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1 Introduction

The idea of this work is to study polarized deep inelastic scattering (DIS) of charged leptons

off spin-1/2 hadrons, in order to investigate properties of the hadronic tensor at small values

of the Bjorken parameter. We consider large values of the ’t Hooft coupling λ and the planar

limit of the gauge theory, within the framework of the gauge/string theory duality. We

carry out first principles calculations starting from type IIB superstring theory scattering

amplitudes. Alternatively, we show how to approach the problem by deriving heuristic

Lagrangians for the symmetric and the antisymmetric contributions. We first introduce

the heuristic approach which is more intuitive, and then we describe the formal string

theoretical derivation. The parametric region we focus on is x � 1/
√
λ, where type IIB

supergravity does not give an accurate description of the holographic dual DIS process,

hence it is necessary to consider string theory. Furthermore, we investigate the region

where the Bjorken parameter becomes exponentially small, which allows us to compare

our results for the antisymmetric structure function g1 with recent experimental data of

electron-proton DIS.

The DIS differential cross-section of a charged lepton off a hadron is proportional to

the contraction of the leptonic tensor, which is obtained from perturbative QED, and the

hadronic tensor, where non-perturbative QCD effects are essential. The hadronic tensor
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of a spin-1/2 hadron is usually written in terms of symmetric (S) and antisymmetric (A)

tensors under Lorentz indices exchange [1, 2]1

Wµν =W (S)
µν (q,P )+iW (A)

µν (q,P,S) ,

W (S)
µν =

(
ηµν−

qµqν
q2

)[
F1(x,q2)+

1

2

S ·q
P ·q

g5(x,q2)

]
,

− 1

P ·q

(
Pµ−

P ·q
q2

qµ

)(
Pν−

P ·q
q2

qν

)[
F2(x,q2)+

S ·q
P ·q

g4(x,q2)

]
− 1

2P ·q

[(
Pµ−

P ·q
q2

qµ

)(
Sν−

S ·q
P ·q

Pν

)
+

(
Pν−

P ·q
q2

qν

)(
Sµ−

S ·q
P ·q

Pµ

)]
g3(x,q2) ,

W (A)
µν =−εµνρσq

ρ

P ·q

{
Sσg1(x,q2)+

[
Sσ− S ·q

P ·q
P σ
]
g2(x,q2)

}
− εµνρσq

ρP σ

2P ·q
F3(x,q2) , (1.1)

where ηµν = diag(−1, 1, 1, 1), Pµ and Sµ are the four-momentum and the spin vector of

the incident hadron, respectively. The four-momentum of the virtual photon is denoted

by qµ. The symmetric structure functions are F1, F2, g3, g4 and g5, while F3, g1 and g2

are the antisymmetric ones. For electromagnetic DIS in QCD the non-preserving parity

structure functions g3, g4, g5 and F3 vanish. In fact, we consider electromagnetic DIS not

precisely for QCD but for an IR deformation of N = 4 SYM theory. The last is a chiral

theory, therefore it may lead to a non-vanishing F3. In this sense this result is in perfect

agreement with respect to the glueball case presented in reference [3]. The condition for

F3 to be non-vanishing is that the IR deformation of N = 4 SYM theory must be such

that there are massless Nambu-Goldstone modes associated to the spontaneously broken

R-symmetry [4]. We will assume this property in the present approach.

The Bjorken parameter is defined as

x = − q2

2P · q
, (1.2)

being the physical range 0 ≤ x ≤ 1, in the DIS limit q2 � P 2 while x is kept fixed. From

the Cutkosky rules for scattering amplitudes, based on S-matrix theory, one can derive the

optical theorem leading to the following relations

Wµν
(S) = 2πIm

[
Tµν(S)

]
, Wµν

(A) = 2πIm
[
Tµν(A)

]
, (1.3)

where the tensor Tµν is defined by the time-ordered expectation value of two electromag-

netic currents inside the hadron

Tµν ≡ i
∫
d4xeiq·x〈P |T̂{Jµ(x)Jν(0)}|P 〉 . (1.4)

This relates DIS to forward Compton scattering (FCS), which is what one calculates. DIS

and FCS are schematically shown in figure 1.

1We use the notation for the hadronic tensor as in reference [8], having some sign differences with respect

to [1, 2].
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(a) (b)

Figure 1. Schematic representation of DIS (a) and FCS (b) processes. k and k′ denote the

four-momenta of the incoming and outgoing leptons in DIS.

In the pioneering work by Polchinski and Strassler [5], the symmetric structure func-

tions F1 and F2 of DIS of a charged lepton off a spin-1/2 hadron have been calculated in the

supergravity regime, i.e. for 1/
√
λ � x < 1. The spin-1/2 hadron can be holographically

represented by a dilatino wave-function in the bulk of AdS5×S5 in type IIB supergravity,

with the inclusion of an IR cut-off z0 = 1/Λ. This scale breaks conformal invariance in the

IR of the holographic dual gauge field theory, inducing color confinement. The holographic

dual gauge theory corresponds to the planar limit of N = 4 SU(N) supersymmetric Yang-

Mills (SYM) theory in four dimensions, with an IR cut-off scale Λ. In the UV this gauge

theory is conformal. The holographic dual process is schematically represented in figure 2.

