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Nonperturbative effective-field theory for two-leg antiferromagnetic spin ladders
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We study the long wavelength limit of a spin- 1
2 Heisenberg antiferromagnetic two-leg ladder, treating the

interchain coupling in a nonperturbative way. We perform a mean field analysis and then include the fluctua-
tions in an exact way. This allows for a discussion of the phase diagram of the system and provides an
effective-field theory for the low-energy excitations. The coset fermionic Lagrangian obtained corresponds to
a perturbed SU(4)1 /U(1) conformal field theory ~CFT!. This effective theory is naturally embedded in a
SU(2)23Z2 CFT, where perturbations are easily identified in terms of conformal operators in the two sectors.
Crossed and zigzag ladders are also discussed using the same approach.
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I. INTRODUCTION

Antiferromagnetic Heisenberg spin ladders have been a
subject of central interest during the last years. These are
intermediate systems between the gapless critical spin-1

2
Heisenberg chain and the ordered spin-1

2 two-dimensional
system relevant for undoped cuprate superconductors. The
simplest realization, i.e., the two-leg ladder, shows a dra-
matically different excitation spectrum with respect to one of
an isolated chain. It has a finite gap to the first excitation and
magnetic correlations are short range. Several inorganic
compounds have been recently synthesized and modeled as
Heisenberg ladders.1 Exponential decay of the low-
temperature magnetic susceptibility was the first signal of the
existence of a spin gap in two-leg ladder materials. Neutron
and optical measurements also manifest the presence of a
gap and are consistently described by a two-leg ladder model
with exchange integrals of the same order in the chains di-
rection ~J! and along the rungs (J8).

Theoretically, the existence of a gap was predicted early
from numerical exact diagonalization and strong coupling
perturbation theory (J/J8!1).2 More recently field-
theoretical techniques have been used to analyze the excita-
tion spectrum in the weak-coupling regime (J8/J!1).3,4

These treatments give access to the whole low energy exci-
tation spectrum as well as to the dynamical susceptibilities
that are essential to comparing with experimental probes.
The philosophy underlying this study is the following: spin
operators are expressed in the well-known bosonized repre-
sentation of each chain and the interchain coupling is treated
as a small perturbation in this representation. The applicabil-
ity of these studies is then valid in principle only in the
weak-coupling regime and its use in the description of, e.g.,
the experimentally realized two-leg ladders in which J8
;J/2 should be taken with some care. It is therefore not
clear up to which value of J8/J the results of Refs. 3 and 4
are applicable, and it is important to develop theoretical
methods that could be used beyond the weak coupling re-
gime.
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The picture that emerges from the weak-coupling analysis
leads to a description in terms of a triplet of massive Majo-
rana fermions and a singlet Majorana fermion with a differ-
ent mass ~which has been estimated to be minus three times
the triplet mass!.4 The only interactions between these fermi-
ons are marginal current-current terms, which have been ar-
gued to simply renormalize their masses and velocities. A
question that has risen in recent studies of the Raman-
scattering spectrum,5 is whether marginal interactions can in
fact be disregarded. In particular, correlation functions ob-
tained disregarding marginal interactions apparently do not
fit experiments ~see, e.g., Ref. 6!.

In this work we analyze the complete phase diagram of
the two-leg antiferromagnetic ladder. Our approach, first
used here for spin ladders, starts from a fermionic represen-
tation of the spin operators in the functional-integral frame-
work, as introduced in Refs. 7–9 for spin chains. With a
simple ansatz to the mean-field ~MF! configurations we show
that the system undergoes a crossover from a weak- to a
strong-coupling regime at an intermediate value of J8/J . We
then introduce fluctuations around MF and take them into
account at all orders to construct the low-energy effective-
field theory.

The resulting theory corresponds to a coset conformal
field theory ~CFT! of symmetry SU(4)1 /U(1) iso , perturbed
by relevant operators ~of dimension 1! and marginal opera-
tors ~of dimension 2) arising from the single occupancy con-
straint as well as from the amplitude fluctuations of the link
fields introduced to decouple the fermionic interactions. It
should be noted that our approach is based on the assumption
that the local single occupancy constraint can be imple-
mented as a very last step, while it is taken into account
globally from the beginning. The correctness of this proce-
dure is not guaranteed from first principles, but is supported
a posteriori.

We show that the complete structure of these perturba-
tions can be retained and that they take a simple form in the
language of conformal embeddings. In particular, the mar-
ginal terms that arise can be easily classified in the new
©2001 The American Physical Society08-1
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language and their effect can then be studied in a nonpertur-
bative way. When the relevant perturbations are expressed in
the embedded SU(2)23Z2 CFT language the spectrum is
naturally separated in the triplet and singlet of Majorana fer-
mions. These results, which are valid up to J8/J’8/p2, ex-
tend to finite coupling the weak-coupling study of Ref. 4. It
should be stressed that recent estimates of the ratio of ex-
change constants lead to values of J8/J around 1

2 in several
cuprate materials.10

In order to illustrate the generality and ease of use of our
approach, it is then applied to the so-called crossed ladders
and zigzag ladders. Phase diagrams and low-energy theories
are obtained in the region containing the weak coupling
limit; further analysis and details will be considered else-
where.

