
Computational and Applied Mathematics manuscript No.
(will be inserted by the editor)

An inexact restoration derivative-free filter method for
nonlinear programming

N. Echebest · M.L. Schuverdt · R.P. Vignau

Received: date / Accepted: date

Abstract An inexact restoration derivative-free filter method for nonlinear programming is
introduced in this paper. Each iteration is composed of a restoration phase, which reduces
a measure of infeasibility, and an optimization phase, which reduces the objective function.
The restoration phase is solved using a derivative-free method for solving underdetermined
nonlinear systems with bound constraints, developed previously by the authors. An alterna-
tive for solving the optimization phase is considered. Theoretical convergence results and
some preliminary numerical experiments are presented.

Keywords Derivative-free · Nonlinear programming · Filter methods · Inexact restoration
methods

Mathematics Subject Classification (2010) 65K05 · 90C30 · 90C56

1 Introduction

In this paper we shall be concerned with the nonlinear programming problem

minimize f (x)
subject to c(x) = 0 (1)

where the functions f :Rn→R, c :Rn→Rm are continuously differentiable but their deriva-
tives are not available. We denote by Jc(.) the Jacobian matrix of c and we consider the
function h that measures the constraint infeasibility in each point x ∈ Rn, h(x) = ‖c(x)‖
where ‖.‖ denotes the Euclidean norm. Such a kind of optimization problems encompasses

N. Echebest
Department of Mathematics, FCE, University of La Plata, Argentina
E-mail: opti@mate.unlp.edu.ar

M.L. Schuverdt
CONICET, Department of Mathematics, FCE, University of La Plata, Argentina
E-mail: schuverd@mate.unlp.edu.ar

R.P. Vignau
Department of Mathematics, FCE, University of La Plata, Argentina
E-mail: vignau@mate.unlp.edu.ar

Manuscript
Click here to download Manuscript: esv-review2.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/coam/download.aspx?id=21978&guid=44c63b8d-584f-4822-8983-86e10dc1b31e&scheme=1
http://www.editorialmanager.com/coam/viewRCResults.aspx?pdf=1&docID=1258&rev=2&fileID=21978&msid={DD5F9F2A-DB60-494D-8E83-D2D26AEBED18}

2 N. Echebest et al.

many real-world problems arising in different fields like e.g. computational mathematics,
physics and engineering, in which it is necessary to minimize functions whose derivatives
are not available (see e.g. [1,6,19]). Unconstrained techniques based on local explorations,
line searches or quadratic models have been suitably adapted to box-constrained and lin-
early constrained derivative-free optimization [2,5,7,20–22,31,32]. Problems with more
general constraints are more difficult because they need to obtain optimality and feasibility
controlling the number of function evaluations of the objective function and the nonlinear
constraints. Derivative-free methods for more general constraints were addressed by means
of augmented Lagrangian approaches in [8,23,24].

Modern inexact restoration (IR) methods for smooth constrained optimization proceed
in two phases [15,26–28]. In the restoration phase, feasibility is improved without evalua-
tions of the objective function at all. In the optimization phase, the objective function or a
Lagrangian function is minimized. One of the more attractive features of the IR method is
that the theory allows us to use any efficient algorithm to perform each phase. Optimality
and feasibility can be combined using penalty functions, Augmented Lagrangians or can be
treated more independently. Inexact restoration algorithms described by Martı́nez [26] and
by Martı́nez and Pilotta [27,28], measure the progress by a merit function. Gonzaga, Karas
and Vanti [15] have proposed an inexact restoration algorithm which uses a filter strategy
for evaluating candidate points. This idea was proposed by Fletcher and Leyffer in [13] in
other context.

A recently article [4] uses the IR method for solving a nonlinear derivative-free opti-
mization problem where the derivatives of the constraints are available but the derivatives of
the objective function are not. In this case, the second phase must be solved using derivative-
free methods. An algorithm introduced by Kolda, Lewis and Torczon [20] for linearly con-
strained derivative-free optimization is employed for that purpose.

In this paper we propose a derivative-free method, based on the inexact restoration ap-
proach introduced in [15]. There the authors define a globally convergent filter method for
nonlinear programming considering available the derivatives of the objective function and
the constraints. That filter method belongs to the class of methods that treat f and h as two
independent objectives. Each iteration proceeds in two phases: the restoration or feasibility
phase in which feasibility must be improved without using the objective function and the
optimization phase in which the objective function on a tangent approximation to the con-
straints must be minimized. As mentioned in [15], the filter algorithms define a forbidden
region by memorizing the pairs (f (xk),h(xk)) from well chosen former iterations, avoiding
points dominated by those by using the usual Pareto domination rule: “x dominates y if and
only if f (y) ≥ f (x) and h(y) ≥ h(x)”. For bibliography on filter methods see for example
[12,13,15] and the references therein.

The algorithm developed in this work is based on models built by multivariate interpo-
lation of the objective and the constraint functions [7], which is one of the main differences
with [15].

The restoration phase must solve an underdetermined nonlinear system with bound con-
straints. In our implementation we performed this phase using the derivative-free method
developed in [11].

On the other hand, the optimization phase must solve a derivative-free optimization
problem with linear constraints. We shall use a linear constrained trust-region algorithm in
which the derivative of the objective function is approximated by a model obtained by linear
interpolation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 3

This paper is organized as follows. In Section 2 we present the hypotheses, concepts and
some results that are fundamental throughout the work. Also we define the Derivative-Free
Filter algorithm (DFF) for solving (1). In Section 3 we present the internal algorithms used
in DFF and we show that they satisfy certain conditions that will be used in the analysis
of the convergence. In Section 4 we show the global convergence results. In Section 5 we
describe implementation details and we show some numerical experiments. Finally, Section
6 is devoted to conclusions and lines for future research.

Notation.

– ‖.‖ denotes the Euclidean norm.
– Given two non-negative functions g1,g2 : X → R, X ⊂ Rn, we denote g1(x) = O(g2(x))

(or equivalently g2(x) = Ω(g1(x))) in Γ ⊂ X if there exists M > 0 such that g1(x) ≤
Mg2(x) for all x ∈ Γ .

2 Derivative-Free Filter Algorithm

We shall develop an algorithm which generates sequences {xk},{zk} in Rn and in order to
obtain our global convergence we shall assume the following hypotheses.

General hypotheses:

(H1) The iterates xk and zk remain in a convex compact domain X ⊂ Rn.
(H2) The functions f , ci for i = 1, . . . ,m are continuously differentiable in an open set

containing X .
(H3) The functions ∇ f , ∇ci for i = 1, . . . ,m are Lipschitz continuous in an open set con-

taining X with constants L1, L2 > 0, respectively:

‖∇ f (x)−∇ f (y)‖ ≤ L1‖x− y‖

‖∇ci(x)−∇ci(y)‖ ≤ L2‖x− y‖, for i = 1, . . . ,m

for all x,y in the open set containing X .

Before going further into details of the algorithm, we first introduce some concepts
and results of multivariate polynomial interpolation models of the objective function and
constraints that we make use throughout and that can be found to a more extent in Conn,
Scheinberg and Vicente [6].

Each interpolation set Y = {y0,y1, . . . ,yn}⊂Rn, which is contained in the ball B(y0,∆(Y))
centered at y0 and with radius ∆(Y) = max

1≤i≤n
‖yi− y0‖, is “poised” for linear interpolation,

i.e., the matrix of directions S = [y1−y0 y2−y0 . . . yn−y0]T is nonsingular. The definition
of poisedness is independent of the basis for the space of linear polynomials of degree 1.
Hence, if Y is poised for the natural basis then it is poised for any other basis chosen [6, Ch.
2].

The simplex gradient of f at y0 is defined by ∇s f (y0) = S−1δ f (Y) where δ f (Y) =
(f (y1)− f (y0), f (y2)− f (y0), . . . , f (yn)− f (y0))T .

If we consider m f (x) = f (y0)+gT
f (x− y0) as the linear interpolating model of f (x) on

Y then we have that g f = ∇s f (y0) [6]. Therefore, the simplex gradient of f is closely related
to linear multivariate polynomial interpolation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 N. Echebest et al.

The geometrical properties of Y determine the quality of the corresponding g f as an
approximation to the exact gradient of the objective function. We are interested in the quality
of m f (x) and g f in the ball B(y0,∆(Y)).