The result from [5] for the symmetric structure functions is

2F1 = F2 = π A′Q2

(
Λ2

q2

)τ−1

xτ+1 (1− x)τ−2 , (1.5)

where A′ is a dimensionless constant, Q is a charge eigenvalue under the U(1) ⊂ SU(4)

symmetry group, and τ is the twist of the incident hadron, τ = ∆−s, being ∆ the conformal

dimension and s the spin (in the present case s = 1/2).

Furthermore, also in the supergravity regime (1/
√
λ � x < 1), in reference [6] polar-

ized DIS structure functions considering a spin-1/2 hadron have been studied using the

AdS/CFT duality. The results are [6]

2F1 = F2 = F3 = 2g1 = gi , g2 =

(
1

2x

τ + 1

τ − 1
− τ

τ − 1

)
g1 , (1.6)

where i = 3, 4, 5. The explicit form of F2 is given in equation (1.5). The functions F3, g3,

g4 and g5 are similar to F2 since the dilatino is a right-handed fermion in the massless limit.

However, as we shall show in section 2, g3, g4 and g5 vanish at leading order in 1/N for

x � 1/
√
λ. Further calculations in this regime for non-forward Compton scattering have

been done in [7]. A study of neutral spin-1/2 hadrons (similarly to case of charged spin-

1/2 hadrons considered in [6]) is presented in reference [8] for this regime of the Bjorken

parameter.

– 3 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
4

Figure 2. Schematic picture of the s-channel diagram corresponding to the holographic dual

description of forward Compton scattering in the 1/
√
λ � x < 1 regime. The incoming and

outgoing spin-1/2 hadrons with four-momenta Pi and Pf are represented by blue lines in the

boundary theory. Their corresponding dual dilatino fields in the bulk are denoted by Ψi and Ψf ,

respectively. Gauge fields Aµ and Aν couple to the Jµ(x) and Jν(0) electromagnetic currents in

the boundary gauge field theory. z0 is the IR cut-off and zint is where the graviphoton-dilatino

interaction takes place. Red lines denote leptons (l), while dashed lines indicate virtual photons.

On the other hand, in a completely different physical regime as it is the exponentially

small-x region, the proton F2 structure function has been investigated by Brower and col-

laborators in [9], by using the BPST-Pomeron techniques developed by Brower, Polchinski,

Strassler and Tan within the gauge/string theory duality framework [10]. The authors of

reference [9] have found that the BPST kernel fits remarkably well the region where the

four-momentum transfer q2 of the virtual photon is large, and also it works surprisingly

well for small values of q2, as low as q2 = 0.1 (GeV/c)2. They fit their result for F2 to

the combined H1-ZEUS small-x data of the inclusive DIS cross sections measured by H1

and ZEUS Collaborations in neutral and charged current unpolarized e± p scattering at

HERA [11–13], in the range 0.1 (GeV/c)2 ≤ q2 ≤ 400 (GeV/c)2, and for 10−6 ≤ x ≤ 10−2.

For large q2 conformal symmetry dominates, while near to the IR the hard-wall cut-off

becomes important. This behavior is reflected on the results presented in [10]. In addition,

in the case of N = 4 SU(N) SYM theory considering polarized DIS also from a spin-1/2

hadron, a heuristic calculation based on the AdS/CFT duality has been developed in [4].

The result is that the Reggeized virtual photon leads to the polarized structure functions

F3 and g1. For exponentially small x it has been obtained that g1 ≈ (1/x)1−1/(2
√
λ).

In the present work we derive explicitly all the structure functions for a spin-1/2

hadron in the low-x regime. For small but not exponentially small x, in addition to a

heuristic derivation, we carry out a detailed top-down string theory calculation from closed

strings scattering amplitudes which constitutes the first complete derivation of this kind

for spin-1/2 hadron in the low-x regime. This approach leads to effective Lagrangians from
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Figure 3. Schematic picture of the t-channel diagram corresponding to the holographic dual

description of forward Compton scattering in the x � 1/
√
λ regime. The incoming and outgoing

spin-1/2 hadrons with four-momenta Pi and Pf are indicated with blue lines in the boundary theory.

Their corresponding dual fields in the bulk are denoted by Ψi and Ψf , respectively. Gauge fields Aµ
and Aν couple to the Jµ(x) and Jν(0) electromagnetic currents in the boundary gauge field theory.

which one can construct the leading-diagram contributions which are t-channel Feynman

diagrams in the bulk theory. Their corresponding schematic representation is shown in

figure 3. This is related to the Feynman diagrams presented in figure 4, corresponding

to the calculations of the symmetric and antisymmetric structure functions in the range

exp (−
√
λ)� x� 1/

√
λ that we introduce in sections 2 and 3, respectively.