The paper is organized as follows. In Sec. II we introduce
the model, present Hubbard-Stratonovich decoupling tech-
niques, and perform a MF analysis, discussing the resulting
phase diagram. In Sec. III we construct the low energy
effective-field theory: our theory contains four Dirac fermi-
onic species corresponding to the spin and band indices of
the ladder. In Sec. IV we show that the theory has a natural
relation to SU(2)23Z2 CFT through conformal embedding
~the last part arises from the two electronic bands!. In Sec. V
we briefly report results on crossed and zigzag ladders. Fi-
nally, in Sec. VI the conclusions and possible further devel-
opments of our method are given.

II. MEAN-FIELD ANALYSIS

We consider the Heisenberg Hamiltonian for a two-leg
spin-1

2 ladder,

H5 (
n51

N

(
l51

2 S JSW n
(l)
•SW n11

(l) 1
J8

2 SW n
(l)
•SW n

(l11)D , ~1!

where N is the number of sites along the chains, and J.0
and J8.0 are the couplings between adjacent spins along
the legs and rungs respectively. For mathematical conve-
nience we assume periodic boundary conditions in both di-
rections ~notice that the Hamiltonian is suitably written for
arbitrary n-leg ladders; in the present case the physical cou-
pling along the rungs is in effect J8).

The spin variables can be represented in terms of fermi-
onic operators with spin cn ,a

(l) as

SW n
(l)5cn ,a

†(l)s
W

ab

2 cn ,b
(l) , ~2!

where sW are Pauli matrices, together with a local constraint
that ensures one spin per site, imposed on the physical states
by

cn ,a
†(l)cn ,a

(l) uphys&5uphys& . ~3!

Throughout this paper we will not use the summation con-
vention for neither site nor leg indices; repeated spin ~Greek!
indices are summed.

Using Eqs. ~2! and ~3! the Hamiltonian ~1! can be rewrit-
ten as
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H52 (
n51

N

(
l51

2 S J
2 cn ,a

†(l)cn11,a
(l) cn11,b

†(l) cn ,b
(l)

1
J8

4 cn ,a
†(l)cn ,a

(l11)cn ,b
†(l11)cn ,b

(l) D1C , ~4!

where C52N/2 is an irrelevant constant term.
We now trade Eq. ~4! for a quadratic Hamiltonian via a

Hubbard-Stratonovich transformation, at the usual price of
introducing auxiliary fields Bn

(l) associated to terms contain-
ing cn11,a

†(l) cn ,a
(l) , and Bn8 associated to terms containing

cn ,b
†(l11)cn ,b

(l) . It is natural to interpret Bn
(l) as localized on the

leg ~l! links between sites n and n11, and Bn8 as localized on
the rung links. After the transformation the Hamiltonian
reads

H5
J
2 (

n51

N

(
l51

2

~Bn
(l)cn ,a

†(l)cn11,a
(l) 1Bn

†(l)cn11,b
†(l) cn ,b

(l) 1Bn
†(l)Bn

(l)!

1
J8

4 (
n51

N

(
l51

2

~Bn8cn ,a
†(l)cn ,a

(l11)1Bn
†8cn ,b

†(l11)cn ,b
(l) 1Bn

†8Bn8!.

~5!

As we look for a low-energy effective theory, we treat the
B variables in a long-wave approximation. To this end, we
parametrize these fields in terms of real MF values (B0 ,B08)
and fluctuations

Bn
(l)5B0exp~ iaAn

(l)1aRn
(l)!, Bn85B08exp~ iaAn81aRn8!.

~6!

Notice that we have included both phase and amplitude fluc-
tuations, which will play important different roles in the fol-
lowing. For this reason, we explicitly distinguish the Hermit-
ian (Rn

(l) ,Rn8
(l)) and anti-Hermitian (iAn

(l) ,iAn8
(l)) parts of the

fluctuation fields. The expression for Bn8 will be eventually
modified when B0850 @see Eq. ~31!#.

As a first step, we perform the MF evaluation of the
Hamiltonian ~5! by setting the fluctuations to zero. The re-
sulting MF Hamiltonian is then a tight-binding model for
two coupled chains,

Hm f52t (
n51

N

(
l51

2

~cn ,a
†(l)cn11,a

(l) 1cn11,b
†(l) cn ,b

(l) !

22t8(
n51

N

~cn ,a
†(1)cn ,a

(2) 1cn ,b
†(2)cn ,b

(1) !1
4N
J t21

8N

J8
t82,

~7!

where

t52
JB0

2 , t852
J8B08

4 . ~8!

