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We investigate the ground-state magnetization plateaus appearing in spin- 1
2 two-leg ladders built up from

dimerized antiferromagnetic Heisenberg chains and dimerized zig-zag interchain couplings. Using both Abe-
lian bosonization and Lanczos methods we find that the system yields rather unusual plateaus and exhibits
massive and massless phases for specific choices or ‘‘tuning’’ of exchange interactions. The relevance of this
behavior in the study of NH4CuCl3 is discussed.

I. INTRODUCTION

The study of low dimensional antiferromagnets is playing
a major role and bringing new insights in our current under-
standing of collective spin fluctuations.1 Part of the fascina-
tion of this field is that in the extreme quantum limit of S
51/2 there is a rather complex crossover between one-
dimensional ~1D! Bethe ground states and 2D long-range
order. By now it is well established that, at least within the
strong-coupling regime, ladders with an even number of
chains exhibit massive phases with purely short-range spin
correlations. In contrast, odd-chain ladders display in general
massless spin excitations resembling typical 1D ground
states with power-law decaying correlations. A wealth of ex-
perimental investigations have confirmed these expectations
for an increasing number of materials, such as families of
low-dimensional cuprates like Sr-Cu-O and La-Cu-O
compounds,1,2 which can be well described in terms of spin-
1/2 Heisenberg antiferromagnets confined to ladder geom-
etries.

Surprisingly, recent measurements of magnetization
curves in NH4CuCl3 crystals at high magnetic fields3 re-
vealed rather unexpected features which contrast with the
general behavior of spin excitations expected for these
systems.4–8 Specifically, this two-leg ladder S51/2 dimer-
ized compound displays two magnetization plateaus at one-
quarter and three-quarter of the saturation magnetization, ir-
respective of the external field direction. These results
confront one of the central issues regarding the condition of
fractional quantization for the appearance of massive spin
excitations or magnetization plateaus under external varying
fields. On general grounds this condition can be shown to
be4–8

pNS~12^M & !PZ, ~1!

where p , N , and S stand, respectively, for the periodicity of
the ground state, the number of coupled chains and the total
spin per site, whereas ^M & denotes the system magnetization
normalized to its saturation value. Thus, at sufficiently low

temperatures two coupled spin-1/2 dimerized chains (p5N
52) should exhibit, if any, two plateaus at ^M &50 and 1/2.
However, observations at temperatures down to 0.5 K and
magnetic fields up to 35 T carried out in3 showed no evi-
dence of these latter plateaus. The situation is rather intrigu-
ing since apart from 3D effects in NH4CuCl3 as well as
low-temperature structural transitions which cannot be ruled
out, the magnetization of a number of low dimensional ha-
lides and pnictides, e.g., KCuCl3,3,9,10 Cs2CuCl4,11 seems to
be in fair agreement with Eq. ~1!.

Motivated by these conflicting observations, recent theo-
retical studies12,13 pointed out that two-leg ladder antiferro-
magnetic systems can exhibit vanishing spin gaps depending
on the manner in which the array of coupling exchanges is
realized. The key issue is that the interplay between massive
generating mechanisms such as dimerization and interchain
couplings eventually yield no cost in energy to create spin
excitations under magnetic fields. Therefore, the system
switches from one ground state to another ~short or long
ranged!, depending in a highly nontrivial way on the particu-
lar choice or ‘‘tuning’’ of coupling exchanges. This is an
ubiquitous sign of the importance of quantum fluctuations of
individual spins on the ground state. Depending on the ex-
change interactions, fluctuations can manifest themselves
collectively into many possible ground states, particularly in
lower dimensions where their effects are most pronounced.

In this work we further analyze these findings by means
of two independent and complementary techniques such as
Abelian bosonization4–8 and Lanczos diagonalization14 of fi-
nite systems. We consider ladders of richer topologies in-
cluding both frustrated interactions and dimerization along
the interchain and intrachain couplings. Specifically, we fo-
cus attention on two dimerized spin-1/2 chains interacting
through an isotropic Hamiltonian of the form

H5 (
a51,2,n51

L

Jn
(a)SW n

(a)•SW n11
(a)

1J2 (
n51

L

@~12d2!SW n
(1)SW n

(2)

1~11d2!SW n
(1)SW n11

(2) # , ~2!
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where the SW n denote spin-1/2 operators associated to site n.
The array of coupling exchanges are set as Jn

(2)[Jn11
(1) , and

parametrized by Jn
(1)

5J1@11(21)nd1# , say for chain ~1!.
To maintain purely antiferromagnetic interactions throughout
the 2L spins of the ladder with periodic boundary conditions,
the dimerization parameters are kept bounded by ud iu<1,i
51,2. The corresponding zig-zag structure is schematized in
Fig. 1.