Furthermore, for the exponentially low-x regime, generalizing the BPST-Pomeron ap-

proach, we consider a Reggeized gauge field and derive the antisymmetric structure func-

tions. Then, we compare with experimental data. We fit our results2 of g1 to the data

of the corresponding structure function of the proton at 190 GeV measured by the SMC

Collaboration [14], and by the COMPASS Collaboration with beam energies of 160 GeV

and 200 GeV reported in [15] and [16], respectively. In these cases we consider data within

the x < 0.01 region. Following [16], in our figures 6 and 7 we also include data from

the SMC [14], EMC [17, 18], HERMES [19], SLAC E143 [20], E155 [21] and CLAS [22]

Collaborations, at q2 > 1 (GeV/c)2. Also, we consider the very recent data (2017) from

the COMPASS Collaboration [23], where the photon virtuality is q2 < 1 (GeV/c)2, while

4 × 10−5 < x < 4 × 10−2. The chi-square value per degree of freedom that we obtain for

our best fit corresponding to the conformal model is χ2
d.o.f. = 1.140, while for the hard-wall

model our fit gives χ2
d.o.f. = 1.074. In both cases we fit the structure function g1 against

data from the COMPASS Collaboration [23]. Thus, our predictions lead to a very good fit

as we shall discuss in detail in section 5. Also we have calculated the structure function F3.

2As we shall explain in sections 4 and 5 we consider two different models, namely: a conformal model

with no IR cut-off and the hard-wall model that we have already described.
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The holographic dual model corresponding to the planar limit of N = 4 SYM theory

is represented by a solution of type IIB supergravity on AdS5 × S5. The metric can be

written as

ds2 =
R2

z2

(
ηµνdx

µdxν + dz2
)

+R2dΩ2
5 , (1.7)

with radius R = (4π λα′2)1/4. The ten-dimensional indices are denoted by M,N, · · · =

0, . . . , 9, the AdS5 ones are m,n, · · · = 0, . . . , 4, the flat four-dimensional indices are

µ, ν, · · · = 0, . . . , 3, while the S5 indices are a, b, · · · = 1, . . . , 5. The region z → 0 cor-

responds to the UV. In the IR we assume the cut-off z0 = 1/Λ.

In [3] we have calculated holographically the structure function F3(x, q2) for glueballs

of N = 4 SYM theory. This has also been done at strong coupling and at low x. Other very

interesting developments from first principles calculations for scalar and polarized vector

mesons have been done in [24–27], as well as 1/N corrections for glueballs [28], scalar

mesons [29] and vector mesons [30]. The development of a unified description of the Regge

physics and the BFKL Pomeron using the AdS/CFT duality has been done in [10]. Further

developments including the eikonal approach, have been presented in [31–40]. Other aspects

of applications of the AdS/CFT correspondence to DIS processes can be found in [41–46].

The work is organized as follows. In section 2 we focus on the calculation of the

symmetric structure functions for spin-1/2 hadrons. In sections 2 and 3 we calculate the

structure functions both from the heuristic point of view and from the type IIB superstring

theory scattering amplitudes. All this corresponds to low but not exponentially low x.

In section 4 we consider the calculation of g1 in the exponentially small region of the

Bjorken parameter, extending the BPST Pomeron techniques to the Reggeized gauge field.

In section 5 we analyze our results and make comparison to the existing experimental

data for g1.

2 DIS from spin-1/2 hadrons at low x: the graviton exchange

contribution

In this section we focus on the calculation of the symmetric structure functions for DIS of

charged leptons from spin-1/2 hadrons at low x. The dual holographic calculation involves

a graviton exchange in the t-channel as shown in figure 4(a) (also see figure 3).

For the Bjorken parameter x within the parametric region λ−1/2 � x < 1, at strong

coupling and for large N , double-trace operators dominate the operator product expan-

sion (OPE) of two electromagnetic currents inside the hadron. The scattering is produced

from the entire hadron. In this regime the holographic dual description can be done in

terms of the calculation of the s-channel in type IIB supergravity schematically shown in

figure 2. Beyond that regime, at low x (more precisely when x � λ−1/2) the holographic

dual description of DIS requires considering the dynamics of type IIB superstring theory

on the AdS5 × S5 background. In particular, for values of the Bjorken parameter in the

exp
(
−λ1/2

)
� x� λ−1/2 range it is possible to carry out the holographic dual description

in terms of scattering amplitudes of closed strings propagating in ten-dimensional space-

time [5]. In fact, as argued in [5, 10], the dominant t-channel contribution to the DIS

– 6 –
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(a) (b)

Figure 4. t-channel holographic dual representation of forward Compton scattering at tree-level.

Figure (a) shows the exchange of a graviton in the AdS bulk, leading to the calculation of symmet-

ric structure functions. Figure (b) indicates the Chern-Simons interaction in top vertex and the

propagation of a bulk-to-bulk gauge field, leading to the anti-symmetric structure functions.

process is well described by local flat-space scattering amplitudes. Therefore, an effective

Lagrangian can be built out from the local string theory scattering amplitude. Then, in

order to obtain the dual FCS amplitude from which one can derive the structure functions,

we have to take the imaginary part and integrate over the full AdS5 × S5. Since we focus

on a spin-1/2 hadron, the dual closed string modes are associated with the ten-dimensional

dilatino Ψ(xM ).

On the other hand, the relevant effective Lagrangian can also be constructed in a

heuristic way [3]3 (also see [7]), which basically involves two steps. Firstly, we have to

consider the five-dimensional supergravity interactions together with the graviton propa-

gator. Secondly, we need to combine them by taking a local limit and interpreting the

resulting expression of the propagator as coming from the α′-dependent pre-factor of the

string theory scattering amplitude.4 This leads to the so-called ultra-local approximation

of the scattering amplitude.