The coupled tight-binding model is easily diagonalized by
means of a double Fourier transform. We first decouple two
bands by means of
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cn ,a
(1) 5

1
A2

~cn ,a
(1)2cn ,a

(2)!, ~9!

cn ,a
(2) 5

1
A2

~cn ,a
(1)1cn ,a

(2)! ~10!

and then introduce pseudomomentum operators d (1),d (2) by

cn ,a
(1)5

1
A2N (

m51

N

dm ,a
(1) expS 2i

2pmn
N D , ~11!

cn ,a
(2)5

1
A2N (

m51

N

dm ,a
(2) expS 2i

2pmn
N D , ~12!

in terms of which the Hamiltonian reads

Hm f52 (
m51

N F2t cosS 2p

N m D12t8Gdm ,a
†(1)dm ,a

(1)

2 (
m51

N F2t cosS 2p

N m D22t8Gdm ,a
†(2)dm ,a

(2)

1
4N
J t21

8N

J8
t82. ~13!

This expression clearly represents a decoupled two-band
tight-binding model.

The constraint ~3!, meaning one electron per site, forces
the system to be exactly at half filling. Low-energy excita-
tions are then achieved by creating holes just below the
Fermi surface and creating electrons just above it.11 Notice
that this can be done only if

ut8u,utu, ~14!

that is, when the Fermi level crosses both bands. If this con-
dition is not satisfied, the system presents a finite-energy gap
to spin excitations.

The actual values of t and t8 are determined by minimiz-
ing the energy of Eq. ~13!. In order to perform this evalua-
tion we introduce a lattice spacing a and a position coordi-
nate x5na (xP@0,L5Na#); the appropriate
pseudomomentum coordinate is k5m2p/(Na) (k
P@2p/a ,p/a#). The mean-field Hamiltonian then reads

Hm f52
L

2pE2p/a

p/a
@2t cos~ka !12t8#da

†(1)~k !da
(1)~k !dk

2
L

2pE2p/a

p/a
@2t cos~ka !22t8#da

†(2)~k !da
(2)~k !dk

1
4L
aJ t21

8L

aJ8
t82, ~15!

from which we can read the dispersion relations for each
band, sketched in Fig. 1,

e (1)~k !522t cos~ka !22t8, ~16!
14440
e (2)~k !522t cos~ka !12t8. ~17!

The Fermi momentum for each band is defined through
the equation

e (1)~kF
(1)!5e (2)~kF

(2)!. ~18!

The local constraint in Eq. ~3! leads to the global constraint
N (1)1N (2)52N , where N (6) is the occupation number op-
erator for each band. Besides, N (6)5(2Na/p)kF

(6) . We thus
obtain

cos~kF
(2)a !5

t8
t 5

J8B08

2JB0
, ~19!

kF
(1)5p/a2kF

(2) , ~20!

these implying

e (1)~kF
(1)!5e (2)~kF

(2)!50. ~21!

The values of t and t8 are now determined by minimizing
the energy of Eq. ~15! under half-filling conditions,

Em f52
L

2pE2kF
(1)

kF
(1)

@2t cos~ka !12t8# 2 dk

2
L

2pE2kF
(2)

kF
(2)

@2t cos~ka !22t8# 2 dk1
4L
aJ t21

8L

aJ8
t82.

~22!

Notice that t,0 just inverts the cosine curves, translating the
Brillouin zone considered in p/a , and t8,0 would just trade
the roles of the two bands. Then, the relevant sector in the
t ,t8 plane is t>0 and t8>0. In this sector, the expression for
the energy is

ap

L Em f528t sin~kF
(2)a !24t8~p22kF

(2)a !

1
4p

J t21
8p

J8
t82, t8,t , ~23!

and

FIG. 1. Dispersion relation for the two-band tight-binding
model.
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ap

L Em f524pt81
4p

J t21
8p

J8
t82, t8.t . ~24!

The analysis of the above equations shows that for J8
,8/p2J , the MF configuration depicts two bands that coin-
cide with those corresponding to two decoupled chains (t
5J/p ,t850), with Fermi momentum kF5kF

(2)5kF
(1)

5p/(2a). Notice that the condition in Eq. ~14! holds and the
linearization procedure around this minimum is valid.

On the contrary, for J8.(8/p2)J , we find that the global
energy minimum corresponds to the point t50,t85J8/4
where the condition in Eq. ~14! does not hold ~notice that
there is still another local minimum while J8,2J). The sys-
tem in this configuration, that describes the strong coupling
phase presents a finite-energy gap to spin excitations.

In the following two sections we will explore the J8
,8/p2J region.

III. FLUCTUATIONS AND CONSTRAINTS: THE
SU„4…1 ÕU„1… COSET THEORY

In this section we take the continuum limit of the MF
Hamiltonian in Eq. ~13! and then include fluctuations around
MF and constraints in Eq. ~3!. The outcome of this procedure
is a perturbed SU(4)1 /U(1) coset theory.

A. Low-energy linearization in the thermodynamical
continuum limit

In the region we consider (J8,8/p2J) the mean-field dis-
persion relation consists of two coinciding bands of ampli-
tude 2J/p . Linearization of low-energy excitations can be
done around kF5p/(2a) in the usual way. The bandwidth
will limit the validity of the resulting effective field theory to
energies much smaller than J, independently of J8.