The definition of poisedness gives a threshold to the difference between the functions
and their interpolation models. Then, for all x ∈ B(y0,∆(Y)), considering the scaled matrix

S̄ =
S

∆(Y)
, we have that

| f (x)−m f (x)| ≤ κe f ∆
2(Y), (2)

‖∇ f (x)−∇m f (x)‖ ≤ κeg∆(Y), (3)

where κeg = L1(1+
√

n
2 ‖S̄

−1‖) and κe f = κeg +
L1
2 , which are given in Theorem 2.11 and

Theorem 2.12 in [6].
Similarly, under the previous hypotheses, if we consider for all j = 1, . . . ,m, mc j (x) =

c j(y0)+gT
c j
(x− y0) as the linear interpolating model of c j(x) on Y then we have that gc j =

∇sc j(y0) and the following error bounds

|c j(x)−mc j (x)| ≤ κec∆
2(Y), (4)

‖∇c j(x)−∇mc j (x)‖ ≤ κegc ∆(Y), (5)

where κegc = L2(1+
√

n
2 ‖S̄

−1‖) and κec = κegc +
L2
2 .

If we consider as an approximation of Jc(y) the matrix A(y), whose j-th row is the
transpose of ∇mc j (y) then we have that

‖Jc(y)−A(y)‖ ≤ κeJc ∆(Y), (6)

where κeJc =
√

m κegc .
We assume that it is possible to maintain the constants κe f , κeg and κeJc uniformly

bounded along the iterative process of our algorithm [6, Ch. 3 and 6].

Given an iterate zk we consider the following hypothesis

(H4) The simplex gradient used to approximate the objective function gradient satisfies the
error bound : ‖∇ f (zk)−∇s f (zk)‖≤ keg∆ k

f where ∆ k
f is the radius of the ball that contains

the interpolation points.
The simplex derivatives used to approximate the true Jacobian satisfy the error bound :
‖Jc(zk)−A(zk)‖ ≤ keJc ∆ k

c where ∆ k
c is the radius of the ball that contains the interpola-

tion points.

The global convergence result of the method in [15] is obtained without discussing de-
tails of the algorithms used in the internal phases. The authors proved that their algorithm
produces feasible points x satisfying

liminf
x→x

‖PT (x)(x−∇ f (x))− x‖= 0, (7)

where PT (z)(w) is the orthogonal projection of w ∈ Rn onto the closed set

T (z) = {x ∈ Rn : Jc(z)(x− z) = 0}

that is a linearization of the set {x ∈ Rn : c(x) = c(z)} at the point z.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 5

The direction PT (z)(z−∇ f (z))− z appears as a sequential optimality condition in the
Approximate Gradient Projected condition defined by Martı́nez and Svaiter in [29].

In this paper we address nonlinear problems in which the derivatives of the involved
functions are not available. When this is the case we can not compute in an exact form the
set T (z) and the gradient of the objective function.

Thus, in this context, we will be able to prove that our derivative-free filter algorithm
generates a sequence {xk} which has a feasible limit point x ∈ Rn, x = lim

k∈K
xk for some

infinite subset K ⊂ N, satisfying

lim
k∈K
‖dc(xk)‖= 0 (8)

where dc(z) = PL(z)(z−∇s f (z))− z and L(z) = {x ∈ Rn : A(z)(x− z) = 0}.
This feasible point x will be called quasi-stationary throughout this work.

Now, following the ideas in [15], we present the inexact restoration derivative-free filter
algorithm with no specification of the internal algorithms.

This algorithm constructs a sequence F0 ⊂ F1 ⊂ . . .⊂ Fk ⊂ . . . of filter sets composed of
pairs (f j,h j) ∈R2. In the following, we also mention the sets of forbidden points, Fk ⊂Rn,
Fk = {x ∈ Rn : f (x) ≥ f j,h(x) ≥ h j, for some (f j,h j) ∈ Fk}, which are formally defined
in each step of algorithm for clarity, but are never actually constructed. Each iteration starts
with a filter and the corresponding forbidden region.

Given an iterate xk, the filter slack at xk is defined by

Hk = min{1,min{h j : (f j,h j) ∈ Fk, f j ≤ f (xk)}}. (9)

Algorithm 1. Derivative-Free Filter Algorithm (DFF).
Given x0 ∈ Rn, F0 = /0, F0 = /0, α ∈ (0,1), β > 0, ε f > 0, εI > 0, {δk}k∈N, δk > 0,

δk→ 0. Set k← 0.

Step 1 : Define (f̃ , h̃) = (f (xk)−αh(xk),(1−α)h(xk)).
Construct the set Fk = Fk ∪{(f̃ , h̃)}.
Define the set F k = Fk ∪{x ∈ Rn : f (x)≥ f̃ ,h(x)≥ h̃}.

Step 2 : Restoration Phase
If h(xk) = 0 then set zk = xk.
Otherwise, compute zk /∈F k such that h(zk)< (1−α)h(xk) and ‖zk− xk‖ ≤ βh(xk). If
it is impossible then stop without success. END.

Step 3 : Optimization Phase
3.1 Construct or update Y k

c = {zk,y1
c , . . . ,y

n
c}, a set of interpolation points centered at

zk, such that ∆
k
c = max

i=1,...,n
{‖yi

c− zk‖} verifies ∆ k
c ≤ β min{max{h(xk),Hk},δk}.

Compute A(zk) = Ak using simplex derivatives, by interpolation on Y k
c .

Define L(zk) = {x ∈ Rn : Ak(x− zk) = 0}.
Construct or update Y k

f = {zk,y1
f , . . . ,y

n
f }, a set of interpolation points centered at

zk, such that ∆
k
f = max

i=1,...,n
{‖yi

f − zk‖} verifies ∆ k
f ≤ δk.

Compute ∇s f (zk) by interpolation on Y k
f and dc(zk) = PL(zk)(z

k−∇s f (zk))− zk.
3.2 If h(xk) = 0, max{∆ k

f ,∆
k
c }< εI and ‖dc(zk)‖< ε f then stop with finite convergence.

3.3 Compute, by an algorithm without derivatives, xT /∈F k such that xT ∈ L(zk) and
f (xT)≤ f (zk).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 N. Echebest et al.

If zk = xk and there is not a xT such that f (xT) < f (zk) then set ∆ k
f = α∆ k

f , ∆ k
c =

α∆ k
c and go to step 3.1.

Otherwise, define xk+1 = xT .
Step 4 : Filter Update

If f (xk+1)< f (xk) then Fk+1 = Fk, Fk+1 = Fk (f -iteration).
Else, Fk+1 = Fk, Fk+1 = F k (h-iteration).
Set k← k+1, go to Step 1.

Observe that, as it was made in [15], at the beginning of each iteration, the pair (f (xk)−
αh(xk),h(xk)−αh(xk)) is temporarily introduced in the filter. After the complete successful
iteration this entry will become permanent in the filter only if the iteration does not produce
a decrease in f .

In [26], under suitable assumptions, J.M. Martı́nez has shown that a point that satisfies
the feasibility phase requirements exists. Considering this, if h(xk) 6= 0, it is plausible to
believe that a point zk satisfying h(zk) < (1−α)h(xk) and ‖zk − xk‖ ≤ βh(xk) could be
found, for example, by a Broyden-like method to solve the nonlinear system defined by the
constraints.

In order to accept zk, it is necessary to check if zk /∈F k. Since the pair (f (zk),h(zk))

is not dominated by (f̃ , h̃), it is only necessary to verify that zk /∈Fk. Since xk /∈Fk, Fk
is closed and the restored point has bounded distance from xk, it is reasonable to believe
that the algorithm has possibilities to complete the restoration phase. However, we do not
have guaranties that such point would be found, and so the stopping criterion in Step 2 is
essential.

Furthermore, when h(xk) = 0 it is necessary to find xk+1 satisfying f (xk+1)< f (xk), to
fulfill the condition that xk+1 /∈F k. Since we are not working with the true derivatives, the
computed direction dc(zk) could not be a descent direction of f in zk over L(zk), although it
is not null. This can happen because the simplex gradients are not good approximations of
the true gradients. Consequently the procedure used in the optimization phase may not be
able to find a point xT such that f (xT)< f (zk). If zk 6= xk, as zk /∈F k, it is possible to accept
xT = zk and xk+1 = zk. But when zk = xk and the algorithm can not find a point xT such
that f (xT) < f (zk), we propose to restart the optimization phase recomputing the simplex
gradient of f and the matrix Ak with the new radiuses α∆ k

f and α∆ k
c of the interpolation

points.

The following lemma gives conditions for which dc(zk) is a descent direction of f in zk

over L(zk).