In both frameworks, i.e. the heuristic and the first-principle gauge/string theory dual

approaches, it is possible to calculate the symmetric structure functions of the spin-1/2

hadron. In the string theory scattering amplitude approach, the DIS process is related

to the choice of the external modes: while the ten-dimensional dilatino field is given by a

Neveu-Schwarz-Ramond (NS-R) field, we consider the photon to be a particular polariza-

tion state of the graviton NS-NS mode as in [5]. In the heuristic approach, the external

states are described by Kaluza-Klein (KK) modes corresponding to ten-dimensional modes.

At low x, the four-dimensional center-of-mass (CM) energy s is very high since

s ≡ −(P + q)2 ≈ −q2 − 2P · q = −q2

(
1− 1

x

)
≈ q2

x
, (2.1)

3Strictly speaking this method only gives the AdS5 contribution, thus we have to multiply by an ad hoc

contribution from the integration on S5 which only gives an overall factor. The dependence on the S5

radius is accounted for by using dimensional analysis.
4Details are given in reference [3].
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where we have used the fact that in this regime −P 2 � q2 � −P · q. This implies that the

ten-dimensional Mandelstam variable s̃ becomes very large. Thus, the leading contribution

to the scattering process comes from the t-channel exchange. When the exchanged field

carries spin j this contribution is proportional to s̃j . Consequently, the dominant process

in this context is the t-channel Reggeized graviton exchange where j ≈ 2.

In the next subsection we derive an effective Lagrangian in a heuristic approach. In

subsection 2.2 we carry out the formal derivation of the Lagrangian starting from the four-

point type IIB superstring theory scattering amplitude, with one NS-R, one R-NS and two

NS-NS fields. In subsection 2.3 we explicitly obtain the symmetric structure functions.

2.1 Heuristic derivation of the effective Lagrangian

In order to construct the heuristic effective Lagrangian leading to the symmetric part of the

hadronic tensorWµν at low x we need to consider a t-channel five-dimensional SU(4) gauged

supergravity tree-level diagram, as shown in figure 4(a). This maximally supersymmetric

supergravity is obtained from dimensional reduction of type IIB supergravity on S5 [47–51].

This spontaneous compactification of type IIB supergravity leads to a five-dimensional

Chern-Simons term [48–50] that will be very important in the calculation of antisymmetric

structure functions described in section 3. We will follow closely the steps described in our

previous paper [3], however there is a crucial difference now, namely: instead of using a

dilaton wave-function, in the present heuristic case we must consider the wave-function of

a dilatino field ψ(x, z), representing the spin-1/2 hadron.

The relevant part of the maximally supersymmetric supergravity action on AdS5, with

indices m,n = 0, . . . , 4, is given by the expression [50]

S5d =
1

2κ2
5

∫
d5x
√
−gAdS5

(
R− ψ̄ γmDmψ −

1

4

(
FAmn

)2
+ · · ·

)
, (2.2)

where 2κ2
5 = 16π2/N2 is the Newton constant in five dimensions (we set R = 1), FAmn

is the non-Abelian gauge field strength associated with the gauge field AAm, and R is the

Ricci scalar in five dimensions. Also we use the definition γm = emm̂ γ
m̂, where γm̂ are the

flat-space Dirac matrices (m̂ = 0, . . . , 4) and emm̂ is the vielbein. Dots include kinetic and

interaction terms which are not relevant for our present analysis.

At high energy the leading diagram is given by the t-channel exchange of a graviton.

Since the graviton couples to the energy-momentum tensors Tψmn and TAmn given by5

Tψmn = ψ̄ γ(m∂n)ψ , TAkl = gpqFkpFlq −
1

4
gklFpqF

pq , (2.3)

the corresponding amplitude has the form

A = κ2
5

∫
d5x d5x′ Tψmn(x)Gmnkl(x, x′)TAkl(x

′) , (2.4)

5Note that the fluctuations of the fields are normalized with an extra factor
√

2κ5. We only write the

quadratic terms of the energy-momentum tensors.
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where Gmnkl(x, x′) denotes the AdS5 graviton propagator whose relevant terms can be

expressed as

Gmnlk(x, x′) =

(
gmkgnl + gmlgnk − 2

3
gmngkl

)
Ggrav(x, x′) + . . . , (2.5)

being Ggrav(x, x′) some function whose explicit form we dot not need.

Gathering all the information we obtain the following integrand

Tψmn(x)Gmnlk(x, x′)TAkl(x) = 2Ggrav(x, x′)Fmp(x
′)F pn(x′) ψ̄(x)γn∂mψ(x) , (2.6)

plus O(t) terms. We only consider the leading terms in s̃ = −ũ, since in the x � λ−1/2

regime we have s̃� t̃.

In order to obtain the effective action one would have to integrate the effective La-

grangian obtained from equation (2.6) over the full AdS5×S5. The sphere reduction gives

a numerical constant C. Then, we need to multiply it by the superstring theory pre-factor

s̃2 G(α′, s̃, t̃, ũ) = −α
′3s̃2

64

∏
χ=s̃,t̃,ũ

Γ (−α′χ/4)

Γ (1 + α′χ/4)
. (2.7)

The effective action is

S
(S)
eff = 2κ2

5 Im
[
s̃2 G(α′, s̃, t̃, ũ)

]
C

∫
d5x
√
gAdS5 FmpF

p
n ψ̄γ(m∂n)ψ . (2.8)

By plugging the solutions for ψ(xµ, z) and Am(xµ, z) in equation (2.8) we can evaluate the

on-shell action and then take its imaginary part. This leads to the dilatino (symmetric)

structure functions that will be calculated in subsection 2.3. In the next subsection we

show how to derive the effective action from first principles, starting from the scattering

amplitude of four closed strings in type IIB superstring theory.