Low-energy excitations in the thermodynamical con-
tinuum limit of the tight-binding model at half filling can be
linearized in terms of Dirac fermions.11 Fermionic position
space operators c (6) for each band are readily written in
terms of Dirac fermions c (6)(x) as

cn ,a
(1)5Aa@exp~2ikFx !cR ,a

(1)~x !1exp~ ikFx !cL ,a
(1)~x !# ,

~25!

cn ,a
(2)5Aa@exp~2ikFx !cR ,a

(2)~x !1exp~ ikFx !cL ,a
(2)~x !# .

~26!

Here cR ,a
(1) and cL ,a

(1) stand for the right and left components
of a Dirac spinor Ca

(1) and so on. Dirac gamma matrices are
taken as g05s1 ,g15s2. Notice that there is a total of four
Dirac fermion species; using the notation a5↑ ,↓ they are
(1 ,↑),(2 ,↑),(1 ,↓),(2 ,↓), which will be respectively de-
noted C i(x) with i51,2,3,4. Summation over repeated
fermion-species indices will be understood.

We arrive then at the linearized MF Hamiltonian

Hm f5vFE dxC̄ i~x !g1]xC i~x !, ~27!

where
14440
vF52tasin~kFa !52Ja/p ~28!

is the Fermi velocity and C̄ i5C i
†g0. All four C fields have

the same Fermi velocity, and the model, up to this point,
possesses a manifest U(4) symmetry.

B. Fluctuations around mean field

We include now the fluctuation fields Bn
(1) ,Bn

(2),Bn8 . As
we look for the continuum limit of the Hamiltonian ~5!, we
will keep only relevant powers in a, as compared with Eq.
~27!.

In order to keep track of a orders, it is useful to make
explicit the order a contribution of fermion bilinears by de-
fining

zn
(1)5a21cn ,a

†(1)cn11,a
(1) ,

zn
(2)5a21cn ,a

†(2)cn11,a
(2) , ~29!

zn
(3)5a21cn ,a

†(1)cn ,a
(2) ,

so that the leading order for each z is a0. Notice that z (1) and
z (2) still have to be expanded, as (n11)a5x1a; the only
relevant term in this expansion is that linear in a, containing
first derivatives of c fields. Our notation will be

zn
(i)5wn

(i)1avn
(i) ~30!

~notice that vn
(3)50).

The relevant expansions for the B fields, taking into ac-
count that the MF value of B08 vanishes, are

Bn
(l)5B01iaB0An

(l)1aB0Rn
(l)1O~a2!, ~ l51,2!

~31!

Bn85iaAn81aRn81O~a2!.

In particular, the terms quadratic in B must be expanded as

Bn
†(l)Bn

(l)5B0
212aB0

2Rn
(l)12a2B0

2R (l)
n
2 , ~ l51,2!

~32!

Bn8
†Bn85a2A8n

21a2R8n
2 .

Using all of these, and making explicit the sums over l
51,2, the effective low-energy Hamiltonian for Eq. ~5! is
written as

He f f5H (1)1H (2)1H (3)1O~a3!, ~33!

where
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H (1)5
J
2 NB0

21
J
2 (

n51

N

aB0~zn
(1)1zn

†(1)! ~34!

1
J
2 (

n51

N

ia2B0An
(1)~wn

(1)2wn
†(1)!

1
J
2 (

n51

N

a@aB0Rn
(1)~wn

(1)1wn
†(1)!

12B0
2Rn

(1)12aB0
2Rn

~1 !2# ,

H (2)5
J
2 NB0

21
J
2 (

n51

N

aB0~zn
(2)1zn

†(2)!

1
J
2 (

n51

N

ia2B0An
(2)~wn

(2)2wn
†(2)!

1
J
2 (

n51

N

a@aB0Rn
(2)~wn

(2)1wn
†(2)!12B0

2Rn
(2)

12aB0
2Rn

~2 !2# , ~35!

H (3)5
J8

2 (
n51

N

ia2@An8~wn
(3)2wn

†(3)!1A8n
2#

1
J8

2 (
n51

N

a2@Rn8~wn
(3)1wn

†(3)!1R8n
2# . ~36!

The main things to notice here are:
~i! There are irrelevant ~divergent! constant terms. This is

expected from the combination of Hubbard-Stratonovich and
MF techniques.

~ii! The terms without fluctuations in H (1) and H (2) pro-
vide the two decoupled chains MF results discussed in the
previous section.

~iii! The A (1) and A (2) fields act as Lagrange multipliers;
their total contribution to the effective action in the con-
tinuum limit reduces to a term

2i
vF

2 E dx$@C̄ i~x !g1C i~x !#@A (1)~x !1A (2)~x !#

1@C̄ i~x !g1~s1 ^ 1 ! i jC j~x !@A (1)~x !2A (2)~x !#%. ~37!

In the notation of Eq. ~37! the first matrix (s1) refers to
isospin indices (1),(2), while the second one ~1! refers to
spin indices ↑ ,↓ .

