∈ DLI+1 , F a 1-filter of H, and a, b ∈ H. The following

facts are equivalent:

(1) a ∧ f = b ∧ f for some f ∈ F ;

(2) a → b ∈ F and b → a ∈ F .

Proof. (1) ⇒ (2): Suppose that a → b ∈ F and b → a ∈ F . Then we have

that the element f = (a → b) ∧ (b → a) ∈ F . Taking into account that

a ∧ (a → b) ≤ b, we obtain that a ∧ f ≤ b, so a ∧ f ≤ b ∧ f . In a similar way,

we have that b ∧ f ≤ a ∧ f . Then f ∧ a = f ∧ b.

(2) ⇒ (1): Suppose that there exists f ∈ F such that a∧ f = b∧ f . Taking

into account that a∧f ≤ b, we obtain a → (a∧f) ≤ a → b. Moreover, we have

that a → (a ∧ f) = a → f , so a → f ≤ a → b. Since a ≤ 1, 1 → f ≤ a → f .

Thus, 1 → f ≤ a → b. Since F is an open filter (Remark 5.9), we have that

a → b ∈ F . Analogously, we get b → a ∈ F . �

Corollary 5.11. Let H ∈ RWH and F ⊆ H. Then F is a 1-filter if and only

if F is an open filter.

Proof. This is a straightforward consequence of Proposition 5.7, Remark 5.9,

Lemma 5.10, and that F �→ {(a, b) ∈ H × H : a → b ∈ F and b → a ∈ F}
defines an order isomorphism between the lattice of open filters of H and

Con(H) [7, Proposition 6.12]. �

Let H ∈ DLI+1 . The question naturally arises whether there is a bijection

between Con(H) and the set of open filters of H. In general, the answer is

negative. To show this, consider the algebra H4 ∈ DLI+1 given in Example

3.5. We have exactly three open filters: H4, {b, 1}, and {1}. However, we have

that 1 → b = b ∈ {b, 1} and ((1 → b) → a) → (1 → a) = a → 0 = 0 /∈ {b, 1}.
Hence, the open filter {b, 1} is not a 1-filter.

6. Appendix

As we said before, in [8, Theorem 2.4] it was proved that there exists a

categorical equivalence between BDL and the full subcategory of Klc whose

objects satisfies the interpolation property. We end this paper by giving a proof

of the fact that if T ∈ Klc, then T satisfies the interpolation property [8] if

and only if T satisfies (CK) (see Remark 2.8). We start with some preliminary

definitions.

A Kleene space [8] is a pair (X, g), with X a Priestley space and g : X → X

an involutorial homeomorphism which is also an order isomorphism from X

onto its order dual. Define X+ = {x ∈ X : x ≤ g(x)}. We say that (X, g)

satisfies the interpolation property if given x, y ∈ X+ such that x ≤ g(y),

there exists z ∈ X such that x ≤ z ≤ g(x) and y ≤ z ≤ g(y). If T is a Kleene
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algebra, we write X(T ) for the Priestley space associated to the underlying

bounded lattice of T . A Kleene algebra T is said to satisfy the interpolation

property if the Kleene space S(T ) satisfies it, where S(T ) = (X(T ), g) and

g : X(T ) → X(T ) is given by g(P ) = X(T ) − {∼a : a ∈ P}. See [8] for details

about this construction.

Proposition 6.1. Let T ∈ Klc. Then T satisfies the interpolation property

if and only if T satisfies (CK). Moreover, Kl′c is the full subcategory of Klc
whose objects satisfy the interpolation property.

Proof. In this proof, we shall use the following fact for T, U centered Kleene

algebras: if f : T → U is an isomorphism in the category of Kleene algebras,

then f is an isomorphism in Klc, i.e., f preserves the center.

Suppose that T satisfies the interpolation property. It follows from [8,

Theorem 2.3] that there exists a bounded distributive lattice L such that T ∼=
K(L), where the isomorphism is in the category Klc. Since K(L) satisfies (CK),

we have T satisfies (CK).

Conversely, suppose that T satisfies (CK) and that T does not satisfy the

interpolation property. It follows from [8, Lemma 2.2] that there exist prime

filters P and Q in T and x, y ∈ T such that P ⊆ g(P ), Q ⊆ g(Q), P ⊆ g(Q),

and x ∧ y ≤ ∼x ∨ ∼y. We define u = x ∨ c and v = y ∨ c, so u, v ≥ c.

Straightforward computations show that u∧v = c, so it follows from condition

(CK) that there exists z ∈ T such that z ∨ c = u and ∼z ∨ c = v. Since u ≥ x,

v ≥ y, x ∈ P , and y ∈ Q, then z ∨ c ∈ P and ∼z ∨ v ∈ Q. In particular, z ∈ P

or c ∈ P . But c = ∼c, so c /∈ P . Hence, we have that z ∈ P . In the same way,

we have that ∼z ∈ Q. But P ⊆ g(Q), so we have a contradiction. Therefore,

T satisfies the interpolation property. �
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