2.2 Derivation from the string theory scattering amplitude

In the e−
√
λ � x� λ−1/2 regime we can obtain the spin-1/2 hadronic tensor by calculating

a certain tree-level four-point string theory scattering amplitude in ten-dimensional flat-

space. This was motivated in [5]. Once the local flat-space amplitude is obtained one can

derive an effective Lagrangian, which is then integrated over the AdS5×S5 space after the

inclusion of the curved-space wave-functions of the dilatinos and the gravi-photons. The

five-dimensional spin-1/2 and gauge fields which we have used in the previous section are

specific KK modes of these ten-dimensional excitations reduced on S5. The external states

are given by two dilatinos and two gravitons. The details of the decomposition are given

below. In other words, we are interested in a closed string amplitude with two modes from

the NS-R sector and the other two from the NS-NS sector.

Following the KLT relations [52, 53] the closed-string theory scattering amplitude

factorizes in terms of open-string amplitudes as

A(1, 2, 3̃, 4̃) = 4 i κ2
10 G(α′, s̃, t̃, ũ)Kbos

op (1, 2, 3, 4)⊗K fer
op (3̃, 1, 2, 4̃) , (2.9)
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where Kop are open string kinematic factors. Particle numbers with a tilde indicate

fermionic modes. For these particular combinations of modes these factors can be found

in [53, 54]. The relevant terms take the form

Kbos
op (1, 2, 3, 4) = ξM1 ξN2 ξ

P
3 ξ

Q
4 [−1/4 s̃ ũ ηMNηPQ + · · · ] , (2.10)

and

K fer
op (3̃, 1, 2, 4̃) = ξM

′
1 ξN

′
2 ūα3u

β
4

[
s̃
(
k2
M ′(ΓN ′)αβ − k1

N ′(ΓM ′)αβ − ηM ′N ′(ΓP )αβk
2
P

)
+ · · ·

]
,

(2.11)

where dots indicate sub-leading terms in the dual DIS process. ξi and ui are the boson

and fermion polarizations, respectively, while ΓN indicates the ten-dimensional gamma

matrices. The spinor indices are denoted by α, β and the ten-dimensional bosonic indices

are denoted by M,N . In the notation of equations (2.10) and (2.11) the ten-dimensional

Mandelstam variables are defined as

s̃ = −(k1 + k4)2 , t̃ = −(k1 + k2)2 , ũ = −(k1 + k3)2 , (2.12)

where k1 and k2 are the momenta associated to the bosonic modes, while k3 and k4 are

the ones associated to the fermionic modes. Also, the closed-string graviton and dilatino

polarizations are given by [55]

hMN
i ≡ ξMi ⊗ ξNi , (ΓM )αβΨβ

i ≡ u
α
i ⊗ ξMi . (2.13)

Thus, to leading order in s̃ the corresponding amplitude becomes

A(1, 2, 3̃, 4̃) = 4 i κ2
10 G s̃2 Ψ3 [ũ(h1 · h2) /k1 + s̃(h1 · h2) /k2 (2.14)

+ 2 ũ(k2 · h1 · h2 · Γ) + 2 s̃(k1 · h2 · h1 · Γ)] Ψ4 .

In this expression we can set k1
Mh

MN
2 = k2

Mh
MN
1 = 0 since both graviton states correspond

to the ingoing dual photon and its complex conjugate associated with the outgoing one,

respectively. Thus, from now on we will neglect the first two terms in equation (2.14).

Then, the effective Lagrangian associated with this scattering amplitude can be written by

replacing momenta with derivatives, giving the following structure

− i κ2 (∂PhMN ) (∂Qh
MN ) Ψ Γ(P ∂Q)Ψ . (2.15)

Next, we need to obtain a curved-space version of (2.15) and rewrite it in terms of the

five-dimensional fields. The decomposition of the fields is given by [47]

Ψ(xm,Ω) =
∑
∆

ψ∆(xm)⊗ η∆(Ω) , hma =
∑
k

Amk (xn)Y a
k (Ω) , (2.16)

where ∆ and k are integers, η∆(Ω) are eigenfunctions of the Dirac operator on S5 and

Y a
k (Ω) are the corresponding vector spherical harmonics. In the holographic dual DIS

process calculation, we focus on a particular value of ∆ (note that henceforth we write
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ψ∆ ≡ ψ). Also, the massless gauge field has the lowest vector spherical harmonics, which

are given by the Killing vectors KA
a on S5. Moreover, when considering gauged supergravity

both vector fields carry a gauge group index6 A. Thus, we can write

Ψ(xM )→ ψ(xm)⊗ η(Ω) , hMN → hma = AA(m(xn)KA
a) . (2.17)

Plugging these expressions in the effective Lagrangian and integrating over AdS5 × S5 we

obtain the effective on-shell action (2.8), where C is defined by considering the normaliza-

tion condition ∫
d5Ω
√
gS5 η̄(Ω) η(Ω)KaKa = C . (2.18)

2.3 Symmetric structure functions

In this section we calculate the symmetric structure functions of a spin-1/2 hadron (which

is assumed to be dual to a dilatino bound state as in [5]) in the e−
√
λ � x� λ−1/2 regime.