~iv! The presence of a quadratic term in the A8 field, with
proper sign, allows for a trivial Gaussian integration. The
same can be done with the R fields. These of course bring
back the original spin-spin rung interactions. In the present
scheme their contribution includes quadratic terms in the c
operators that lead to a redefinition of the Fermi velocity
vF→vF/2 and quartic perturbations that can be arranged as
14440
2
Ja2

16 (
n51

N

@~wn
(1)1wn

†(1)!21~wn
(2)1wn

†(2)!2#

2
J8a2

2 (
n51

N

wn
(3)wn

†(3) . ~38!

The continuum form of these quartic perturbations in terms
of Dirac fermions is lengthy. We will write them down be-
low, after introducing a convenient notation.

We notice that for J8,8/p2J , our approach leads to a
description of the system that is the same as the one obtained
in perturbative treatments, in principle valid for J8!J .4,12 In
particular, the first two terms in Eq. ~38! give rise to the
well-known marginally irrelevant perturbation terms in the
individual chains. However, our approach does not rely on
any perturbative treatment of J8 and in particular allows for
the determination of the phase diagram of the system, i.e., it
predicts a critical value of the ratio J8/J that separates the
two different regimes in the two-leg ladder. The situation is
depicted in Fig. 2.

Moreover, we show in the next section that the weak-
coupling structure unraveled in Ref. 4 arises naturally within
our approach.

C. Constraints

In this section we express the constraints ~3! in terms of
the linearized fermion fields and discuss how to implement
them in the evaluation of the partition function for the spin
ladder.

In the continuum limit the constraint on the occupation
number at each site (l),n separates in four parts, correspond-
ing to oscillating and nonoscillating terms associated to each
band. They read

C̄ ig0C i5const, ~39!

which, implemented through a Lagrange multiplier a0, pro-
vides the time component of a gauge field implementing a
diagonal U(1) coset constraint am5(a0 ,A (1)1A (2));

FIG. 2. Phase diagram of the spin ladder. Bold bonds corre-
spond to nonzero links in the MF approximation.
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C̄ ig0~s1 ^ 1! i jC j50, ~40!

which, implemented through a Lagrange multiplier b0, pro-
vides the time component of a second gauge field imple-
menting the isospin U(1) coset constraint bm5„b0 ,A (1)

2A(2)…. These last two constraints

C̄ iC i50, ~41!

C̄ i~s1 ^ 1! i jC j50 ~42!

lead to marginally irrelevant quartic perturbation terms when
implemented through

d„O~x !…} lim
h→‘

e2hO †(x)O(x), ~43!

just as in the case of decoupled chains.
To conclude this section, we collect all the terms in the

effective low-energy Hamiltonian, which finally reads

He f f5
aJ
p E dx C̄ i~x !@~g1]x2igmam!d i j

2igm~s1 ^ 1! i jbm#C j~x !1DHe f f , ~44!

where DHe f f includes quartic terms in fermionic fields that
arise from Eqs. ~38!, ~41!, and ~42!.

Clearly, the unperturbed theory possesses a U(4) symme-
try that is gauged by a diagonal U(1) field (am) and an
isospin U(1) field (bm), which leads to the coset

U~4 !

U~1 !diag3U~1 ! iso
5

SU~4 !1

U~1 ! iso
, ~45!

where SU(4)1 stands for the level k51 Wess-Zumino-
Witten ~WZW! theory.13,14

Before displaying the explicit expression for the perturba-
tions it is worth discussing in more detail the coset structure
of the quadratic part of the Hamiltonian.

IV. SU„2…2ÃZ2 EMBEDDING—THE PERTURBATIONS
IN A NEW LANGUAGE

As it is known, the coset CFT SU(4)1 can be alterna-
tively described through the embedding15

SU~4 !15SU~2 !23SU~2 !2 . ~46!

The conformal central charges of the two theories coincide
and primary fields in the SU(4)1 can be written in terms of
primaries in the two SU(2)2 sectors. This will presently
prove to be useful in the treatment of the perturbations. The
different SU(2)2 sectors in this embedding are naturally
identified in Eq. ~44! as the spin and isospin sectors, by
virtue of the s1 ^ 1 nondiagonal structure. Moreover, in this
language the second Lagrange multiplier bm gauges a U(1)
subgroup of the isospin SU(2)2 sector giving rise to

SU~2 !2
spin3SU~2 !2

isospin/U~1 ! isospin5SU~2 !2
spin3Z2 .

~47!