Besides its theoretical interest,8 at room temperature this
triangular topology is actually realized both in NH4CuCl3
~Ref. 3! and KCuCl3 ~Refs. 3,9! crystals. As it was referred
to above, their magnetization curves exhibit quite different
features thus, we are especially interested to include an ho-
mogeneous field term of the type

Hh52

h
2 (

n
@Sn

z(1)
1Sn

z(2)# , ~3!

so as to elucidate the combined effect of the above kinds of
coupling arrays and applied magnetic fields h, say along the
z direction. Also, it is worth pointing out that anisotropic
exchanges can be included straightforwardly in our
bosonization procedure as well as in the numerical analysis.

In studying the ground-state regimes of different ex-
change parameter sets, two subcases of particular interest
arise immediately.12,13 Clearly, by setting d2521 ~1! we
obtain a nonfrustrated dimerized system with staggered
~plain! bond alternation as indicated in Fig. 2. The analyses
given in Refs. 12,13 have shown that the magnetization be-
havior of the former case resembles that of a single dimer-
ized chain, as opposed to the nonstaggered or plain situation
(d251), in which a net magnetization plateau shows up at
^M &51/2. It will turn out that our general zig-zag ladder
interpolates continuously between the above scenarios and
yields rather robust plateaus at ^M &50 and 1/2. However,
the fine tuning of exchanges can suppress these massive re-
gimes and furthermore, for particular subsets of the param-

eter space, in addition two magnetization plateaus at ^M &
51/4 and 3/4 emerge simultaneously. This latter issue actu-
ally could shed light on the measurements reported in Ref. 3.

The layout of the paper is organized as follows. In Sec. II,
we recast the low-energy excitations involved in each chain
of Eq. ~2! in terms of a conformal field theory of a free
bosonic field compactified at a magnetization-dependent ra-
dius. The dimerization along chains (d1) and zig-zag inter-
actions (d2) render the bosonization approach particularly
suitable to examine, respectively, weak (J2 /J1 ,ud1u!1) and
strong (J1 /J2 ,ud2u!1) coupling regimes. They are treated
in turn in Sec II A and II B. Section III complements the
magnetization behavior conjectured by the analytic approach
in a variety of nonperturbative scenarios. An exact numerical
treatment of magnetization contours for finite systems up to
2L524 spins is given using a recursion-type Lanczos
algorithm14 applied on each magnetization subspace. Stan-
dard extrapolation procedures15 to the thermodynamic limit
then enable an independent test of the results obtained via
bosonization techniques. We end the paper with Sec. IV
which contains our conclusions, along with some remarks on
the pros and cons of the present work.

II. ABELIAN BOSONIZATION

Following a recent analysis discussed as in Refs. 4–8, we
will apply the by now standard method of Abelian bosoniza-
tion at Hamiltonian ~2!. In this formalism an antiferromag-
netic homogeneous chain is described by a compactified free
bosonic field f (a) whose dynamics is governed by

H (a)
5

1
2E dxS vK~]xf̃

(a)!2
1

v

K ~]xf
(a)!2D . ~4!

The dual field f̃ (a) is defined as usual P5]xf̃
(a). v is the

Fermi velocity and the Luttinger constant K, which is a func-
tion of the magnetization ^M (a)& and an eventual XXZ an-
isotropy D , governs the conformal dimensions of the bosonic
vertex operators and can be obtained exactly from the Bethe
ansatz solution of the XXZ chain ~see, e.g., ~Ref. 5! for a
detailed summary!. It is related to the compactification radius
R of 5 by K21

52pR2.
In terms of these fields, the spin operators read

Sx
z ,(a);

1
A2p

]xf
(a)

1a: cos~2kF
i x1A2pf (a)!:1

^M (a)&

2 ,

~5!

Sx
6 ,(a);~21 !x:e6iA2pf̃(a)

3„b cos~2kF
(a)x1A2pf (a)!1c…: ,

~6!

where the colons denote normal ordering with respect to the
ground state with magnetization ^M (a)&. The Fermi momen-
tum kF

(a) is related to the magnetization of the ath chain as
kF

(a)
5(12^M (a)&)p/2. The effect of an XXZ anisotropy D

and/or the external magnetic field is then to modify the scal-
ing dimensions of the physical fields through K
5K(^M (a)&,D). The magnetization also modifies the com-

FIG. 1. Schematic view of doubly alternating zig-zag ladders
showing both interchain (J1), and intrachain (J2) exchange cou-
plings along with their respective dimerization parameters d1 and
d2.