We follow the conventions of reference [5]. We consider the AdS5 metric given in (1.7). In

the hard-wall model a radial cut-off is included at z0 = Λ−1, in order to account for the IR

confinement scale Λ in the dual field theory. For energy larger than Λ the theory becomes

approximately conformal.

In order to compute the hadronic tensor we need to obtain the effective action (2.8)

evaluated on-shell. Since the AdS process is dual to the FCS, the imaginary part gives the

DIS hadronic tensor as follows

S
(S)
eff ≡ nµn

∗
ν Im

[
Tµν(S)

]
=

1

2π
nµn

∗
νW

µν
(S) . (2.19)

The incoming and outgoing gauge fields are given by the non-normalizable solutions of the

Einstein-Maxwell equations in AdS. By imposing the appropriate boundary conditions

A3
µ(z → 0) = nµe

iq·x , A3
z(z → 0) = 0 , (2.20)

the solutions are given by

A3
µ = nµ e

iq·x qz K1 (qz) , A3
z = i(n · q) eiq·x z K0(qz) , (2.21)

where Ki denotes the Bessel functions of the second kind. Note that without loss of

generality we can choose a transversal polarization for the virtual photon. Thus, from now

on we take n · q = 0 and in particular we set A3
z = 0.

Now, let us consider the dilatino. We briefly describe the corresponding type IIB

supergravity solution following [5]. In the conformal region we can write the dilatino wave-

function as in equation (2.17). The ψ(x, z) solution satisfies the Dirac equation in five

dimensions. Factorizing out the spinor harmonic η(Ω) on the sphere, the five-dimensional

solution with four-momentum Pµ is

ψ = eiP ·xC ′ z5/2 [Jτ−2(Pz)P+ + Jτ−1(Pz)P−]u(P ) , (2.22)

6If the full isometry group of the sphere SO(6) ∼ SU(4) is gauged the index A runs from 1 to 15.
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where C ′ is a normalization constant, τ = ∆ − 1/2 = mR + 3/2 is the twist of the

corresponding QFT operator, and the four-dimensional chirality projectors are defined as

P± ≡ 1
2

(
1± γ5

)
with γ5 ≡ γ ẑ. Also, u and u are Dirac spinors in four dimensions.

The leading terms in the near-boundary expansion are given by7

ψi ≈ eiP ·x
ci

Λ3/2
(z/z0)τ+1/2

[
P+ +

Pz

2(τ − 1)
P−

]
ui(P ) ,

ψi ≈ e−iP ·x
c∗i

Λ3/2
(z/z0)τ+1/2 ui(P )

[
P− +

Pz

2(τ − 1)
P+

]
, (2.23)

where ci is some dimensionless constant.

Since we consider the t̃ → 0 and s̃ → ∞ limit, we can expand the string theory

scattering amplitude pre-factor as in [5]. Thus, by taking the imaginary part we can

rewrite it as a sum over the excited states in the form

Imexc

[
G(α′, s̃, t̃, ũ) s̃2

]
|t̃→0 =

πα′

4

∞∑
m=1

δ

(
m− α′s̃

4

)
(m)α

′ t̃/2 , (2.24)

where the last factor can be ignored in the region of interest since α′t̃ ∼ O(λ−1/2). This

sum can be approximated by an integral for x � λ−1/2. Recall that the relation between

the ten-dimensional Mandelstam variables and the four-dimensional ones is

α′s̃ ≈ α′s z2/R2 , (2.25)

plus corrections from the radial and S5 coordinates which can be neglected.

Note that once the fermion solutions are inserted, the objects with spinor indices in

the leading term give a factor

uiP−γµ̂P+ui = uiγµ̂P+ui = −i(Pµ + Sµ) , (2.26)

where Sµ is the spin polarization vector. However, the second term is actually misleading

and should be omitted. The graviton exchange of the dual calculation corresponds to the

energy-momentum tensor term in the current-current OPE (on the QFT side). Thus, terms

proportional to Sµ should not be present in the expectation value. From the holographic

dual approach it is necessary to go back to the full expression for the spin-1/2 solution

and “undo” the local approximation for the t-channel diagram. Then, the z-integral (with

the correct integration limits 0 < z < z0) can be computed in the relevant low-momentum

limit of the graviton mode, giving a vanishing result (as opposed to the contributions pro-

portional to PµPν). The details of the computation are very similar to those of reference [6]

where the authors study the elastic form factors for the conserved current. Note that this

observation implies that in the string theory regime the structure functions g3,4,5(x, q2) will

vanish at leading order in the 1/N expansion.

7The second terms in both equations (2.23) give P 2/q2 sub-leading contributions to the symmetric

structure functions, thus we will not consider them in the following calculations.
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Now, plugging all these elements in the effective action and carrying out the integrals

over AdS5 × S5 we find

nµn
∗
νT

µν
(S) = n∗µnν

π |ci|2C
2
√

4πλ

(
Λ2

q2

)τ−1

q−2 ×
[
ηµν

(P · q)2

q2
I1,2τ+3 + PµP ν(I0,2τ+3 + I1,2τ+3)

]
(2.27)

where

Ij,n =

∫ ∞
0

dw wnK2
j (w) = 2n−2 Γ(ν + j)Γ(ν − j)Γ(ν)2

Γ(2ν)
, ν =

1

2
(n+ 1) , I1,n =

n+ 1

n− 1
I0,n .

