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On local edge intersection graphs of

paths on bounded degree trees

Liliana Alcón Marisa Gutierrez
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Abstract

An undirected graph G is called an EPT graph if it is the edge

intersection graph of a family of paths in a tree. We call G a local

EPT graph if it is the EPT graph of a collection of paths P which

all share a common vertex. In this paper, we characterize the local

EPT graphs which can be represented in a host tree with maximum

degree h.

1 Introduction and previous results

A graph G is called an EPT graph if it is the edge intersection graph of

a family of paths in a tree. An EPT representation of G is a pair 〈P, T 〉
where P is a family (Pv)v∈V (G) of subpaths of the host tree T satisfying

that two vertices v and v′ of G are adjacent if and only if Pv and Pv′ have

at least two vertices (one edge) in common.

When the maximum degree of the host tree T is h, the EPT representa-

tion of G is called an (h,2,2)-representation of G. The class of graphs

which admit an (h, 2, 2)-representation is denoted by [h,2,2].
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Notice that the class of EPT graphs is the union of the classes [h,2,2]

for h ≥ 2. In [GJ85] it is proved that the recognition of EPT graphs is an

NP-complete problem.

The EPT graphs are used in network applications, where the problem of

scheduling undirected calls in a tree network is equivalent to the problem

of coloring an EPT graph (see [TE96]). The communication network is

represented as an undirected interconnection graph, where each edge is

associated with a physical link between two nodes. An undirected call

is a path in the network. When the network is a tree, this model is

clearly an EPT representation. Coloring the EPT graph, such that two

adjacent vertices have different colors, implies that paths sharing at least

one common edge in the EPT representation have different colors, meaning

that undirected calls that share a physical link are scheduled in different

times.

In this paper, we examine the local structure of paths passing through a

given vertex of a host tree which has maximum degree h, and show these

locally EPT graphs are equivalent to the line graphs of certain graphs

which have certain properties.

Definition 1.1. [GJ85] Let 〈P, T 〉 be an EPT representation of a graph G.

A pie of size n is a star subgraph of T with central vertex q and neighbors

q1, ..., qn such that each “slice” qiqqi+1 for 1 ≤ i ≤ n is contained in a

different member of P ; addition is assumed to be module n. (See Figure

1).

Let 〈P, T 〉 be an EPT representation of a graph G. It was proved (see

[GJ85]) that if G contains a chordless cycle of length n ≥ 4, then 〈P, T 〉
contains a pie of size n.

In a pie all paths share a common central vertex of the tree. Let us

pursue this idea further.

Definition 1.2. [GJ85] We say that 〈P, T 〉 is a local EPT represen-

tation of G if it is an EPT representation where all the paths of P share
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Figure 1: The cycle C5 and an EPT representation: a pie of size 5.

a common vertex of T . We call G a local EPT graph if it has a local

EPT representation.

Let h ≥ 5, we say that G belongs to the class [h,2,2] local if and only

if G has a local EPT representation in a host tree T with maximum degree

h.

Definition 1.3. Let 〈P, T 〉 be a local (h, 2, 2)-representation of G, being

T a star with central vertex q such that NT (q) = {q1, q2, ..., qh}. We say

that the edges qqi ∈ E(T ), with 1 ≤ i ≤ h, are the legs of T at q.

2 Our results

In this Section, we characterize graphs which belongs to the class [h, 2, 2]

local.

Definition 2.1. Let G be a connected graph. We say that v ∈ V (G) is a

cut vertex of G if G− v has at least two connected components.

Theorem 2.1. Let h ≥ 5. If G ∈ [h, 2, 2] local and G /∈ [h− 1, 2, 2] then

G has no cut vertices.

Proof: Let 〈P, T 〉 be a local (h, 2, 2)-representation of G, being T a star

with central vertex q such that NT (q) = {q1, q2, ..., qh}.
Suppose, by the contrary, that G has a cutting vertex, say v1. Then,

G− v1 has exactly two connected components C1 and C2. Since vertices
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of C1 are non-adjacent to vertices of C2, we have that its corresponding

paths use different legs of T at q. Assume that the paths which represent

vertices of C1 use the legs qq1, .., qqn, with 1 ≤ n ≤ h− 1, of T at q. And,

the paths which represent vertices of C2 use the legs qqn+1, .., qqh.

We are going to build an (h− 1, 2, 2)-representation of G, say 〈P ′, T ′〉.
Case (1): If n < h− 1.