FIG. 2. Representation of nonfrustrated ladders with dimerized
chain bonds J1(16d1)[J(16d) and interchain coupling J8

52J2, obtained by setting ~a! d2521 ~staggered dimerization! and
~b! d251 ~plain dimerization!.
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mensurability properties of the spin operators through kF , as
can be seen from Eqs. ~5!,~6!. The nonuniversal constants a,
b, and c can be in general computed numerically ~see, e.g.,
Ref. 16, for the case of the zero magnetic field! and in par-
ticular the constant c has been obtained exactly in Ref. 17.

Notice that the inclusion of an XXZ anisotropy in our
study is not only motivated to generalize the analysis but
primarily by the fact that, for nonzero magnetization, the
SU~2! symmetry is broken from the beginning. As we shall
see in Sec. II A, the particular SU~2! symmetric case, (D
51,^M &50), has to be analyzed differently since our analy-
sis breaks explicitly this symmetry. We address the reader to

Ref. 18 where the full symmetric was analyzed using a for-
mulation in terms of Majorana fermions.

A. Weak interchain coupling regime

Here we take a[J2 /J1!1 and d1!1. In this regime
ud2u!1 corresponds to a weakly coupled two-leg zig-zag
ladder made up of dimerized chains, whereas for ud2u→1 the
system approaches a staggered (d2521) or plain (d251)
ladder dimerized as in Figs. 2~a! and 2~b!, respectively.

Using Eqs. ~5!,~6!, the low-energy Hamiltonian can be
written in this regime as

H int
(a!1)’l1(

x
]xf

(1)]xf
(2)

1l2(
x

cos@4kFx1A2p~f (1)
1f (2)!#1l3(

x
cos@A2p~f (1)

2f (2)!#

1l4(
x

cos@A2p~f̃ (1)
2f̃ (2)!#1l5 (

x ,(a)
~21 !x1acos@2kF~x11/2!1A2pf (a)~x !#

1l6 (
(a)51

2

(
x

cos@2kFx1A2pf (a)~x !# , ~7!

where

l j /a}5
D2 , j51,
D2@~12d2!1~11d2!cos~2kF!# , j52,3,
d2 , j54,
d1 , j55,

^M & , j56.
~8!

In the last two expressions the proportionality factors are
nonuniversal functions of the XXZ anisotropy D2, the mag-
netization ^M & and d2.

In the above equation we have suppressed marginal terms,
due to the presence of more relevant interactions. Also in the
case of nondimerized zig-zag interactions, there are parity
breaking terms, discovered in Ref. 18, which should be ana-
lyzed differently since they have nonzero conformal spin.
However, by explicitly including these latter terms in the
renormalization-group computations, it can be shown that
they do not change the conclusions presented here. The
SU~2! symmetric case (D51,^M &50) has been studied in
Ref. 18 for the case of zero zig-zag dimerization.

Let us analyze the structure of the magnetization curves
predicted by this effective Hamiltonian. The relative field
f25f12f2 is always massive due to the fact that the rel-
evant perturbation terms l3,4 are always commensurate. The
analysis for the diagonal field f15f11f2 is more subtle so
we will consider separately different values for the magneti-
zation. The possible values of the magnetization at which
plateaus can appear are given by the general expression
~1!.4,5 However, due to the presence of frustration in certain
region of the parameter space, possibly Eq. ~1! should in-
clude an extra factor 2 to account for a possible enhancement
in the periodicity of the ground state. This restricts the set of

possible magnetization plateaus to the values ^M &
50,1/4,1/2,3/4 ~apart from saturation!.

For ^M &50, ~i.e., kF5p/2), the perturbation l2 becomes
commensurate and hence opens a gap for the diagonal field
f1 . One could, however, argue that taking into account
other ~radiative! corrections ~coming mainly from l5 and
l6) one could close the f1 gap, simply by making the am-
plitude of this perturbation term to vanish. This naive analy-
sis has been confirmed by numerical computations,13 show-
ing that there exists a whole curve in the parameter space
where this indeed happens. In particular, for d2521 the
critical line turns out to be

J2

J1
}d1

2 . ~9!

This phenomenon was originally suggested in Ref. 12 using
nonlinear s model techniques and has been also studied nu-
merically in Refs. 20,21.