Lemma 1 Given ε > 0, zk ∈ Rn, if ‖dc(zk)‖> ε and ‖∇ f (zk)−∇s f (zk)‖< ε

4 then

‖zk−PL(zk)(z
k−∇ f (zk))‖> 3

4
ε, (10)

∇
T f (zk) dc(zk)<−1

4
‖dc(zk)‖2. (11)

Proof. Since the projection PL(zk) is non-expansive,

‖PL(zk)(z
k−∇ f (zk))−PL(zk)(z

k−∇s f (zk))‖ ≤ ‖∇ f (zk)−∇s f (zk)‖,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 7

then it follows that

‖zk−PL(zk)(z
k−∇s f (zk))‖ ≤ ‖zk−PL(zk)(z

k−∇ f (zk))‖+‖∇ f (zk)−∇s f (zk)‖. (12)

Then we have that

‖zk−PL(zk)(z
k−∇ f (zk))‖ ≥ ‖zk−PL(zk)(z

k−∇s f (zk))‖−‖∇ f (zk)−∇s f (zk)‖> 3
4

ε > 0,

as we wanted to prove.
Since ∇T f (zk) dc(zk) = (∇ f (zk)−∇s f (zk))T dc(zk)+∇T

s f (zk) dc(zk), then

∇
T f (zk) dc(zk)≤ ‖dc(zk)‖ ‖∇ f (zk)−∇s f (zk)‖+∇

T
s f (zk) dc(zk).

Therefore, considering

∇
T
s f (zk) dc(zk)≤−‖dc(zk)‖2

2
, (13)

which is obtained by a similar form to one of [27, Sec. 2.6, page 140] replacing ∇ f (zk) by
∇s f (zk), we obtain that

∇
T f (zk) dc(zk)≤ ‖dc(zk)‖2

(‖∇ f (zk)−∇s f (zk)‖
‖dc(zk)‖

− 1
2

)
.

Hence, we get ∇T f (zk) dc(zk) < ‖dc(zk)‖2(1
4 −

1
2) = −

1
4‖dc(zk)‖2. Therefore, under the

hypotheses given, dc(zk) is a descent direction of f in zk.

Remark 1 Under the hypotheses of the previous lemma, if zk is not in F k, which is a closed
set, then there must exist ∆ > 0 and t > 0 such that if t‖dc(zk)‖ < ∆ then zk + tdc(zk)
does not fall into the region F k and f (zk + tdc(zk)) < f (zk). Similarly when h(xk) = 0, by
construction zk = xk and zk ∈F k. In this case, since zk /∈Fk, which is a closed set, there
exist ∆ > 0 and t > 0 such that if t‖dc(zk)‖ < ∆ then zk + tdc(zk) does not fall into the
region Fk. Furthermore, since f (zk + tdc(zk))< f (zk) it obtains that zk + tdc(zk) /∈F k.

Lemma 2 Algorithm 1 is well defined.

Proof. If the method used in the restoration phase is not able to find a point zk satisfying the
required conditions then the Algorithm 1 stops.

In the optimization phase, when zk 6= xk there always exists xT /∈F k such that f (xT)≤
f (zk) since zk /∈F k and then it is possible to accept xT = zk.

When xk is feasible, zk = xk, if it is possible to find xT with f (xT) < f (zk) then xk+1 is
defined. If that is not possible then the algorithm restarts the optimization phase with smaller
∆ k

f and ∆ k
c , with the aim of improving the approximation of the gradients of f and ci, for

i = 1, . . . ,m. In this case, in a finite number of iterations the radiuses ∆ k
f and ∆ k

c will become
sufficiently small and if ‖dc(zk)‖ is large enough, by Lemma 1 and Remark 1, it is possible to
obtain xT /∈F k such that f (xT)< f (xk) and then xk+1 is defined. Otherwise, if ‖dc(zk)‖< ε f
and max{∆ k

f ,∆
k
c }< εI then the algorithm finishes satisfying the finite termination criterion.

Remark 2 When h(xk) > 0, in the previous lemma we have used the possibility to accept
xk+1 = zk. When this happens an infinite number of iterations a feasible limit point is ob-
tained. Until this moment, the internal algorithms have not been given. In the following
section we will study the characteristics of the limit points using the properties of the inter-
nal algorithms.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 N. Echebest et al.

As it was mentioned in [15] there are some facts that follow directly from the construc-
tion of the algorithm:

Fact 1. Given k ∈ N,xk+p /∈Fk+1 for all p≥ 1.
Fact 2. Given k ∈ N, at least one of the following two situations must occur:

1. h(xk+1)< (1−α)h(xk).
2. f (xk+1)< f (xk)−αh(xk).

Fact 3. Given k ∈ N,h j > 0 for all j ∈ N such that (f j,h j) ∈ Fk. Consequently Hk > 0 for
all k ∈ N.

Remark 3 By definition of Hk, Hk ≤ 1. Therefore, when xk is in a neighborhood of a feasible
point, assuming h(xk) < 1, if Hk = 1 then h(xk) ≤ Hk holds. If Hk < 1 then there exists a
h j < 1 such that (f j,h j) ∈ Fk, f j ≤ f (xk), such that Hk = h j. In this case, since xk /∈Fk and
f (xk)≥ f j, it must be h(xk)< h j. Hence, if xk is in a neighborhood of a feasible point then
h(xk)≤ Hk holds.

3 Internal algorithms

Inexact restoration methodology gives the possibility of using different methods to solve
each phase. In this section we describe the algorithms that we use in each phase. We will
also show that they verify the conditions required to obtain global convergence of DFF.

3.1 Restoration phase

We use the BCDF-QNB algorithm [11] in the restoration phase of the DFF algorithm.
BCDF-QNB (Box-Constrained Derivative-Free Quasi Newton), based on the Broyden up-
date formula, is a derivative-free method for solving underdetermined nonlinear systems
with bound constraints.

Given an iterate xk, in Step 2 of DFF we apply BCDF-QNB starting from the initial
point y0 = xk, until it finds a new point zk /∈F k satisfying the descent condition h(zk) <
(1−α)h(xk) and ‖zk− xk‖ ≤ βh(xk) for fixed parameters 0 < α < 1, β > 0.

BCDF-QNB generates a sequence {y j}, for j = 0,1,2, . . ., with y j ∈ Ωk, being Ωk =

{y ∈ Rn : ‖y− xk‖∞ ≤ β√
n h(xk)}. At each iterate y j, this algorithm computes a direction

d j, considering two possibilities: in a first attempt, as the solution of the constrained linear
system

B jd + c(y j) = 0 and y j +d ∈Ωk, (14)

if this is possible. Otherwise, the direction is computed as an approximate solution of the
problem

min
y j+d ∈ Ωk

‖B jd + c(y j)‖ (15)

where B j is the matrix defined as:

B j = B j−1 +
(w j−B j−1s j)(s j)T

‖s j‖2 (16)

where w j = c(y j)− c(y j−1), s j = y j− y j−1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 9

Once the current direction d j is computed, the line search algorithm looks for a step
length λ j ≤ 1 such that

h(y j +λ jd j)
2 ≤ max

0≤i≤M−1
h(y j−i)2 +η j− γλ

2
j ‖d j‖2 (17)

where M is a positive integer, 0 < γ < 1 and
∞

∑
j=0

η j = η < ∞, η j > 0. This procedure

is a combination of the well known nonmonotone line search strategy for unconstrained
optimization introduced by Grippo, Lampariello and Lucidi [17] with the Li-Fukushima
derivative-free line search scheme in [25]. The combined strategy produces a robust non-
monotone derivative-free line search that takes into account the advantages of both schemes.
Under suitable conditions we have established in [11] the global convergence results for the
BCDF-QNB method.

We describe the application of BCDF-QNB for solving the Restoration Phase.

Algorithm 2. BCDF-QNB

Given xk ∈Ωk, 0 <α < 1, β > 0, Wk an approximation of Jc(xk), 0 < γ < 1, M ∈N, M > 0,

η =
∞

∑
j=0

η j < ∞, η j > 0, 0≤ θ0 < θ̄ < 1, ind = 0, imax > 0, imax ∈ N, MaxIter > 0.

Set j← 0, y0 = xk, B0 =Wk.
Step 1: If h(y j)< (1−α)h(xk) and y j /∈F k, define zk = y j and return with success.

If j > Maxiter then return without success.
Step 2: Computing the matrix B j

If j > 0 and ind < imax compute B j using the Broyden update (16). If ind = imax
compute B j by finite differences as an approximation to the Jacobian matrix in y j.

Step 3: Computing the direction d j
3.1: Find d satisfying (14).

If such direction d is found, define d j = d, θ j+1 = θ j, ind = 0 and go to Step 4.
3.2: Find an approximate solution d of the problem (15).

If d satisfies ‖B jd + c(y j)‖ ≤ θ j‖c(y j)‖, define d j = d, θ j+1 = θ j, ind = 0 and go
to Step 4.

3.3: Set d j = 0, y j+1 = y j, θ j+1 =
θ j+θ̄

2 .
If ind < imax, set ind← ind +1 and go to Step 5.
If ind = imax, define θ̄ = θ̄+1

2 . Set ind← 0 and go to Step 5.
Step 4: Find λ j and y j+1 = y j +λ jd j, 0 < λ j ≤ 1, using the derivative-free nonmonotone

line search algorithm (Algorithm 1 in [11]), satisfying (17).
Step 5: Set j← j+1 and go to Step 1.

