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Abstract

We study a formulation of the translationally-invariant coupled cluster method in coordinate space. Previous calculations
in configuration space showed poor convergence, a problem that the new formulation is expected to remedy. This question is
investigated for a system of bosons interacting through the Wigner part of the Afnan-Tang S3 interaction, where previous
results exist. q 2000 Elsevier Science B.V. All rights reserved.
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Ž .The coupled cluster method CCM provides a
well studied formalism to describe many-body sys-
tems in many areas of physics. We have been study-
ing the application of this method to the nuclear

w xproblem 1,2 . In our work we have emphasised the
importance of a correct treatment of the centre-of-
mass motion. This requires a modification to the
CCM formalism, which has mainly been studied up
till now at the level of two-body correlations. The

Ž .resulting theory TICC2 has been investigated and
w xformulated in configuration space 3,4 , and was

applied mainly to bosonic systems, where it was
found to suffer from very slow convergence with

1 Ž . Ž .Phone: q44 0 161 200 8704; fax: q44 0 161 200 4303;
e-mail: moliner@dirac.phy.umist.ac.uk

respect to the size of the single-particle space. It was
then realized that a linearized version of the theory
Ž .TICI2 can easily be reformulated in coordinate
space, avoiding these convergence problems. In this
letter we shall describe a comparable formulation of
TICC2 in coordinate space and compare it with
previous results in configuration space for model
systems of bosonic nucleons interacting through a
Wigner-type potential.

In general, the CCM ansatz for the wave function
of an A-particle system is generated by the exponen-
tial form

ˆ< : < :C sexp S F , 1Ž .Ž .

ˆwhere S is a sum of one-body, two-body, etc.,
operators acting on an uncorrelated reference state
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ˆ< : w xF . It has been shown 3 that when the operator S
is restricted to one- and two-body correlations, the
translationally invariant form can be represented in
coordinate space in terms of a two-body function
Ž .f r , depending only on the relative coordinate of ai j

pair. Moreover, the uncorrelated reference state must
Ž .be a product of harmonic oscillator HO single

particle wave functions to remove the center-of-mass
motion properly. Therefore, in coordinate space, the

w xTICC2 wave function can be written as 5,6
C r , . . . ,rŽ .1 A

1 X
s 1q f r q f r f rŽ . Ž . Ž .Ý Ý Ýi j i j k lž 2!i-j i-j k-l

X1 X X
q f r f r f rŽ . Ž . Ž .Ý Ý Ýi j k l m n3! m-ni-j k-l

q . . . F r , . . . ,r , 2Ž . Ž .1 A/
Ž .where F r , . . . ,r is an uncorrelated HO wave1 A

function; and the primed sums denote that all the
indices in the nested sums are distinct, showing
explicitly the characteristic CCM property of dealing
only with independent excitations. It is worth noting
that this wave function coincides with the indepen-
dent pair approximation to a Jastrow wave function,

w xproposed some years ago 7 . If we only take up to
Ž .linear terms in f in the wave function of Eq. 2 , we

obtain the one used in the pairwise translationally-in-
Ž .variant configuration-interaction TICI2 method.

The problem is thus reduced to a determination of
Ž .the pair correlation function f r . The intermediate

² < :normalization condition F C s1, inherent to
CCM, implies that the correlation function must be
restricted by the relation

1 X² <F f r q f r f r q . . .Ž . Ž . Ž .Ý Ý Ýi j i j k lž /2!i-j i-j k-l

< := F s0. 3Ž .
In the case of a bosonic system where F is a simple
boson condensate, this condition is equivalent to
² < < :f r f r f r f r f r s0,Ž . Ž . Ž . Ž . Ž .000 1 000 2 12 000 1 000 2

4Ž .
Ž .where f r is the 0 s HO single particle wave000

function, in the usual f basis.nlm

w xFollowing the standard approach to the CCM 8 ,
we obtain equations for f and the ground-state en-
ergy by projecting the Schrodinger equation both¨
onto the uncorrelated state, and onto a set of generic
excited states containing up to two-body correlations.
These states are obtained by multiplying the uncorre-

Ž .lated state by Ý g r , where g is an arbitraryi- j i j
Ž .function that satisfies the condition of Eq. 4 . We

then obtain an integro-differential equation from
which one can determine the correlation function f ,
plus a supplementary expression for the ground-state
energy.