For ^M &51/2, ~i.e., kF5p/4), the plateau can open due
to the radiatively generated ~relevant! terms, ~coming from
l5 and l6), which are of the form

a2d1^M & f ~d1 ,d2 ,D2!~21 !xcos~4kFx1A2pf1!,
~10!

where f (d1 ,d2 ,D2) vanishes for the case of d2521, as al-
ready pointed out in Ref. 13. As it will be shown in Sec. III,
possibly there is another point at which the ^M &51/2 plateau
closes. The existence of such effects can be predicted using
the bosonization formalism, but the precise location of this
point, however, cannot be obtained due to the presence of
nonuniversal constants in Eqs. ~5! and ~6!.

The case of ^M &51/4,3/4, ~i.e., kF53p/8,p/8), is less
clear since the commensurate operators that can be generated
to open this plateau are irrelevant. One possible candidate is
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the operator (21)xcos(8kFx12A2pf1) which is irrelevant.
One can speculate whether this operator can become relevant
in some region of the parameter space by taking into account
the l1 perturbation which changes the compactification ra-
dius of the f1 field, and hence the dimensions of the pertur-
bation terms. However, in first approximation the above
mentioned operator would become relevant for values of the
couplings far from the region where our approach can be
considered valid.

B. Strong interchain coupling regime

Let us consider now the opposite regime, i.e., a@1. In
this regime it is convenient to rewrite the two-leg zig-zag
ladder Hamiltonian as that of a single chain with alternating
intrachain coupling J2(16d2) and next-nearest-neighbor
~NNN! interactions J1(16d1) but alternating every two
sites. Namely, NNN spins at (4n ,4n12) and (4n11,4n
13) pair locations are coupled by J1(12d1), whereas spins
at (4n22,4n) and (4n21,4n11) interact through J1(1
1d1). This is illustrated in Fig. 3.

Using the same approach as described above, in the
present case we get an effective Hamiltonian for a single
bosonic field perturbed by the following terms:

H int
(a@1)’(

x
g1~x !~]xf !2

1(
x

g2~x !cos@2kFx

1A2pf~x !#1g3(
x

~21 !xcos@2kF~x11/2!

1A2pf~x !#1(
x

g4~x !cos@4kFx12A2pf~x !# .

~11!

Here g1,2,4(x) are proportional to d1 and g3 to d2. The terms
proportional to d1 have an extra modulation due to the alter-
nation of the NNN couplings referred to above, which here-
after we call ‘‘two-by-two’’ modulation.

For d150 and ^M &50 only the last term is commensu-
rate and it has dimension 2 in the isotropic case (D51).
This term is the one responsible for the opening of the gap at
zero magnetization in the NNN antiferromagnetic Heisen-
berg chain, where, as it is well known, the gap opens at a
critical value of the NNN coupling through a Kosterlitz-
Thouless ~KT! transition. Its effect would have been the
same in the present case, but due to the presence of the
dimerization d1 along the chain, a gap will always be
present. This will be corroborated in Sec. III.

For ^M &51/2, the perturbation g2 survives the continuum
limit due to the extra ‘‘two-by-two’’ alternating factor, and
will hence be responsible for the plateau at this value of the
magnetization.

The case of ^M &51/4,3/4 is again more subtle in this
limit, and it can be seen that the operator that could be re-
sponsible for the appearance of these plateaus is generated
from a combined effect of the chain dimerization
@(21)xd2# and the two-by-two alternating part of the NNN
exchange (6d1J1). The operator generated through this
mechanism is proportional to cos„2A2pf(x)…, which is ir-
relevant, and could become relevant at certain critical value
of the coupling (}J1d1d2). Again, this KT point is not
reachable within our perturbative approach.

III. NUMERICAL ANALYSIS OF FINITE SYSTEMS

To enable an independent check of the magnetization sce-
nario obtained within the bosonization approach, we now
turn to a numerical finite-size analysis of the original ladder
Hamiltonian ~2!. A number of numerical studies of triangular
ladders ~or equivalently, of Heisenberg chain with NN ex-
changes!, have been reported already ~Refs. 8,22 and refer-
ences therein!. However, the effect of dimerization along
both interchain and intrachain couplings, which is crucial for
the appearance of nontrivial magnetization plateaus, yet re-
quires further numerical efforts.