The matrix W0 is an approximation of Jc(x0), which is obtained by finite differences. The
initial matrix Wk, k > 0, is the updated Broyden matrix of Ak−1, where Ak−1 is the matrix
defined at zk−1 in the optimization phase.

Remark 4 Since {y j} ⊂Ωk, the obtained zk satisfies the condition ‖zk− xk‖ ≤ βh(xk), β >
0.

As a result, more formally, the procedure generates iterates that verify the following
condition.

(C1) Restoration step condition: At all iterations k ∈ N, the restoration step satisfies

‖zk− xk‖= O(h(xk)). (18)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 N. Echebest et al.

Using (C1) and that ∇ f is bounded in X , it follows that

| f (zk)− f (xk)|= O(‖zk− xk‖) = O(h(xk)). (19)

3.2 Optimization phase

Given zk ∈ X , generated in the restoration phase, Step 3.3 of DFF must find xk+1 ∈ L(zk)
such that f (xk+1)≤ f (zk) and xk+1 /∈F k employing a derivative-free method.

We shall describe a linear trust region method and then we show that the resulting step
satisfies a special condition needed for obtaining convergence.

At each iterate zk, the trust region algorithm associated to zk uses the linear model

mk(x) = f (zk)+∇
T
s f (zk)(x− zk)

where the simplex gradient of the objective function is considered.
The trust region step uses a radius ∆ > 0 and solves the problem

minimize mk(x)
subject to x ∈ L(zk)

‖x− zk‖ ≤ ∆ .

As the model is linear we know that the solution of this problem is a point zk +d(zk,∆) such
that

d(zk,∆) = ∆
dc(zk)

‖dc(zk)‖
(20)

if dc(zk) 6= 0, where dc(zk) is the projected gradient direction defined by PL(zk)(z
k−∇s f (zk))−

zk.
We define the predicted reduction produced by the step d(zk,∆) as

pred(zk,∆) = mk(zk)−mk(zk +d(zk,∆)) (21)

and the actual reduction of f as

ared(zk,∆) = f (zk)− f (zk +d(zk,∆)). (22)

The step d(zk,∆) is only accepted if the sufficient decrease condition is satisfied, i.e,

ared(zk,∆)> η pred(zk,∆), (23)

for a given η ∈ (0,1).

Since pred(zk,∆) =−∇T
s f (zk)d(zk,∆) =−∇T

s f (zk) dc(zk)

‖dc(zk)‖∆ , considering (13), we get

pred(zk,∆)≥ ∆

2
‖dc(zk)‖. (24)

We briefly describe the linear trust region method for solving the optimization phase.

Algorithm 3. Minimization on L(zk)

Given η ∈ (0,1), ∆min > 0, xk, zk /∈Fk, dc(zk), ∆ ≥ ∆min > 0, tol > 0.
Set x+ = zk.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 11

While (‖dc(zk)‖∆ > tol and f (x+)≥ f (zk)) do
Compute d = d(zk,∆), pred(zk,∆) and ared(zk,∆) as in (20), (21) and (22) respectively.

If ared(zk,∆)> η pred(zk,∆) and zk +d /∈F k, define x+ = zk +d.
Else, set ∆ = ∆

2 .
End While.
If f (x+)< f (zk) or zk 6= xk, define xT = x+, ∆k = ∆ .

Otherwise, return without success.

The procedure terminates in a finite number of steps with f (x+)< f (zk) or with x+ = zk.
In particular, it finishes in the first iteration when ‖dc(zk)‖ = 0. If it finishes with x+ = zk

and zk = xk, when xk is feasible, then it is not possible to define xT /∈F k. Hence it returns
without success and so ∆ k

f and ∆ k
c are reduced in Algorithm 1, which means that better

models are built. In other cases successfully returns with xT = x+.

Now we study the optimality step near a feasible non quasi-stationary limit point x ∈ X .

Lemma 3 Let x ∈ X be a feasible non quasi-stationary limit point. Then there exists a
neighborhood Ṽ of x, ∆̃ > 0 and a constant c̃ > 0 such that for any zk ∈ Ṽ and for any
∆ ∈ (0, ∆̃),

ared(zk,∆)> η pred(zk,∆)≥ η c̃∆ .

Proof. As x is a non quasi-stationary limit point, there exists a neighborhood Ṽ such that for
zk ∈ Ṽ , ‖dc(zk)‖ ≥ ε̃ > 0 for all k ≥ k0.

Since f is continuously differentiable and ∇ f is Lipschitz continuous, we know that

ared(zk,∆) = f (zk)− f (zk +d(zk,∆))≥ (−∇ f (zk))T d(zk,∆)−L1∆
2 =

(−∇ f (zk)+∇s f (zk))T d(zk,∆)− (∇s f (zk))T d(zk,∆)−L1∆
2.

In particular, if ‖dc(zk)‖ ≥ ε̃ , using (24) we have that −∇T
s f (zk)d(zk,∆) = pred(zk,∆) ≥

∆

2 ‖dc(zk)‖ ≥ ∆

2 ε̃ . Then, considering

pred(zk,∆) = η(−∇
T
s f (zk)d(zk,∆))+(1−η)(−∇

T
s f (zk)d(zk,∆)),

it obtains pred(zk,∆)≥ η(−∇T
s f (zk)d(zk,∆))+(1−η)∆

2 ε̃.
Hence

ared(zk,∆)≥ η pred(zk,∆)+(1−η)
∆

2
ε̃ +(−∇

T f (zk)+∇
T
s f (zk))d(zk,∆)−L1∆

2.

By (H4), we have ‖−∇T f (zk)+∇T
s f (zk)‖ ≤ keg∆ k

f . Since ∆ k
f ≤ δk and δk→ 0, when k goes

to infinity, there exists k1 ≥ k0 such that for k ≥ k1, keg∆ k
f <

(1−η)
4 ε̃ . Then,

ared(zk,∆)> η pred(zk,∆)− (1−η)

4
ε̃‖d(zk,∆)‖+(1−η)

∆

2
ε̃−L1∆

2 ≥

η pred(zk,∆)− (1−η)

4
ε̃∆ +(1−η)

∆

2
ε̃−L1∆

2.

Hence, ared(zk,∆)> η pred(zk,∆)+(1−η)∆

4 ε̃−L1∆ 2. Therefore if ∆ < ∆̃ = (1−η)
4L1

ε̃ we
obtain that ared(zk,∆)> η pred(zk,∆) and pred(zk,∆)≥ ∆

2 ‖dc(zk)‖ ≥ c̃∆ where c̃ = ε̃

2 , as
we wanted to prove.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 N. Echebest et al.

Remark 5 In the previous lemma we have seen that if zk, the point found in restoration
phase, is in the neighborhood of a non quasi-stationary feasible point, then it is possible to
find a step d(zk,∆) by (20) such that f (zk +d(zk,∆))< f (zk). Furthermore, when zk is not
in F k, which is a closed set, then there must be a ∆ ≤ ∆̃ for which zk + d(zk,∆) does not
fall into the forbidden region F k. Similarly when h(xk) = 0, by construction zk = xk and
zk ∈F k. By Lemma 3 as f (zk + d(zk,∆)) < f (zk) for all ∆ ∈ (0, ∆̃), zk + d(zk,∆) /∈ {x ∈
Rn : f (x) ≥ f (zk), h(x) > 0}. Then considering that zk /∈Fk, which is a closed set, we get
a similar result to the case when zk is not in F k. Hence, under the hypothesis of Lemma 3,
Algorithm 3 finds a point x+ /∈F k and then defines xT = x+.

Lemma 4 Suppose that the matrix Ak is computed as an approximation of Jc(zk) by simplex
derivatives using an interpolation radius ∆ k

c . Then if zk +d ∈ L(zk),

|h(zk +d)−h(zk)| ≤ κeJc ∆
k
c ‖d‖+O(‖d‖2). (25)

Proof. Since zk + d ∈ L(zk), Akd = 0, considering the general hypotheses we have that
‖c(zk +d)−c(zk)−Jc(zk)d‖ ≤

√
m L2‖d‖2. Then ‖c(zk +d)−c(zk)‖ ≤ ‖(Jc(zk)−Ak)d‖+√

m L2‖d‖2.
Hence, |‖c(zk+d)‖−‖c(zk)‖|≤ ‖c(zk+d)−c(zk)‖≤‖(Jc(zk)−Ak)‖‖d‖+

√
m L2‖d‖2.

Therefore, considering (6), |h(zk +d)−h(zk)| ≤ κeJc ∆ k
c ‖d‖+

√
m L2‖d‖2, as we wanted to

prove.

The bound in (25) is O(‖d‖) because we are not using true derivatives. A similar bound
appears in [15], section 4.3, where the authors proposed a simplified tangential step.

Under the hypotheses of Lemmas 3 and 4 and the condition (C1) it can be established
that the proposed procedure generates iterates that verify the following condition.