First we represent the connected component C1. We define a star with

central vertex q′ such that NT ′(q′) = {q′1, ..., q′n}. If v ∈ V (C1) with

qiqj ∈ E(Pv) in T then q′iq
′
j ∈ E(P ′v) in T ′.

Now, we represent the connected component C2. We define a star with

central vertex q′′ such that NT ′(q′′) = {q′′n+1, .., q
′′
h}. If v ∈ V (C2) with

qiqj ∈ E(Pv) in T then q′′i q
′′
j ∈ E(P ′v) in T ′.

Then, we only have to represent the path Pv1 . We put an edge between

q′ and q′′ in T ′. Since v1 is a cutting vertex of G, we have that it is adjacent

to at least one vertex of C1 and at least one vertex of C2. If qi ∈ V (Pv1)

in T , with 1 ≤ i ≤ n, then q′i ∈ V (P ′v1) in T ′. If qj ∈ V (Pv1) in T , with

n + 1 ≤ j ≤ h, then q′′j ∈ V (P ′v1) in T ′. So, V (P ′v1) = {q′i, q′, q′′, q′′j }.
Case (2): If n = h − 1, the paths which represent vertices of C2 use

the leg qqh. We define a star with central vertex q′ such that NT ′(q′) =

{q′1, ..., q′h−1}. If v ∈ V (C1) with qiqj ∈ E(Pv) in T then q′iq
′
j ∈ E(P ′v) in

T ′.

Now, we represent the connected component C2.

Since v1 is a cutting vertex of G, we have that it is adjacent to at least

one vertex of C1 and at least one vertex of C2. Hence, qi ∈ V (Pv1) in T ,

for some 1 ≤ i ≤ n and qh ∈ V (Pv1). Suppose, without loss of generality,

that q1 ∈ V (Pv1). Then, we add a vertex q′h such that q′1q
′
h ∈ E(T ′).

If v ∈ V (C2) with qqh ∈ E(Pv) in T then q′1q
′
h ∈ E(P ′v) in T ′. And,

V (P ′v1) = {q′, q′1, q′h}.
Hence, we have an (h − 1, 2, 2)-representation of G which contradicts

the fact that G /∈ [h− 1, 2, 2]. Therefore, G has no cut vertices.

2
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We show that this special subclass of EPT graphs is equivalent to the

class of line graphs of certain graphs which have certain properties.

Definition 2.2. Let H be a graph, the line graph of H, noted by L(H),

has vertices corresponding to the edges of H with two vertices adjacent in

L(H) if their corresponding edges of H share an endpoint.

Definition 2.3. We say that two vertices u, v ∈ V (G) are adjacent

dominated vertices if uv ∈ E(G) and NG(u) ⊆ NG(v) or NG(v) ⊆
NG(u).

Theorem 2.2. If h ≥ 5, then G ∈ [h, 2, 2] local, G /∈ [h − 1, 2, 2] and G

has no adjacent dominated vertices if and only if G = L(H) with H a

graph such that:

1. |V (H)| = h.

2. H has no vertices of degree 1.

3. H is simple.

4. H has no adjacent dominated vertices.

5. H has a cycle Cn, with 4 ≤ n ≤ h; and every vertex of H −Cn is in

some path between two different vertices of Cn.

Proof: ⇐) We know that G = L(H), with H satisfying (1), .., (5).

Let us verify that G ∈ [h, 2, 2] local: We build a local (h, 2, 2)-representation

of G as follows. By item (1), we know that |V (H)| = h. Let V (H) =

{q1, q2, .., qh}, we define V (T ) = {q, q1, .., qh} and E(T ) = {qqi, for all

1 ≤ i ≤ h}.
For each edge eij = qiqj ∈ E(H) we define a path Pij in T such that

V (Pij) = {qi, q, qj}. Two paths Pij , Pkl share an edge in T if and only if

{i, j} ∩ {k, l} 6= ∅, that is, if and only if the corresponding edges eij , ekl

in H share a vertex. Then, we have a local (h, 2, 2)-representation of G.

Now, we are going to verify that G has no adjacent dominated vertices:

Suppose, by the contrary, that v1, v2 ∈ V (G) are adjacent dominated
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vertices, that is, NG(v1) ⊆ NG(v2) and v1v2 ∈ E(G). Then, v1, v2 ∈ E(H)

such that they have a common endpoint in H say q1 (because v1v2 ∈
E(G)). We call q2, q1 to the endpoints of the edge v1 of H and q3, q1 to

the endpoints of the edge v2 of H. Since H has no vertices of degree 1 (by

item (2)) and since every edge of H that has v1 as an endpoint has v2 as

an endpoint too, we have that q2 and q3 are adjacent dominated vertices

of H, which is a contradiction.