We focus attention on the ground-state energy obtained
from an exact diagonalization of finite systems via a recur-
sion type Lanczos algorithm14 applied on each magnetization
subspace with Sz

5$0,1, . . . ,L%. Since the magnetic field
considered in Eq. ~3! is coupled to the conservation of
Sz/L5^M &, we can readily relate the energy per spin eh at
finite fields to those at h50 just by taking eh[e02h^M & .
Thus, all results addressed below were obtained from com-
putations with h50. Also, to avoid unwanted effects intro-
duced by both the ladder topology and periodic boundary
conditions, even multiples of ladder lengths up to L512
spins were taken throughout.

The huge dimensionality of the spaces involved, growing
as (L

2L), constrained us to use in the heaviest situations, i.e.,
Sz

50,1, at most seven Lanczos vectors per tridiagonalization
cycle.19 Nevertheless, the numerical accuracy was kept
bounded by 1027h/J1 employing typically up to 40 cycles of
recursion. On the other hand, the rather small number of
Lanczos vectors used in the computations allowed for an
efficient management of a complete, vector by vector reor-
thogonalization. As is known,14 this latter procedure be-
comes crucial to avoid the emergence of spurious eigenval-
ues caused by machine rounding errors which tend to build
up exponentially with the number of iterations, no matter
what precision is used. In what follows we limit our analysis
to isotropic coupling exchanges, though preliminary calcula-
tions including anisotropy in the field direction yield quali-
tatively similar results.

We begin by examining the validity of Eq. ~1! and test the
‘‘fine tuning’’ effects conjectured within the bosonization
analysis. Upon setting d150.7, d250.475, and J2 /J151,
the application of the Lanczos procedure to the triangular
ladder Hamiltonian ~2! yields a quite unusual behavior. Spe-
cifically, in addition to the typical ^M &50 and 1/2 plateaus,
two massive phases appear simultaneously at ^M &51/4 and
3/4 as is shown in Fig. 4. Rather unexpectedly, at this point
of the parameter space the spin ladder seems to decouple into
a quasi-four-level system ~see the region near the vertical

FIG. 3. Chain representation of dimerized zig-zag ladder.
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lines of Fig. 5!. In principle, this renders size effects less
pronounced, possibly due to some enhanced or hidden sym-
metry whose origin is yet difficult to elucidate. Nevertheless,
our results provide a strong numerical evidence indicating
that zig-zag structures can yield nontrivial magnetization pla-
teaus such as those observed in NH4CuCl3 crystals.3

Interesting as it is, we are actually motivated to obtain the
whole magnetization curve of this latter compound. There-
fore, we turn to the scanning of the exchange parameter
space for different regimes. Figures 5~a!, 5~b!, and 5~c! dis-
play, respectively, typical magnetization contours or ‘‘phase
diagrams’’ for weak (J2 /J150.5,d150.9), intermediate
(J2 /J151,d150.7), and strong (J2 /J155,d150.5), cou-
pling regimes. This is a compact form of representing con-
ventional magnetization curves for a wide range of inter-
chain couplings. Here each line is associated to successive
values of ^M & which increase monotonically with the ap-
plied field h. For example, the magnetization plateaus of Fig.
4 are contained completely within the vertical line of Fig.
5~b!. In general, we found that the ^M &50 and 1/2 plateaus
remain robust in a variety of scenarios, though their widths
can be eventually ‘‘fine tuned’’ to yield massless gaps.

In studying the mass gap extrapolation towards their ther-
modynamic limits ~i.e., the energy gap to create an excitation
of total spin S51 as L→‘), we fitted the whole set of
finite-size results for 4<L<12 (L even!, using a variety of
standard procedures. These range from linear to logarithmic
and van den Broeck-Schwartz-type methodologies of
convergence,15 which basically yield analogous results with
at least two significant digits. We draw the reader’s attention
to Figs. 6~a! and 6~b!, 6~c! and 6~d!, and 6~f! and 6~g! in
which we display, respectively, gap extrapolations around
^M &51/2 and 0 corresponding to the ground-state regimes
exhibited in Figs. 5~a!–5~c!. Similar gap extrapolations for
^M &51/4 and 3/4 beyond the ‘‘symmetry’’or finite-size col-
lapse region denoted by the vertical lines of Figs. 5~a! and
5~b!, would be unreliable given the scarcity of available data.
In our case, this is translated in the availability of matching
sizes, namely L54,8,12, already constrained by the studied
values of ^M &. Thus, it remains unclear whether or not
empty wide ‘‘bands’’ or plateau regions for ^M &51/4 and
3/4 could be actually present in Figs. 5~a!–5~c!.