We work with a standard two-body hamiltonian,
comprising sums of single-body kinetic energy terms
and translationally-invariant two-body potential
terms. In that case the equations can be most suc-

w xcinctly presented using a diagrammatic notation 6 ,
where a circle represents a particle, solid lines denote
the correlation function f , dashed lines stand for the
interaction, crosses indicate the action of the kinetic
energy operator, and wavy lines denote the function
g. The equation corresponding to the projection onto
a generic excitation takes the form

Ž .5

n Ž .Ž . Ž .where C ' Ayn Ayny1 . . . Aynykq1k
are statistical factors counting the different equiva-
lent labellings of each diagram. The quantities En

Ž .appearing in Eq. 5 are given by

Ž .6

and they are related to unlinked diagrams. Most
importantly, E corresponds to the ground-state en-0
ergy.
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To clarify the meaning of the diagrammatic nota-
tion consider the following diagram,

Ž .7

Ž .From this expression we see that Eq. 5 is the
) Ž .integral of the function g r times a non-linear12

Ž .functional, depending on the pair correlation f r ,
equated to zero,

) w xg r F f dr . . . dr s0. 8Ž . Ž .H 12 1 A

Ž .Given that g r is not a fully arbitrary function,
because of the required orthogonality of the excited
states with respect to the reference state, one cannot
straightforwardly obtain an integro-differential equa-

Ž .tion for f r . We could introduce a Lagrange multi-
plier, but it is easier to introduce a completely arbi-

Ž . ² < < :trary function G r , and replace g by Gy F G F

Ž .in Eq. 5 , which obviously satisfies the constraint.
After this substitution, the integro-differential equa-
tion for f is easily obtained. Moreover, we can avoid
the cumbersome non-linear integro-differential equa-
tion by expanding both G and f in a suitable basis,
leading to a system of algebraic non-linear coupled
equations. We have chosen a set of gaussians as our
Ž .overcomplete basis. Our previous experience with

w xthe linear TICI2 formalism 1,2 has shown this
method to be both accurate and economical.

In Table 1 we list results for different systems of
nucleons considered as bosons and interacting
through the Wigner part of the Afnan-Tang S3 inter-

w xaction 9 . There is excellent agreement between the
w xHO configuration-space calculations 4 and the pre-

Table 1
Ž .Binding energies in MeV for various ‘‘bosonic nuclei’’ with the

Wigner part of the S3 interaction and for the different orders of
truncation of the equations in powers of f. Order 1 corresponds to
the TICI2 case, and Order 4 is the full TICC2 result. The last row

w xshows the full TICC2 configuration-space results 4 .

As4 As8 As16 As40

Order 1 25.42 225.46 1131.2 7495.3
Order 2 25.60 235.12 1235.7 8457.1
Order 3 235.12 1235.1 8458.5
Order 4 235.12 1235.1 8458.7

Configuration 25.49 235.03 1234.9 8456.6

sent coordinate-space ones. It is worth noting that the
coordinate-space numbers are fully converged, with
the use of between 10 and 14 gaussians. By contrast,
in HO configuration space we used up to 30 ampli-

Žtudes corresponding to single-particle excitation en-
.ergies up to 60"v , and still not reaching full con-

vergence in some cases. Moreover, working in coor-
dinate-space results in a much faster computation of
the required expansion coefficients. For these bosonic
systems the computer time needed is roughly 500
times smaller as compared with the calculations in
configuration space.

Another interesting feature of the method is re-
vealed when we compare the different results ob-
tained as a function of a truncation of the equations
in powers of f. In this truncation, the first order

Ž .corresponds to the linear approach TICI2 and the
fourth order to the full TICC2 approach. Although in
the light As4 system the contribution of non-linear
terms is not very relevant, for the heavier systems
the improvement in the energy is indeed quite re-
markable, as was already noticed in configuration-

w xspace calculations 4 . It is interesting to note that the
third- and fourth-order terms give an almost negligi-
ble contribution, so that one may safely simplify Eq.
Ž . Ž .5 by keeping only up to quadratic terms in f r .

To obtain optimal results at this level of approxi-
mation we should also have adjusted a , the HO
inverse length parameter. In order to compare with
the configuration-space results, the calculations in
coordinate-space were performed using the same val-
ues for a . In the configuration-space case, which is
extremely time-consuming, this parameter was fixed
to give the minimum energy in the linear approxima-
tion, which is relatively quickly computed. Whether
this is the best choice for the full calculation was
unclear. We have checked this assumption using the
current approach, and it turns out that it is essentially
the correct choice in the lighter systems, but not in
the heavier ones. In the As16 system the minimum

Ž y1 .is in fact 1237.2 MeV for as0.78 fm , instead
Ž y1 .of 1235.1 MeV for as0.81 fm . In the As40

case the displacement is greater, with a result of
Ž y1 .8499.2 MeV for as0.78 fm to be compared

Ž y1 .with 8458.7 MeV for as0.83 fm .
In this work we have investigated a new formula-

tion of the TICC2 method in coordinate space as a
first step towards its application to nuclear systems.
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We have seen that with the coordinate-space formu-
lation we can overcome the convergence problems
present in the HO configuration space, with a re-
markable saving of computer time as well. At the
same time, we have seen that most relevant contribu-
tions to the energy are already included in the second
order. This observation is likely to be helpful in
fermionic systems, where we need to tackle the
additional complications arising from the Fermi
statistics. The implementation of the TICC2 equa-
tions for fermionic systems is the natural next step in
this investigation, and it is already under study.
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