(C2) Optimality step condition: Given a feasible non quasi-stationary point x ∈ X , there
exists a neighborhood V of x such that for any iterate xk ∈V ,

f (zk)− f (xk+1) = Ω(
√

Hk). (26)

Lemma 5 Let x ∈ X be a feasible non quasi-stationary limit point. Let assume that (C1)
and the hypothesis of Lemma 4 hold. Then there exists a neighborhood V of x such that if
xk ∈V then

f (zk)− f (xk+1) = Ω(
√

Hk),

where xk+1 = xT , xT is computed by Algorithm 3.

Proof. Let {xk}k∈K a subsequence such that lim
k∈K

xk = x.

By (C1) ‖xk− zk‖= O(h(xk)), as h(xk) tends to zero, it follows that lim
k∈K

zk = x.

Let Ṽ ⊂ X and ∆̃ > 0 be the neighborhood of x and the radius given by Lemma 3, such
that for any zk ∈ Ṽ , k ∈K and for any ∆ ∈ (0, ∆̃), ared(zk,∆)> η pred(zk,∆)≥ η c̃∆ .

Algorithm 3 starts with a radius ∆ ≥ ∆min and computes d(zk,∆ j), ∆ j = 2− j∆ for j =
0,1, . . ., until zk +d(zk,∆ j) /∈F k and ared(zk,∆ j)> η pred(zk,∆ j). Then, define ∆k = ∆ j.

Let us define ∆̂ as the first ∆ j such that

ared(zk,∆ j)> η pred(zk,∆ j),and (27)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 13

zk +d(zk,∆ j) /∈F k or f (zk +d(zk,∆ j))≥ f̃ , (28)

where (f̃ , h̃) = (f (xk)−αh(xk),(1−α)h(xk)) is the temporary entry in the filter.
Let us denote d̂ = d(zk, ∆̂) and x̂ = zk + d̂. Note that ∆̂ ≥ ∆k, and ∆̂ > ∆k happens only

when f (x̂)≥ f̃ .
Observe that, from Lemma 4, for a fixed ∆ we have that there is a constant κeJc ∆ k

c > 0
such that

|h(zk +d(zk,∆))−h(zk)| ≤ κeJc ∆
k
c ‖d(zk,∆)‖+

√
m L2‖d(zk,∆)‖2.

By Remark 3 we know that if xk is in a neighborhood of a feasible point then h(xk)≤Hk.
So, considering that ‖d(zk,∆)‖ ≤ ∆ and ∆ k

c ≤ β min{max{h(xk),Hk},δk} we have that

|h(zk +d(zk,∆))−h(zk)| ≤ κeJc βHk∆ +
√

m L2∆
2. (29)

Let us consider ∆̄ such that ∆̄ ≤ α

4βκeJc

and ∆̄ <
∆̃

2
.

(i) Assume that ∆̂ ≥ ∆̄ . Then, by (24),

pred(zk, ∆̂)≥ ∆̂

2
‖dc(zk)‖ ≥ ε̃

2
∆̂ .

By considering c̃ = ε̃

2 as in the proof of Lemma 3 we have that

pred(zk, ∆̂)≥ c̃∆̂ ≥ c̃∆̄ .

By definition of ∆̂ , (27) holds, then

f (zk)− f (x̂)> η pred(zk, ∆̂)≥ η c̃∆̄ = Ω(1).

Hence, since Hk ≤ 1, it follows

f (zk)− f (x̂) = Ω(
√

Hk).

(ii) Assume that ∆̂ < ∆̄ . Then 2∆̂ < 2∆̄ < ∆̃ and 2∆̂ does not verify (28). By Lemma 3,

ared(zk,d(zk,2∆̂))> η pred(zk,d(zk,2∆̂))

and, by (28) it follows that zk +d(zk,2∆̂) ∈F k and f (zk +d(zk,2∆̂))< f̃ . Consequently by
definition of Hk, we must have h(zk +d(zk,2∆̂))≥ Hk.

By construction, h(zk)< (1−α)h(xk)≤ (1−α)Hk. Therefore,

h(zk +d(zk,2∆̂))−h(zk)≥ αHk.

Then, using (29)

αHk ≤ h(zk +d(zk,2∆̂))−h(zk)≤ κeJc βHk2∆̂ +4
√

m L2∆̂
2,

we obtain

Hk ≤
2β

α
κeJc Hk∆̂ +O(∆̂ 2)≤ 1

2
Hk +O(∆̂ 2).

Hence
1
2

Hk = O(∆̂ 2) or ∆̂ = Ω(
√

Hk).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 N. Echebest et al.

Using Lemma 3 with ∆̂ < ∆̄ < ∆̃ ,

f (zk)− f (x̂) = ared(zk, ∆̂)≥ η c̃∆̂ = η c̃Ω(
√

Hk). (30)

Thus, for both cases, we have that f (zk)− f (x̂) = Ω(
√

Hk). Then the step d̂ satisfies the
conditions in the Lemma.

To finish the proof, we must show that for large k ∈K , f (x̂)< f̃ which implies x̂ /∈F k
and thus x̂ = xk+1. From (30) there is a positive constant M such that

f (zk)− f (x̂)≥M
√

Hk

and
f (x̂)≤ f (zk)−M

√
Hk.

From (19) there is a positive constant N such that

f (zk)≤ f (xk)+Nh(xk).

Then, combining the last two inequalities we have that

f (x̂)≤ f (xk)+Nh(xk)−M
√

Hk ≤ f (xk)+Nh(xk)−M
√

h(xk) =

f (xk)−
√

h(xk)
(

M−N
√

h(xk)
)

and, for large k∈K such that M−N
√

h(xk)>α
√

h(xk), which means that
√

h(xk)< M
N+α

,
we have that f (x̂)< f (xk)−αh(xk) = f̃ , completing the proof.

4 Convergence Results

In this Section, based on conditions (C1), (C2) and considering the general hypotheses we
will show the global convergence of DFF to a quasi-stationary point.

As it was done in [15], it can be shown that (C1) and (C2) imply the following condition.

(C3) Given a feasible non quasi-stationary point x ∈ X , there exists a neighborhood V of x
such that for any iterate xk ∈V ,

f (xk)− f (xk+1) = Ω(
√

Hk) (31)

where Hk is the filter slack at xk defined in (9).

The difference between the conditions (C2)-(C3) and the analogous in [15] is that here
they are defined in neighborhood of a non quasi-stationary point while the other are in a
neighborhood of a non stationary point.

Lemma 6 (C1) and (C2) imply (C3).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 15

Proof. Let x be a feasible non quasi-stationary point and let V1 be the neighborhood defined
by (C2). Since ‖zk− xk‖ = O(h(xk)) and x is a feasible point there exists a neighborhood
V2 ⊂ V1 of x such that for xk ∈ V2, zk ∈ V1. Consider an iterate xk ∈ V2. By (19) there is a
positive constant N such that | f (zk)− f (xk)| ≤ Nh(xk) and f (xk)− f (zk) ≥ −Nh(xk). By
(C2) there is a positive constant M such that f (zk)− f (xk+1) ≥M

√
Hk. Then, considering

that h(xk)≤ Hk, we obtain

f (xk)− f (xk+1) = f (xk)− f (zk)+ f (zk)− f (xk+1)≥M
√

Hk−Nh(xk) =

M
√

Hk−N
√

h(xk)
√

h(xk)≥M
√

Hk−N
√

Hk

√
h(xk) .

Thus,

f (xk)− f (xk+1)≥
(

M−N
√

h(xk)
)√

Hk.

By continuity of h at the feasible point x, there exists a neighborhood V ⊂V2 such that, for
any x ∈V ,

√
h(x)≤ 0.5 M

N . Therefore, for any iterate xk ∈V , f (xk)− f (xk+1)≥ 0.5M
√

Hk,
completing the proof.

The following lemmas are adaptations of Lemma 2.5 and Lemma 2.6 in [15] for the
definition of quasi-stationary point for the derivative-free case. Such results are obtained
considering the validity of the (C3) condition. We state them here for completeness.

Lemma 7 Let x ∈ X be a non quasi-stationary limit point. Then there exist k ∈ N and a
neighborhood V of x such that whenever k > k and xk ∈V , the iteration k is an f -iteration.

Lemma 8 Suppose that {xk}k∈N has no quasi-stationary accumulation point. Then for k
sufficiently large, all iterations are f -iterations.

Finally we can obtain the following main theorem. The proof of this theorem follows
straightforward from [15].

Theorem 1 The sequence {xk}k∈N has a quasi-stationary accumulation point.

4.1 Convergence to a Karush-Khun-Tucker point

From the previous section we know that the sequence {xk}k∈N generated by the DFF algo-
rithm has a quasi-stationary limit point x. Then there exists K ⊂ N such that lim

k∈K
xk = x.