To complement the analysis of finite ~vanishing! ^M &
51/2 gaps for d251(21) given in Sec II A, we see that
their widths remain stable upon setting d2,1,(d2.21).

Moreover, the wide minima of Figs. 6~a!, 6~c!, and 6~e! sug-
gest an infinitely continuous ground-state transition at d25

21, which is in line with the KT singularity conjectured in
Sec. II B. In fact, our data strongly support this picture for a
variety of coupling regimes, at least within the region d2
P(20.9,20.25) where finite-size effects are less pro-
nounced. This can be observed from the semilog representa-
tion of the data displayed in Fig. 7. Thus finally, the triangu-
lar ladder turns out to interpolate smoothly between the
staggered (d2521) and plain (d251) dimerization arrays
of the square ladders studied in Ref. 13.

FIG. 4. Magnetization curves of dimerized zig-zag ladders for
d150.7, d250.475, and J5J15J2. Solid, dashed, and short
dashed lines denote, respectively, results for L512, 8, and 4.

FIG. 5. Critical fields of dimerized zig-zag ladders for ~a!

J2 /J150.5 with d150.9, ~b! J2 /J151 with d150.7, and, ~c!

J2 /J155 with d150.5. Solid, dashed, and short dashed lines de-
note, respectively, the results for L512, 8, and 4, whereas J
5max$J1 ,J2%. Vertical lines in ~a! and ~b! indicate regions where
1/4 and 3/4 plateaus emerge at a time.
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IV. CONCLUSIONS

In this work we have studied the magnetization phase
diagram of a two-leg zig-zag ladder with dimerization both
along the legs and the zig-zag coupling, by means of Abelian
bosonization methods complemented by Lanczos diagonal-

ization of finite clusters up to 24 spins. From the bosoniza-
tion analysis we conclude that the ^M &50 plateau is robust
and it is present in the full parameter space, except on a
certain zero-measure set. We have confirmed numerically
these expectations and obtained the above massless excita-
tions as displayed in the lowermost panels of Figs. 6~d! and
6~f!.

Spin excitations around ^M &51/2, also turn out to be
massive and robust as they show up in the whole parameter
space, except in the limit d2→21 and for a certain curve
J2 /J15 f (d1 ,d2). This latter feature is observed in Figs. 6~a!
and 6~c! for weak and intermediate coupling regimes near
d250 and around d2;0.5 for strong-coupling regions as
shown in Fig. 6~e!.

Regarding the issue of ^M &51/4,3/4 plateaus, they are
observed only within a fine-tuned region, possibly bearing an
enhanced symmetry of the Hamiltonian ~see, e.g., Figs. 4 and
5!. Their appearance is hard to predict using Abelian
bosonization techniques.

Finally, though there are intermediate values of d2 ca-
pable of closing gaps around both ^M &50 and 1/2, after
scanning a representative set of the parameter space, we
could not find any evidence of common closing points so as
to explain the suppression of these plateaus at a time in
NH4CuCl3 crystals. In principle, this would rule out the lad-
der Hamiltonian ~2! as a suitable model to account com-
pletely for the experiments reported in Ref. 3. Nonetheless,
we trust that its success to describe the simultaneous emer-
gence of rather unusual plateaus at ^M &51/4 and 3/4 ~at
least near the data collapse region of Fig. 5!, will make our
system worth to consider as an antecedent for future studies
in that direction.

ACKNOWLEDGMENTS

We appreciate fruitful discussions with A. Honecker and
P. Pujol. The authors acknowledge financial support of
CONICET and Fundación Antorchas. D.C.C. acknowledges
financial support from ANPCyT ~under Grant No. 03-00000-
02249!.

FIG. 6. Width of magnetization plateaus for ^M &51/2 in ~a!,
~c!, ~e! and ^M &50 in ~b!, ~d!, ~f!. Data of first, second, and third
panel refer, respectively, to J2 /J150.5 with d150.9, J2 /J151
with d150.7, and J2 /J155 with d150.5. Solid lines in descending
order indicate, respectively, results for L56, 8, 10, and 12, whereas
lowermost dashed curves @slightly visible in ~b! and ~f!# denote gap
extrapolation to the thermodynamic limit.

FIG. 7. Gap width extrapolations for ^M &51/2 suggesting a KT
singularity }e21/A11d2 on approaching d2521. Triangles, squares,
and circles denote, respectively, weak, intermediate, and strong-
coupling regimes displayed in turn in Figs. 6~a!, 6~c!, and 6~e!.
Straight lines are guides to the eye.
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