The last factor has been identified in Ref. 4 from the Z2
structure of a two-chain system.
14440
All of this is most easily shown in the bosonized version
of the coset CFT. To this end we write fermion bilinears
as13,16

cR
† icL

j̄ 5MFh
i j̄ , ~48!

where M is a renormalization constant, and we have intro-
duced bar indices in order to distinguish components trans-
forming in the right and left fundamental representations of
SU(4)1. The h subindex indicates the fundamental repre-
sentation in the standard Young tableaux notation. In identi-
fying the two SU(2)2 sectors we find it is useful to keep the
original spin and isospin ~band! indices, writing

Fh
i j̄ 5Fh

aa , b̄b̄, ~49!

where we now use a , b̄ for (1),(2).
This field F i j̄ has scaling dimension 3

4 and its components
can be written in terms of products of the components of the
fields in the fundamental representations of the two SU(2)2
sectors as

Fh
aa , b̄b̄5fh

a , b̄fh8
a ,b̄, ~50!

where f and f8 are the primary fields in the fundamental
~spin-1

2 ) representation of the two SU(2)2 isospin and spin
sectors, respectively. These fields have scaling dimension 3

8
so the product has the right dimension 3

4 and, moreover,
correlation functions of the fields on both sides coincide.

The other primary field in the SU(4)1 CFT is the one
transforming in the antisymmetric (63 6̄) representation,
which in the Young tableaux notation should read Fh . It is
built up from the antisymmetric product of two fields in the
fundamental representation

Fh
h

5A~FhFh!. ~51!

This field has scaling dimension 1 and can be mapped into
SU(2)2 fields as

Fh
h

[(a1a1),(a2 ,a2)],[( b̄1b̄1),( b̄2 ,b̄2)]

5f
hh

$a1a2%,$b̄1b̄2%ea1a2eb̄1b̄21ea1a2e b̄1b̄2f
hh
8$a1a2%$b̄1b̄2%,

~52!

where fhh,fhh8 are the primary fields in the symmetric
~spin-1! representations of the two SU(2)2 sectors that have
the correct scaling dimension 1. In Eq. ~52! we have used the
symbols $,% and @ ,# to indicate, respectively, symmetrization
and antisymmetrization of indices.

We are now ready to analyze the different perturbation
terms in DHe f f . First of all, contributions coming from in-
trachain couplings and constraints are known to be margin-
ally irrelevant, just as in the case of decoupled chains.8

The interchain perturbation terms in DHe f f @those arising
from the last term in Eq. ~38!# can be separated into two
groups according to their scaling dimensions: there are terms
that correspond to relevant operators ~scaling dimension 1!
that can be identified with certain linear combinations of the
8-6
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components of the primary ~51! in the coset theory ~44!, and
current-current terms, which have scaling dimension 2 and
are hence marginal.

More precisely, for the relevant part we can write

relevant perturbations52lE dx@Tr~AFh
h

!1H.c.# ,
~53!

where l}J8 and A is given by

A5S 21 0 0 0 0 0

0 1
2 0 0 2 1

2 0

0 0 2 1
2

1
2 0 0

0 0 1
2 2 1

2 0 0

0 2 1
2 0 0 1

2 0

0 0 0 0 0 21

D ~54!

~see the appendix for details!. Using the identifications de-
scribed above and after some straightforward algebra we can
readily identify the perturbation terms ~53! in the embedding
theory as

relevant perturbations52lE dx Tr~fhh1H.c.!

1
l

2E dx Tr~fh8 s1fh8
† s11H.c.!.

~55!

To analyze the effect of these perturbation terms it is conve-
nient to reformulate the SU(2)2 WZW sector in terms of
three decoupled Majorana fermions, and in this new lan-
guage it is easy to see that the first term gives a mass to all
three Majorana fields.17 The second one is simply the energy
operator of the remaining Majorana sector.14,18 As they are
all perturbations of dimension 1 we see that the gap opens
linearly with the interchain coupling as predicted from the
weak-coupling limit.3,4 Note the different sign in the masses
of the two sectors, also in agreement with the weak-coupling
analysis.

As for the current-current terms, they correspond to mar-
ginal perturbations and can be written as

marginal perturbations

52
aJ8

8 E dx$2cL
†@~s31is2! ^ 1#cLcL

†@~s32is2!

^ 1#cL2R↔L%2
aJ8

8 E dx$cL
†@~s31is2!

^ 1#cLcR
† @~s32is2! ^ 1#cR1R↔L%

2
aJ8

8 E dx@2cL
†~1^ 1!cLcR

† ~1^ 1!cR
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2cL
†~1^ sW !cL•cR

† ~1^ sW !cR#2
aJ8

8 E dx

3@cL
†~s1 ^ 1!cLcR

† ~s1 ^ 1!cR

1cL
†~s1 ^ sW !cL•cR

† ~s1 ^ sW !cR# . ~56!

The first two terms ~first line! renormalize the Fermi velocity
of the Majorana ~isospin! sector, while the third and fourth
~second line! corresponds to marginal forward-scattering
terms in the same sector. The fifth and seventh terms are
effectively zero due to the constraints on the two correspond-
ing U(1) currents and the sixth term correspond to the mar-
ginal forward-scattering terms in the spin sector. The very
last one mixes spin and isospin sectors. This last contribution
is nevertheless marginal, so it does not change the low-
energy physics, which in the present case is dominated by
the relevant perturbations already discussed. Its effect could
be important in the analysis of, e.g., zigzag ladders where the
relevant perturbations are wiped out, as we show in the next
section, and only marginal interactions play a role.19–22

It can be easily shown that the marginal terms present on
each separate chain, written in the present language, corre-
spond to the sixth and eighth terms in the above expression.
Due to the fact that these terms correspond to marginally
irrelevant couplings and that they form a closed algebra, they
will have no effect on the low energy dynamics whatsoever.
After having observed that, one can see that the effective
theory consists of two sectors that are decoupled from each
other.