(2.28)

Writing the above expressions in terms of the Bjorken parameter x = − q2

2(P ·q) and compar-

ing with the structure of hadronic tensor (1.1), we obtain the following symmetric structure

functions for the spin-1/2 hadron

F1

(
x, q2

)
=

1

x2

(
Λ2

q2

)τ−1
π2|c′i|2C

4(4πλ)1/2
I1,2τ+3 , F2

(
x, q2

)
= 2x

2τ + 3

τ + 2
F1(x, q2) , (2.29)

together with g3 = g4 = g5 = 0. Note that the x and q2 dependence of F1 and F2 structure

functions agree with the ones obtained by Polchinski and Strassler for the (scalar) glueball

in the same parametric regime, by interchanging ∆ and τ . Also, the above equation (2.29)

gives a generalization of the Callan-Gross relation of a spin-1/2 hadron. In addition, there

are no contributions to the antisymmetric structure functions coming from the t-channel

graviton exchange. In the next section we shall see how they appear in a different way.

3 DIS from spin-1/2 hadrons at low x: the gauge field exchange

contribution

We now describe the calculation of the antisymmetric contributions to the hadronic tensor

and derive the corresponding structure functions for polarized DIS of charged leptons from

spin-1/2 hadrons at low x and at strong ’t Hooft coupling in the large N limit of the N = 4

SU(N) SYM theory with an IR cut-off. The corresponding dual holographic calculation is

dominated by the exchange of a gauge field in t-channel within the AdS space, as shown

in figure 4(b). A heuristic analysis has been done in [4] for the F3 function, while in our

previous paper [3] we have done a first principles calculation from type IIB superstring

theory four-point scattering amplitude for glueballs.

From a heuristic viewpoint, one can understand that the antisymmetric contribution

arises due to the Chern-Simons term in the five-dimensional SU(4) gauged supergravity

action. In our conventions, it can be written as

SCS =
i κ

96π2
dABC

∫
d5x εmnopq AAm ∂nA

B
o ∂pA

C
q , (3.1)

where A,B,C stand for the SU(4) gauge group indices, εmnopq is the Levi-Civita symbol,

k an integer and dABC is the completely symmetric symbol. By coupling the matter fields

to the A3
m gauge field (the gravi-photon), throughout the exchange of a spin-one field,
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the antisymmetric F3 and g1 structure functions are obtained. The exchanged gauge field

cannot be A3
m because the interaction term includes the dABC symmetric symbol [3, 57].

In fact, there are two tree-level t-channel Feynman diagrams contributing to the cou-

pling of the dilatino to the Chern-Simons term. One involves the exchange of a gauge

field ACm associated to an S5 isometry. This coupling also appears in the dilaton DIS [3].

The second diagram comes from the so-called Pauli term, which was discussed in the holo-

graphic dual description of DIS in reference [8], but only for the λ−1/2 � x < 1 regime. In

the non-Abelian case, it takes the form

SP = βA
∫
d5x
√
−gAdS F

A
mn ψ̄ [γm, γn]ψ , (3.2)

for some constants βA. The interaction also occurs through the exchange of a gauge field.

However, note that it is present even when the dilatino is not charged under the usual

isometries.

In terms of the superstring scattering amplitudes, the antisymmetric contribution lead-

ing to F3 and g1 comes from the R-R sector of the closed string. This occurs in a way

similar to the dilaton case. Recall that the massless five-dimensional gauge field Am that

emerges after the S5 spontaneous compactification is a linear combination of the graviton

hMN and a particular mode of the R-R self-dual five-form field strength [47]. Therefore, it

is important to consider that the incoming dual non-Abelian gauge states contain modes

from both the NS-NS and the R-R sectors.

3.1 Heuristic derivation of the effective Lagrangian

We are now interested in the calculation of the t-channel supergravity process at tree-level,

but in this case the exchanged field has spin one. By looking at the figure 4(b) the top-

vertex interaction is given by non-Abelian Chern-Simons term (3.1). The two diagrams

that we will analyze are schematically represented by the Feynman diagram shown in

figure 4(b).

The Chern-Simons term involves the full set of non-Abelian gauge fields ACm associ-

ated to the SU(4) symmetry group. We focus on processes where the non-normalizable

mode dual to the virtual photon is A3
m, since this mode couples to the electromagnetic

current of the AdS boundary gauge theory. The completely symmetric symbol dABC in

equation (3.1) is then restricted to the form d33C . Thus, it is easy to see that the t-channel

propagating gauge boson ACm can only have color numbers C = 8 or C = 15 (see for exam-

ple [3, 4]). These indices are associated with two diagonal matrices in the Lie algebra of

SU(4). The idea is to write a heuristic effective Lagrangian, for which we have to consider

the corresponding t-channel gauge field propagator and couple the ACm coming from the

Chern-Simons current to the dilatino current. The amplitude can be written as

A = κ2
5

∫
d5x d5x′ JmC (x)GCDmn (x, x′) JnD(x′) , (3.3)

where JmC denotes the Chern-Simons current and JnD is given by

JmC (x) =
i

6
dABC ε

mnopq ∂nA
A
o ∂pA

B
q , JnD(x′) = −QD ψ̄γnψ , (3.4)
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respectively, while GCDmn (x, x′) is the gauge field propagator in AdS5, whose relevant part

at high energy can be expressed as

GCDmn (x, x′) = gmn δ
CDGgauge(x, x

′) + · · · , (3.5)

with Ggauge(x, x
′) being some function which is not relevant for the present calculation.