Furthermore, by (C1), we have that lim
k∈K

zk = x and consequently

lim
k∈K
‖PL(zk)(z

k−∇s f (zk))− zk‖= 0. (32)

In this section we will prove that, using the Linear Independence constraint qualification
(LICQ) [3], x is a Karush-Kuhn-Tucker (KKT) point of (1).

The following Lemma shows that (32) still holds when we replace ∇s f (zk) by ∇ f (zk)
but maintaining the projection onto L(zk).

Lemma 9 Let {xk}k∈N be a sequence generated by the DFF algorithm. Then there exists
K ⊂ N such that

lim
k∈K
‖PL(zk)(z

k−∇ f (zk))− zk‖= 0. (33)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 N. Echebest et al.

Proof. From condition (H4),

‖∇ f (zk)−∇s f (zk)‖ ≤ keg∆
k
f ≤ kegδk, (34)

where the sequence {δk} tends to zero. Then considering

‖zk−PL(zk)(z
k−∇ f (zk))‖= ‖zk−PL(zk)(z

k−∇ f (zk)−∇s f (zk)+∇s f (zk))‖ (35)

and using (12) we have that

‖zk−PL(zk)(z
k−∇ f (zk))‖ ≤ ‖zk−PL(zk)(z

k−∇s f (zk))‖+‖∇ f (zk)−∇s f (zk)‖.

Therefore, using (32) and (34) and taking limit when k goes to infinite, k ∈K , we have
(33) as we wanted to prove.

The main difference between the condition (7) and the condition (32) is that in the last
one just estimations of the true derivatives are used.

In [15, Lemma 1.1] the authors prove that condition (7), together with the Mangasarian-
Fromovitz constraint qualification [3], is equivalent to the KKT conditions.

We are able to prove that if a quasi-stationary point of the sequence generated by the
algorithm verifies the Linear Independence constraint qualification then this point is a KKT
point of the problem (1).

Theorem 2 Let {xk}k∈N be a sequence generated by the DFF algorithm and x a quasi-
stationary accumulation point of {xk} that satisfies the Linear Independence constraint
qualification. Then x is a KKT point of (1).

Proof. Since x is a quasi-stationary accumulation point of {xk}, then there exists K ⊂ N
such that lim

k∈K
xk = x.

Let z̃k = PL(zk)(z
k−∇ f (zk)), then by definition z̃k is the solution of the problem

min ‖z− (zk−∇ f (zk))‖2

subject to Ak(z− zk) = 0.
(36)

Since x is a quasi-stationary accumulation point and using the previous lemma we have that

lim
k∈K

(z̃k− zk) = 0.

Since the feasible set of (36) is defined by linear constraints we know that there exists µ
k ∈

Rm such that
−(z̃k− (zk−∇ f (zk))) = AT

k µ
k

Ak(z̃k− zk) = 0.

Then

zk− z̃k = ∇ f (zk)+
m

∑
i=1

µ
k
i ak

i

where ak
i denotes the i− th column of AT

k . By Carathéodory’s theorem (see for example [3],
page 689), for each k ∈K there exist Ik ⊂ {1, . . . ,m} and {µk} ⊂ Rm such that

zk− z̃k = ∇ f (zk)+ ∑
i∈Ik

µ
k
i ak

i

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 17

where the set {ak
i }i∈Ik is linearly independent.

Since the number of possible sets Ik is finite, then there exists K1 ⊂K such that for all
k ∈K1,

Ik = I ⊂ {1, . . . ,m}

and
zk− z̃k = ∇ f (zk)+∑

i∈I
µ

k
i ak

i (37)

where the set {ak
i }i∈I is linearly independent.

If {µk} is not bounded, let Mk = ‖µk‖∞. Then lim
k∈K1

Mk = ∞ and we may take an appro-

priate subsequence such that lim
k∈K2

µk

Mk
= µ 6= 0, where K2 ⊂K1. Then

zk− z̃k

Mk
=

∇ f (zk)

Mk
+∑

i∈I

µk
i

Mk
ak

i . (38)

Thus using (H4) and taking limit in (38) when k goes to infinite, k ∈K2, we obtain that

∑
i∈I

µi∇ci(x) = 0

which contradicts the Linear Independence constraint qualification. So {µk} is bounded and
there exists K3 ⊂K1 such that lim

k∈K3
µ

k = µ . Then using (H4) and taking limit in (37) when

k goes to infinite, k ∈K3, we obtain that

∇ f (x)+∑
i∈I

µi∇ci(x) = 0.

Hence, x is a KKT point of (1).

5 Numerical Experiments

In this section we present some preliminary computational results obtained with a Fortran 77
implementation of the DFF algorithm. These experiments were run on a personal computer
with INTEL(R) Core (TM) 2 Duo CPU E8400 at 3.00 GHz and 3.23 GB of RAM.

As it is usual in derivative-free optimization articles we are interested in the number of
function evaluations needed for satisfying the stopping criteria.

5.1 Details on the implementation of the DFF algorithm

We have considered two versions of DFF: DFF1 and DFF2. The only difference between
them is the form to compute the matrix Ak. In DFF1 it is computed by simplex derivatives
as was described in Algorithm 1 and used in the theoretical results. In DFF2, once zk is
computed in the restoration phase, we consider a new Broyden matrix by updating the last
one computed in that process, which is used as the matrix Ak.

In our experiments the parameters used in DFF1 and DFF2 are α = 0.1, β = 100, ε f =
10−6 and εI = 10−6.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 N. Echebest et al.

In this implementation we declare convergence, if breakdown does not occur at the
restoration phase, when h(xk)≤ ε f , max{∆ k

f ,∆
k
c } ≤ εI and ‖dc(zk)‖ ≤ ε f .

In the implementation of the optimization phase we use the subroutine DLSVRR of
the IMSL Fortran Numerical Libraries, which is based on the LINPACK routine SSVDC
[10], for computing the singular value decomposition (USV) of the matrix Ak to obtain the
projection of zk−∇s f (zk) onto L(zk).

Step 3 of DFF requires the calculation of the simplex gradients of c j, for j = 1, . . .m,
which requires to select a set of interpolation points. In the first iteration we construct the
set Y 0

c = {z0,y1
c , . . . ,y

n
c} for obtaining the models mc j (x) = c j(z0)+∇sc j(z0)T (x− z0) , j =

1, . . . ,m, generating the matrix A0, as an approximation of Jc(z0). We consider yi
c−z0 = ρ0 ei

and the corresponding values c j(yi
c), for i= 1, . . . ,n and j = 1, . . . ,m, ρ0 < β max{δ0,h(x0)}.

Also, it requires to compute the model m f (x) = f (zk)+∇s f (zk)T (x− zk). In the first
iteration, we used the vectors of the matrix V of the decomposition USV of A0 to obtain the
model m f (x) = f (z0)+∇s f (z0)T (x− z0), considering the set Y 0

f = {z0,y1
f , . . . ,y

n
f }, where

yi
f = z0 +ρ0 vi and f (yi

f), for i = 1, . . . ,n.
In the following iterations Y k

c and Y k
f are updated, adding the new zk as the center of

them and eliminating a point yt , the farthest from the center, trying to maintain the indepen-
dence of directions. In this preliminary implementation, in some iterations the interpolation
sets are newly constructed, while in others they are updated from the previous ones. The
construction takes place in the first iteration and whenever it is not possible to preserve the
independence of the directions easily. To check the independence of the directions we use a
similar algorithm to the one proposed in [16].

The parameters used in BCDF-QNB are the same used in [11].
Finally, the parameters used in Algorithm 3 are the following: η = 0.1, ∆min = 0.5 and

tol = 10−16.

5.2 Test Problems

We have used a set of nonlinear programming problems defined in Hock and Schittkowski
[18]. Also, we have considered one problem which was used firstly in [15] and in our pre-
vious paper [11] where we introduced the basic ideas of the actual algorithm. The selected
problems from [18] are those that have equality constraints. Also, we have considered some
problems from [18] with inequality constraints. In these problems the inequality constraints
have been replaced by equality constraints since they are active at the solution.

In Table 1 we show the data of the problems. The number of variables ranges from 2 to
10 and the number of equality constraints from 1 to 4. Initial points were the same as in the
cited references.

5.3 Numerical Results

In Table 2 we show the results obtained taking into account the number of iterations (Iter),
the number of objective function evaluations (ObjEval), the number of constraints evalua-
tions (ConstEval), the final value f (xend) and the final value of the infeasibility h(xend).