Let us verify that G /∈ [h − 1, 2, 2]: Suppose, by the contrary, that

G ∈ [h − 1, 2, 2]. Let 〈P̃ , T̃ 〉 be an (h − 1, 2, 2)-representation of G. By

item (5), we know that H has a cycle Cn, with 4 ≤ n ≤ h, and every

vertex of H −Cn is in some path between two different vertices of Cn. It

is easy to verify that the cycle Cn in H leads to an induced cycle C̃n in

G. Moreover, since every vertex of H − Cn is in some path between two

different vertices of Cn, we have that every edge of H−Cn is in some path

between two different vertices of Cn. Hence every vertex of G − C̃n is in

some path between two different vertices of C̃n. It is easy to verify that

this forces all the paths which represent vertices of G have a vertex of T̃ ,

say q, in common, and this forces the paths to use exactly two legs of T̃

at q.

Then, 〈P̃ , T̃ 〉 is a local (h − 1, 2, 2)-representation of G, that is, T̃ is a

star with central vertex q and legs q̃1, q̃2, .., q̃h−1.

We are going to build a simple graph H̃ with |V (H̃)| = h − 1 such

that G = L(H̃). Let V (H̃) = {q̃1, q̃2, .., q̃h−1}. If P̃v ∈ P̃ such that

{q̃i, q, q̃j} ⊆ V (P̃v) we define ẽij = q̃iq̃j ∈ E(H̃). Hence, G = L(H̃).

Then, since G has no adjacent dominated vertices, we have that H̃ has no

multiple edges. And, since all the paths of P̃ use exactly two legs of T̃ at

q we have that H̃ has no loops. Therefore, H̃ is a simple graph. And, by

item (3), H is a simple graph too.

Hence, G = L(H) = L(H̃), with H and H̃ simple graphs. But the

unique non isomorphic simple connected graphs which have isomorphic

line graphs are K3 and K1,3 [BLS99]. Then, H = K3 and H̃ = K1,3. So,

|V (H)| = |V (H̃)| = 3 which is a contradiction. Therefore, G /∈ [h−1, 2, 2].
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⇒) We know that G ∈ [h, 2, 2] local, G /∈ [h − 1, 2, 2] and G has no

adjacent dominated vertices. We have to verify that there exists a graph

H such that G = L(H) and H satisfies the properties (1), .., (5).

We are going to verify that |V (H)| = h: We know that G ∈ [h, 2, 2]

local, with a representation 〈P, T 〉 being T a star with central vertex q

such that NT (q) = {q1, q2, .., qh}. We are going to build a graph H with

|V (H)| = h such that G = L(H). Let V (H) = {q1, q2, .., qh}.
First, observe that if a path Pii ∈ P was such that {qi, q} ⊆ V (Pii) and

{qj} is not contain in V (Pii) for all i 6= j, then if Pii is the only path which

uses this leg we can obtain an (h−1, 2, 2)-representation of G, and if there

exists other path using this leg we have that the vertex corresponding to

this path is adjacent and dominates the vertex corresponding to the path

Pii. In both cases, we have a contradiction.

If a path Pij ∈ P was such that {qi, q, qj} ⊆ V (Pij) then eij = qiqj ∈
E(H). Two paths Pij , Pkl share an edge in T if and only if {i, j}∩{k, l} 6= ∅
if and only if the corresponding edges eij , ekl of H share a vertex. Then,

G = L(H) with |V (H)| = h.

We are going to verify that H has no vertices of degree 1: Let V (H) =

{q1, q2, .., qh}. Suppose that qi ∈ V (H) with dH(qi) = 1. Let e be the

unique edge of H that has qi as an endpoint. Doing the previous con-

struction we have an (h, 2, 2)-representation of G such that T is a star

with central vertex q such that NT (q) = {q1, q2, .., qh}. Moreover, if the

leg qqi is only contained in the path Pe then we can delete the leg qqi from

T and we have an (h − 1, 2, 2)-representation of G which contradicts the

fact that G /∈ [h− 1, 2, 2].

We have to verify that H is a simple graph: If e and ẽ were multiple

edges in H, then e and ẽ would be true twins in G, which contradicts the

fact that G has no adjacent dominated vertices.