V. OTHER STRUCTURES: CROSSED
AND ZIGZAG LADDERS

In this section we will extend our previous analysis to
more general situations, which are not only of academic in-
terest, but are relevant in the analysis of real materials. These
more general situations arise when other ~diagonal! cou-
plings between spins in neighboring chains are not negli-
gible. The two structures that we analyze now are the so-
called crossed ladders,23,25 in which couplings along the two
diagonals are added, and zigzag ladders, in which only one
diagonal coupling is added.19–22 Another potential applica-
tion of the present formalism would be the study of the in-
terplay between interchain coupling and dimerization along
the legs.26–28

A. Crossed ladders

We consider a Heisenberg Hamiltonian given by

H5 (
n51

N

(
l51

2

JSW n
(l)
•SW n11

(l) 1J8(
n51

N

SW n
(1)
•SW n

(2)

1J3 (
n51

N

~SW n
(1)
•SW n11

(2) 1SW n11
(1)

•SW n
(2)!, ~57!

where the last term corresponds to additional diagonal cou-
plings.
8-7
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Following the same approach as for the normal ladder we
introduce Hubbard-Stratonovich fields associated to each
coupling and perform a three-parameter MF analysis propos-
ing constant values for the intrachain, the interchain ~rung!,
and the interchain ~diagonal! couplings. We find two differ-
ent regions in the parameter space (J/J8,J3 /J8). It should
be noted that this Hamiltonian is dual under the interchange
J↔J3 ; then it is enough to study the region J3<J . ~See
Fig. 3.!

~i! If J/J8.p2/8, the MF analysis yields the system in a
weak-coupling regime, and following all the same steps as
before, we arrive at the same effective-field theory with the
noticeable change that the coefficient of the relevant pertur-
bations is now shifted as J822J3 . As in the weak-coupling
analysis,23,24 one immediately sees that there is a line in
which the relevant perturbations vanish. On this line one
could expect a massless regime, as suggested by numerical
studies.23,25 However in a recent treatment of the resulting
bosonized Hamiltonian it was shown that the current-current
terms are marginally relevant and a gap opens.24 The same
conclusion is attained in our resulting effective theory.
Again, the new feature here is that we find the region of
validity of the weak-coupling effective-field theory to go up
to J858/p2J .

~ii! If J/J8,p2/8, the system falls in a strong-coupling
regime in which the two dispersion bands are separated by a
gap (}J8) and then a low-energy effective-field theory de-
scription is not suitable here.

B. Zigzag ladders

The Hamiltonian is given by

H5 (
n51

N

(
l51

2

JSW n
(l)
•SW n11

(l) 1J8(
n51

N

SW n
(1)
•~SW n

(2)1SW n11
(2) !.

~58!

Introducing again Hubbard-Stratonovich fields associated to
each coupling and performing a MF analysis with constant
values for the intrachain and interchain couplings, we find a

FIG. 3. Phase diagram of the crossed ladder. Bold bonds corre-
spond again to nonzero links in the MF approximation.
14440
different situation: while we still find a regime, which now
exists for J8,J , in which we reobtain the standard weak-
coupling results, we find that the ‘‘strong-coupling’’ regime
(J8.J) can still be described by an effective low-energy
field theory. ~See Fig. 4.!

More precisely, in the regime in which J8,J we find that
all relevant perturbations cancel in a way similar to that
found in the weak-coupling limit.19–22 The effective low-
energy theory corresponds to the same coset theory, per-
turbed only by the operators appearing in the first, third, and
fourth lines in Eq. ~56!. The so-called parity breaking terms
first studied in Ref. 21 appear in the present approach from
the next-to-leading order in the lattice spacing a in the ex-
pansion of the modified version of Eq. ~38!.

In the other regime (J8.J), the bands at the MF mini-
mum are given by

e (1)~k !52
J8

p
A2@11cos~ka !# ,

e (2)~k !5
J8

p
A2@11cos~ka !# , ~59!

there being no gap between them, and a field-theory descrip-
tion is still possible. The difference is that the low-energy
effective theory should in this case be built up on only two
fermion species, exhibiting SU(2)1 symmetry. See Fig. 5.
This should correspond to the description of a single chain
plus next-nearest-neighbor interactions, which is the suitable
picture for the regime where J8 dominates.

Once again, our method allows for the construction of an
effective-field theory for the full range of couplings and in
particular allows us to study the transition from the massless
(c51) J50 limit to the massive Kosterlitz-Thouless regime
known to arise at J’0.24J8,29 which should, according to
our analysis, extend to the limit J8→0.

Since the main purpose of the present paper is to empha-
size the potential applications of our approach, the analysis
of these effective-field theories will be addressed in a sepa-
rate publication.