We can notice that the DFF1 version has done fewer iterations than the DFF2 version in
70 % of the problems. We believe that this behavior is due to the fact that DFF1 uses a better
approximation of Jc(zk) in many iterations, and as consequence the initial updated matrix in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 19

Table 1 Data of the problems

Problem n m Problem n m Problem n m
HS 6 of [18] 2 1 HS 39 of [18] 4 2 HS 60 of [18] 3 1
HS 7 of [18] 2 1 HS 40 of [18] 4 3 HS 61 of [18] 3 2
HS 8 of [18] 2 2 HS 42 of [18] 4 2 HS 63 of [18] 3 2
HS 9 of [18] 2 1 HS 43 of [18] 4 3 HS 77 of [18] 5 2

HS 14 of [18] 2 2 HS 46 of [18] 5 2 HS 78 of [18] 5 3
HS 22 of [18] 2 2 HS 47 of [18] 5 3 HS 79 of [18] 5 3
HS 26 of [18] 3 1 HS 48 of [18] 5 2 HS 80 of [18] 5 3
HS 27 of [18] 3 1 HS 52 of [18] 5 3 HS 81 of [18] 5 3
HS 29 of [18] 3 1 HS 53 of [18] 5 3 HS 111 of [18] 10 3
HS 35 of [18] 3 1 HS 56 of [18] 7 4 Example of [15] 2 1

Table 2 Results of test problems

Prob Iter ObjEval ConstEval f (xend) h(xend)
DFF1 DFF2 DFF1 DFF2 DFF1 DFF2 DFF1 DFF2 DFF1 DFF2

HS 6 24 49 76 151 103 103 3.050E-05 3.023E-05 8.644E-10 2.383E-11
HS 7 10 10 33 33 46 24 -1.732E00 -1.732E00 2.620E-13 9.645E-11
HS 8 3 7 5 9 18 12 -1.000E00 -1.000E00 2.764E-12 3.157E-07
HS 9 27 49 58 101 36 53 -5.000E-01 -5.000E-01 5.329E-15 3.695E-09

HS 14 3 5 5 7 16 9 1.393E00 1.393E00 2.428E-10 6.547E-09
HS 22 3 4 5 6 15 8 1.000E00 1.000E00 2.085E-09 5.116E-07
HS 26 15 18 74 107 93 72 8.787E-07 5.367E-08 1.858E-12 4.981E-11
HS 27 6 45 81 355 270 267 4.001E-02 4.005E-02 2.254E-11 1.113E-11
HS 29 19 24 80 148 106 104 -2.263E01 -2.262E01 1.040E-11 9.216E-08
HS 35 41 45 210 186 255 97 1.111E-01 1.111E-01 9.159E-09 5.271E-10
HS 39 31 36 127 156 193 202 -1.000E00 -9.999E-01 1.036E-07 1.644E-08
HS 40 21 14 68 87 138 76 -2.500E-01 -2.500E-01 9.352E-11 1.522E-08
HS 42 18 45 123 269 165 181 1.386E01 1.386E01 9.108E-13 3.686E-14
HS 43 24 32 97 156 181 187 -4.400E01 -4.400E01 1.882E-08 1.740E-07
HS 46 31 37 182 214 249 105 5.774E-05 5.265E-05 1.323E-08 4.828E-09
HS 47 30 40 129 182 222 105 1.461E-05 2.582E-05 1.852E-09 1.824E-07
HS 48 57 62 249 317 165 133 7.521E-09 1.150E-09 9.108E-09 7.326E-09
HS 52 41 41 289 286 230 207 5.327E00 5.327E00 1.959E-08 9.141E-09
HS 53 19 19 87 81 87 46 4.093E00 4.093E00 8.408E-09 8.067E-09
HS 56 58 79 364 437 685 207 -3.456E00 -3.346E00 8.545E-07 1.217E-05(*)
HS 60 11 18 67 105 85 70 3.257E-02 3.257E-02 4.679E-11 2.839E-08
HS 61 16 18 67 94 115 82 -1.436E02 -1.436E02 4.715E-09 2.985E-10
HS 63 12 30 43 93 78 67 9.617E02 9.617E02 3.141E-10 1.806E-10
HS 77 25 26 133 270 190 198 2.415E-01 2.415E-01 1.021E-11 4.608E-07
HS 78 5 30 27 167 50 110 -2.919E00 -2.919E00 5.694E-09 1.824E-08
HS 79 8 10 41 51 73 34 7.878E-02 7.878E-02 6.064E-12 1.570E-07
HS 80 11 10 48 44 89 27 5.395E-02 5.396E-02 7.441E-09 1.282E-07
HS 81 11 11 48 48 89 29 5.395E-02 5.395E-02 1.215E-08 1.835E-07
HS 111 66 101 595 1084 805 397 -4.776E01 -4.764E01 3.849E-07 8.760E-07

Ex. of [15] 11 20 46 64 70 45 -2.210E00 -2.211E00 1.278E-09 1.783E-09

(*): the final solution does not reach the enough decrease of the infeasibility measure.

the restoration phase is better. When we consider h(xend) as a measure of the performance
of the algorithms we can see that DFF1 outperforms DFF2 in 70 % of the problems.

From the results of test problems we can conclude that the restoration algorithm was
successful in almost all iterations of all the problems. The only exception was the problem
HS 56 for DFF2.

For algorithmic comparison we use performance profile described in [9] and data profile
for derivative-free optimization presented in [30].

The performance profile of a solver s is defined as the fraction of problems where the
performance ratio is at most α , that is, ρs(α) = 1

|P| size{p ∈P : rp,s ≤ α}, where rp,s =

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 N. Echebest et al.

tp,s
{min tp,s:s∈S } , tp,s is the number of function evaluations required to satisfy the convergence
test, P is the set of problems and |P| denotes the cardinality of P .

We are also interested in the percentage of problems that can be solved, according to
the convergence test mentioned in subsection 5.1, by a solver s with a particular number
of function evaluations. The percentage of problems that can be solved with α function
evaluations is computed by ds(α) = 1

|P| size{p ∈P : tp,s ≤ α}.
As it was mentioned in [30], the definition of ds is independent of the number of vari-

ables of the problem p ∈P . However we know that the number of function evaluations
grows when the number of variables grows. We thus consider the data profile of a solver
s by ds(α) = 1

|P| size{p ∈P : tp,s
n+1 ≤ α}, where n is the number of variables in p ∈P .

The value of ds(α) can be interpreted as the percentage of problems that can be solved
with the equivalent of α simplex gradient estimates, considering that n+1 is the number of
evaluations needed to compute a one-sided finite-difference estimate of the gradient [30].

We analyze separately the number of objective function evaluations (ObjEval) and the
number of constraints evaluations (ConstEval).

In the following figures we compare DFF1 and DFF2 using the number of objective
function evaluations as a measure of the performance.

In the performance profile of Figure 1, we can notice that DFF1 expended less objective
function evaluations in more than 80% of the problems, while DFF2 expended less objective
function evaluations in approximately 20% of the problems. The performance difference
between DFF1 and DFF2 is approximately 20% when the performance ratio is 2.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Performance ratio: ObjEval

DFF1

DFF2

Fig. 1 Performance profile: Objective function evaluations

The data profile of Figure 2 (a) shows that DFF1 solves the largest percentage of prob-
lems for all sizes of the number of objective function evaluations. We can observe that DFF1
solves 80% of problems with 200 evaluations while DFF2 solves approximately 70%. The
biggest difference is 30% and it happens when the number of function evaluations is ap-
proximately 180. We believe that this behavior is due to the fact that DFF1 uses a better
approximation of Jc(zk) in many iterations as well as it makes fewer iterations.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 21

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

ObjEval

DFF1

DFF2

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

ObjEval/(n+1)

DFF1

DFF2

(b)

Fig. 2 Data profiles for the comparison between DFF1 and DFF2: Objective funtion evaluations

Figure 2 (b) shows that DFF1 solves the largest percentage of problems for all sizes
of the number of simplex gradient estimates (ObjEval/(n+ 1)). With 60 evaluations DFF1
solves 100% of the problems while DFF2 requires 100 evaluations to solve all of them.
The biggest difference between DFF1 and DFF2 happens when the number of function
evaluations is approximately 30% and in this case DFF1 solves 80% of the problems while
DFF2 solves approximately 50% of them.

In the following figures we compare DFF1 and DFF2 using the number of constraints
evaluations as a measure of the performance.

In the performance profile of Figure 3 we can notice that DFF2 expended less con-
straints function evaluations in approximately 80% of the problems while DFF1 expended
less constraints function evaluations in more than 20%.

In Figure 4 (a) the data profile shows that DFF2 solves the largest percentage of prob-
lems for all sizes of the number of constraints evaluations. We believe that this result is
associated to the fact that DFF2 does not require new constraints evaluations to define the
matrix Ak because it updates the last matrix used in the restoration phase. With 400 eval-
uations DFF2 solves all the problems, while DFF1 needs 800 evaluations to solve all of
them.