If H had a loop e that has qi as its endpoint, then qi must be the

endpoint of another edge, say ẽ. Then, e,ẽ ∈ V (G) such that eẽ ∈ E(G)

and NG(e) ⊆ NG(ẽ), which contradicts the fact that G has no adjacent

dominated vertices.
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We have to verify that H has no adjacent dominated vertices: Suppose

that q1 and q2 are adjacent dominated vertices of H, such that NH(q1) ⊆
NH(q2). Then, since H has no vertices of degree 1 and H is a simple

graph, we have that there exists q3 ∈ V (H) such that q1q3 ∈ E(H) and

q2q3 ∈ E(H). Let e ∈ E(H) and ẽ ∈ E(H) such that e = q1q3 and

ẽ = q2q3, we have that e,ẽ ∈ V (G) are adjacent dominated vertices such

that NG(e) ⊆ NG(ẽ), which contradicts the fact that G has no adjacent

dominated vertices.

We have to verify that H has a cycle C̃n, with 4 ≤ n ≤ h: Since

G /∈ [h−1, 2, 2], with h ≥ 5, we have that G /∈ (EPT ∩Chordal) = [3, 2, 2]

(see [JM05]). Hence, G /∈ Chordal, that is, G has an induced cycle Cn,

with n ≥ 4. So, it must be that H has a cycle Cn as a subgraph, with

n ≥ 4.

On the other hand, if H had a Cn, with n ≥ h+ 1, as a subgraph, then

G would have an induced cycle Cn, with n ≥ h + 1, as a subgraph, which

contradicts the fact that G ∈ [h, 2, 2].

Finally, we are going to verify that every vertex of H − Cn is in some

path between two different vertices of Cn: We know that H has a cy-

cle Cn, with 4 ≤ n ≤ h. Suppose, by the contrary, that there exists

x1 ∈ V (H) − V (Cn) such that x1 is not in a path between different ver-

tices of Cn. Since |V (H)| = h, we have that |Cn| ≤ h. Since H is a

connected graph there exists a path between x1 and some vertex of the

cycle Cn, say v1. We choose the shortest path, say P , which is an induced

path. Let G = L(H), it is clear that Cn leads to an induced cycle in G,

and P leads to an induced path in G. Moreover, if e1 was the edge of P

that had v1 as an extreme vertex in H, then e1 would be a cut vertex of

G. This contradicts Theorem 2.1. 2
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3 Conclusion

We examine the local structure of paths passing through a given vertex

of a host tree which has maximum degree h, that is local EPT graphs

which can be represented in a host tree with maximum degree h. We

show these locally EPT graphs are equivalent to the line graphs of certain

graphs which have certain properties.

Conjecture 3.1. Let h ≥ 5. If G ∈ [h, 2, 2], G /∈ [h− 1, 2, 2] but G− v ∈
[h− 1, 2, 2], for all v ∈ V (G), then G ∈ [h, 2, 2] local.
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[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad,

Graph classes: a survey , SIAM Monographs on Discrete Math-

ematics and Applications, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1999. MR 1686154

[GJ85] Martin Charles Golumbic and Robert E. Jamison, The edge in-

tersection graphs of paths in a tree, J. Combin. Theory Ser. B 38

(1985), no. 1, 8–22. MR 782622

[JM05] Robert E. Jamison and Henry Martyn Mulder, Constant toler-

ance intersection graphs of subtrees of a tree, Discrete Math. 290

(2005), no. 1, 27–46. MR 2117355

[TE96] K. Jansen T. Erlebach, Scheduling of virtual connections in fast

networks, Proc. of the 4th Parallel Systems and Algorithms

Workshop. PASA’ 1996, Germany, 10 - 12 April 1996, World

Scientific, 1996, pp. 13–32.

http://dx.doi.org/10.1137/1.9780898719796
http://www.ams.org/mathscinet-getitem?mr=1686154
http://dx.doi.org/10.1016/0095-8956(85)90088-7
http://dx.doi.org/10.1016/0095-8956(85)90088-7
http://www.ams.org/mathscinet-getitem?mr=782622
http://dx.doi.org/10.1016/j.disc.2004.04.017
http://dx.doi.org/10.1016/j.disc.2004.04.017
http://www.ams.org/mathscinet-getitem?mr=2117355


On local edge intersection graphs of paths on bounded degree trees 10

Liliana Alcón

Universidad Nacional de La

Plata

La Plata, Argentina

liliana@mate.unlp.edu.ar

Marisa Gutierrez

Universidad Nacional de La

Plata

CONICET

La Plata, Argentina

marisa@mate.unlp.edu.ar
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