FIG. 4. Phase diagram of the zigzag ladder. Bold bonds corre-
spond again to nonzero links in the MF approximation.
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VI. CONCLUSIONS

The approach developed in the present paper shows that
the spectrum predicted from weak-coupling approximation
extends up to a finite value of J8/J , our estimation of this
critical value being Jc8/J;8/p2. Beyond this value our MF
analysis in Sec. II predicts a crossover to the strong-coupling
regime, where the rungs of the ladder become disconnected
among them. Fluctuations over this state will restore connec-
tivity and the strong-coupling approach of Refs. 30 and 31
would be the appropriate starting point in this parameter re-
gime. As the classical potential analyzed in Sec. II has a
double-well structure in the intermediate region (J8;Jc8) we

FIG. 5. Energy bands for the zigzag ladder at J8.J MF
minimum.
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expect a smooth crossover from a weak- to a strong-coupling
regime. Experimental observation of this crossover supposes
the variation of the ratio of the exchange parameter. This
could in principle be achieved by applying pressure in the
perpendicular direction of the ladder axis.

Though our approach starts from a MF analysis, fluctua-
tions are taken into account for all orders. Besides, it allows
a classification of all the perturbations in the language of the
embedding of the theory into SU(2)23Z2. One interesting
observation that arises is that only the Z2 Majorana Fermi
velocity is renormalized to first order in J8 by the interac-
tions.

The study of hole doped spin ladders is a natural exten-
sion of our approach. For this case the t-J model should be
considered and the charge sector of the theory could be rep-
resented by a spinless boson ~the slave boson representation!.
However the magnetic excitations will evolve from the trip-
let and the singlet found in this paper. The question of the
hole pairing due to these excitations could therefore be ad-
dressed within our formalism. This will be reported else-
where.
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APPENDIX

We write in this appendix the explicit form of some lengthy expressions appearing with compact notation in the main text.
The relevant part of the third term in Eq. ~38!, appearing in Eq. ~44!, reads in the continuum limit

relevant perturbations52
J8a
2 E dx~2CR ,a

†(2)CR ,b
†(2)CL ,a

(2)CL ,b
(2)1CR ,a

†(2)CR ,b
†(2)CL ,a

(2)CL ,b
(1)2CR ,a

†(2)CR ,b
†(2)CL ,a

(1)CL ,b
(2)

1CR ,a
†(2)CR ,b

†(2)CL ,a
(1)CL ,b

(1)2CR ,a
†(2)CR ,b

†(1)CL ,a
(2)CL ,b

(2)1CR ,a
†(2)CR ,b

†(1)CL ,a
(2)CL ,b

(1)

2CR ,a
†(2)CR ,b

†(1)CL ,a
(1)CL ,b

(2)1CR ,a
†(2)CR ,b

†(1)CL ,a
(1)CL ,b

(1)1CR ,a
†(1)CR ,b

†(2)CL ,a
(2)CL ,b

(2)2CR ,a
†(1)CR ,b

†(2)CL ,a
(2)CL ,b

(1)

1CR ,a
†(1)CR ,b

†(2)CL ,a
(1)CL ,b

(2)2CR ,a
†(1)CR ,b

†(2)CL ,a
(1)CL ,b

(1)1CR ,a
†(1)CR ,b

†(1)CL ,a
(2)CL ,b

(2)2CR ,a
†(1)CR ,b

†(1)CL ,a
(2)CL ,b

(1)

1CR ,a
†(1)CR ,b

†(1)CL ,a
(1)CL ,b

(2)2CR ,a
†(1)CR ,b

†(1)CL ,a
(1)CL ,b

(1)1H.c.!, ~A1!

by simple use of Eqs. ~25!, ~26!, ~29!, and ~30!.
The explicit form of Eq. ~51! in terms of fermions, using Eq. ~48!, is

Fh
h

[(i1a1),(i2 ,a2)] ,@~ j̄1b̄1!,~ j̄2 ,b̄2!#
5A~F

h

(i1a1),( j̄1b̄1)
F

h

(i2 ,a2),( j̄2 ,b̄2)
!, ~A2!

where antisymmetrization affects barred and unbarred pairs of indices separately.
Using Eqs. ~A1! and ~A2!, expression ~53! follows immediately. The base used for writing the matrix A in Eq. ~54! is the

one made explicit with indices in the left-hand side of Eq. ~52!, ordered as @(1 ,↑),(2 ,↑)# ,@(1 ,↑),(1 ,↓)# ,
@(1 ,↑),(2 ,↓)# ,@(2 ,↑),(1 ,↓)# ,@(2 ,↑),(2 ,↓)# ,@(1 ,↓),(2 ,↓)# .
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380 ~1985! @Sov. Phys. JETP 62, 215 ~1985!#.
18 D.C. Cabra and E.F. Moreno, Nucl. Phys. B 475, 522 ~1996!.
19 S.R. White and I. Affleck, Phys. Rev. B 54, 9862 ~1996!.
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