Figure 4 (b) shows that DFF2 solves the largest percentage of problems for all sizes of
the number of simplex gradient estimates (ConstEval/(n+ 1)). With 70 evaluations DFF2
solves almost 100 % of the problems, while DFF1 solves approximately 90% of the prob-
lems. The biggest difference between DFF1 and DFF2 happens when the number of con-
straints evaluations is 20% and in this case DFF2 solves 60% of the problems while DFF1
solves approximately 40% of them.

Taking into account the performance and data profiles we believe that better results can
be obtained developing another alternative that combines DFF1 and DFF2 implementations.
That could be made considering the DFF2 implementation, computing Ak by simplex gra-
dients after a fix number of iterations. In addition, in the application of BCDF-QNB in the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 N. Echebest et al.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Performance ratio:ConstEval

DFF1

DFF2

Fig. 3 Performance profile: Constraints evaluations

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

ConstEval

DFF1

DFF2

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

ConstEval/(n+1)

DFF1

DFF2

(b)

Fig. 4 Data profiles for the comparison between DFF1 and DFF2: Constraints evaluations

restoration phase, we could replace the use of finite differences to compute Bk by the use of
simplex gradients. That will be a subject of future study.

6 Conclusions

We have presented an inexact restoration filter algorithm for equality constrained nonlinear
programming without using derivatives. The main contribution of the paper is to extend
the theory of a filter based optimization method to the derivative-free context, but future
research about numerical behavior of the algorithm is still necessary to understand if there

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

An inexact restoration derivative-free filter method for nonlinear programming 23

exists a class of problems that would be better solved with the DFF algorithm than with
other benchmark DF algorithm.

From the theoretical point of view, under suitable conditions, we were able to prove
global convergence to quasi-stationary points. Furthermore we have shown that if a quasi-
stationary accumulation point satisfies the Linear Independence constraint qualification then
this point is a KKT point of (1).

From the practical point of view, two versions of the proposed algorithm were imple-
mented and tested considering a set of small scale problems. The main difference between
the two versions is the way in which an approximation of the true Jacobian Jc(zk) is com-
puted. Two main aspects can be taken into account from the numerical experiments:

1. They suggest plausible the use of Quasi Newton for computing the Jacobian approxima-
tions and this will be one of the subject of forthcoming research.

2. The implemented algorithms behave as expected, however, it will be desirable to test
the execution of the algorithm with a more challenging set of problems. Also, we would
like to compare the performance of the tested algorithms with other derivative-free al-
gorithms defined for solving the same problem.

As the method proposed is the type of inexact restoration, different alternatives can be stud-
ied in order to solve the two phases. In particular, to solve the optimality phase we would
like to define a derivative-free algorithm based on a quadratic model, instead of a linear one.
In this case the use of quadratics models must be consistent with the theory, especially with
the condition (C2), in order to preserve the convergence.

Acknowledgements The authors are indebted to the two anonymous referees whose comments helped a lot
to improve the quality of the paper.

References

1. Alexandrov N., Hussaini M.Y., Multidisciplinary Design Optimization: state of the art, SIAM Pro-
ceedings Series, SIAM, Philadelphia (1997).

2. Arouxét M.B.,Echebest N., Pilotta E.A., Active-set strategy in Powell’s method for optimization without
derivatives, Computational and Applied Mathematics, 30 (1), 171-196 (2011).

3. Bertsekas D.P., Nonlinear Programming, 2nd Edition. Athena Scientific, Belmont, Massachusetts
(1999).

4. Bueno L.F., Friedlander A., Martı́nez J.M., Sobral F.N.C., Inexact restoration method for derivative-
free optimization with smooth constraints, SIAM Journal on Optimization, 23 (2), 1189-1213 (2013).

5. Conn A.R., Scheinberg K., Toint Ph. L., Recent progress in unconstrained nonlinear optimization
without derivatives, Mathematical Programming, 79 (3), 397-414 (1997).

6. Conn A., Scheinberg K., Vicente L.N., Introduction to derivative-free optimization. SIAM Book Series
on Optimization, Philadelphia (2009).

7. Custodio A.L., Vicente L.N., Using sampling and simplex derivatives in pattern search methods, SIAM
Journal on Optimization, 18 (2), 537-555 (2007).

8. Diniz-Ehrhardt M.A., Martı́nez J.M., Pedroso L.G., Derivative-free methods for nonlinear program-
ming with general lower-level constraints, Computational and Applied Mathematics, 30 (1), 19-52
(2011).

9. Dolan E., Moré J., Benchmarking optimization software with performance profiles, Mathematical Pro-
gramming, 91, 201-213 (2002).

10. Dongarra J.J., Bunch J.R., Moler C.B., Stewart G.W., LINPACK Users’Guide, SIAM, Philadelphia
(1979).

11. Echebest N., Schuverdt M.L., Vignau R.P., A derivative-free method for solving box-constrained under-
determined nonlinear systems of equations, Applied Mathematics and Computation, 219 (6), 3198-3208
(2012).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 N. Echebest et al.

12. Fletcher R., Gould N.I.M., Leyffer S., Toint Ph.L., Wächter A., Global convergence of a trust-region
SQP-filter algorithm for general nonlinear programming, SIAM Journal on Optimization, 13, 635-659
(2002).

13. Fletcher R., Leyffer S., Nonlinear programming without a penalty function, Mathematical Program-
ming, 91 (2), 239-269 (2002).

14. Gomes-Ruggiero M.A., Martı́nez J.M., Santos S.A., Spectral projected gradient method with inexact
restoration for minimization with nonconvex constraints, SIAM Journal on Scientific Computing, 31,
1628-1652 (2009).

15. Gonzaga C.C., Karas E.W., Vanti M., A globally convergent filter method for nonlinear programming,
SIAM Journal on Optimization, 14 (3), 646-669 (2004).

16. Gratton S., Toint Ph.L., A. Tröltzsch A., An active-set trust region method for bound-constrained non-
linear optimization without derivatives, Optimization Methods and Software, 26 (4-5), pp. 875-896
(2011).

17. Grippo L., Lampariello F., Lucidi S., A nonmonotone line search technique for Newton’s method, SIAM
Journal on Numerical Analysis, 23, 707-716 (1986).

18. Hock W., Schittkowski K., Test Examples for Nonlinear Programming Codes. Springer Series Lectures
Notes in Economics Mathematical Systems (1981).

19. Kolda T.G., Lewis R.M., Torczon V., Optimization by direct search: new perspectives on some classical
and modern methods, SIAM Review, 45, 85-482 (2003).

20. Kolda T.G., Lewis R.M, Torczon V., Stationarity results for generating set search for linearly con-
strained optimization, SIAM Journal on Optimization, 17 (4), 943-968 (2006).

21. Lewis R.M., Torczon V., Pattern search algorithms for bound constrained minimization, SIAM Journal
on Optimization, 9 (4), 1082-1099 (1999).

22. Lewis R.M., Torczon V., Pattern search algorithms for linearly constrained minimization, SIAM Jour-
nal on Optimization, 10 (3), 917-941 (2000).

23. Lewis R.M., Torczon V., A globally convergent Augmented Lagrangian pattern search algorithm for
optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (4), 1075-
1089 (2002).

24. Lewis R.M., Torczon V., A direct search approach to nonlinear programming problems using an Aug-
mented Lagrangian method with explicit treatment of linear constraints, Technical Report WMCS-
2010-01, College of William & Mary, Department of Computer Sciences (2010).

25. Li D.H., Fukushima M., A derivative-free line search and global convergence of Broyden-like method
for nonlinear equations, Optimization Methods and Software, 13, 181-201 (2000).

26. Martı́nez J.M., Inexact-Restoration method with Lagrangian tangent decrease and a new merit function
for nonlinear programming, Journal of Optimization Theory and Applications, 111 (1), 39-58 (2001).

27. Martı́nez J.M., Pilotta E.A., Inexact Restoration algorithm for constrained optimization, Journal of
Optimization Theory and Applications, 104 (1), 135-163 (2000).

28. Martı́nez J.M., Pilotta E.A., Inexact Restoration methods for nonlinear programming: Advances and
perspectives. In: Qi, Teo, Yang (eds.) Optimization and Control with Applications, 271-292. Springer,
Berlin (2005).

29. Martı́nez J.M., Svaiter B.F., A practical optimality condition without constraint qualifications for non-
linear programming, Journal of Optimization Theory and Applications, 118 (1), 117-133 (2003).

30. Moré J.J., Wild S.M., Benchmarking derivative-free optimization algorithms, SIAM Journal on Opti-
mization, 20 (1), 172-191 (2009).

31. Powell M.J.D., The NEWUOA software for unconstrained optimization without derivatives. In: Di
Pillo, G., Roma, M. (eds) Large-Scale Nonlinear Optimization, 255-297. Springer, New York (2006).

32. Powell M.J.D., The BOBYQA algorithm for bound constrained optimization without derivatives, Cam-
bridge NA Report NA2009/06, University of Cambridge, Cambridge (2009).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