The charge QD in the dilatino current is related to the eigenvalue equation for the ten-

dimensional wave-function Ψ(xm,Ω)

Ka
D∂aΨ(xm,Ω) = −QDΨ(xm,Ω) , (3.6)

being D = 8, 15 the Lie algebra indices corresponding to the matrices TD.

The rest of the computation is analogous to the symmetric case. After including

the string pre-factor times a constant C̃ coming from S5 integration, and performing the

curved-space integrals, we obtain

S
(A)
eff = −i 1

6
QCdABC Im

[
G s̃2

]
C̃

∫
d5x εmnopq ∂mA

A
n ∂oA

∗B
p ψ̄γqψ . (3.7)

A similar method can be used for the Pauli term contribution.

3.2 Derivation from the string theory scattering amplitude

Now, we formally derive the effective Lagrangian which permits to obtain the antisymmetric

structure functions from type IIB superstring theory. For that we first obtain the string

theory scattering amplitude that we need in order to construct the associated effective

Lagrangian relevant for the antisymmetric contribution. The only difference is that in

the present case the four-point scattering amplitude must contain external states coming

from the R-R sector. The reason for the presence of the R-R sector is that the massless

gauge fields ACm of the five-dimensional SU(4) gauge supergravity are constructed as linear

combinations of two low-lying KK modes on S5, coming from both NS-NS and R-R string

states. The former is a graviton perturbation hMN , while the second one corresponds to a

R-R four-form field perturbation CM1···M4 . This is described in detail in [47] and reviewed

in our previous work where we have investigated the dilaton case related to the DIS from

glueballs [3].

The relevant four-point amplitudes can be written as one of the two forms

A (R-R,R-R,NS-R,NS-R) or A (NS-NS,R-R,NS-R,R-NS) ,

where the first two external states correspond to the gauge fields in both cases. The two

amplitudes above are important. We explicitly calculate the first one and show that it leads

exactly the effective action (3.7) associated with the coupling between the Chern-Simons

term and the minimal coupling of the dilatinos with the gauge field. Then, we argue why

the second amplitude should lead to the case where this minimal coupling is replaced by

the Pauli term.

Next, we want to obtain the scattering amplitude for two NS-R and two R-R states

following the same steps as in section 2.2. Due to the KLT relations between open and
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closed superstring amplitudes, one can see that the amplitude we are interested in is given

by [52, 53]

A(1̃, 2̃, 3, 4) = −i κ2G(α′, s̃, t̃, ũ)K fer
op (1̃, 2̃, 3̃, 4̃)⊗K fer

op (3̃, 1, 2, 4̃) , (3.8)

where the italic numbers stand for the R-R fields. The first kinematic factor is

K fer
op (1̃, 2̃, 3̃, 4̃) =

s̃

2
ū1ΓMu2 ū3ΓMu4 , (3.9)

and second one is given in equation (2.11). The dilatino polarizations are given in equa-

tion (2.13), and the polarizations of the closed-string four-form field are given in terms of

the open-string ones by

uαi ⊗ ū
β
i = (CQΓi(5))

αβ , with Γi(5) = (Fi)M1···M5ΓM1···M5 , (3.10)

in the conventions of [53], being CQ the charge conjugation matrix. After some algebra, we

obtain the leading amplitude in this regime

A(1̃, 2̃, 3̃, 4̃) = −i κ2G(α′, s̃, t̃, ũ) s̃2 16

15
(F3)MM2···M5(F4) M1···M5

N Ψ̄1γ
(Nk

M)
2 Ψ2 , (3.11)

from which the effective Lagrangian can be constructed. For that purpose we consider the

curved metric together with the S5-reduction of the different fields, which are rewritten

as an expansion in modes over the S5. The dilatino expansion is given in equation (2.16),

while the 5-form field strength perturbation is [3, 47, 57]

Fmnabc ∼ 5(1 + ∗) ∂[nA
B
m] Z

B
abc , with ZAabc ≡ εabcde∇dKeA , (3.12)

where εabcde is the Levi-Civita tensor on the sphere.

The charges QC come from the harmonic spinors transformation under the corre-

sponding S5 isometries, while the dABC symbol emerges from a Killing vector identity [3].

Then, multiplying by the string pre-factor we obtain the effective action with the following

structure

− i dABC QC Im
[
G s̃2

] ∫
d5Ω
√
gS5 η̄(Ω) η(Ω)

∫
d5x εmnopq ∂mA

A
n ∂oA

B∗
p ψ̄γqψ . (3.13)

The dependence on the fields and the Mandelstam variables of this result fully agrees with

equation (3.7).

The fact that this particular amplitude leads to the effective action (3.7) could

have been anticipated by looking at the three-point string theory scattering ampli-

tudes. As it has been carefully analyzed in our previous paper [3], one can see that the

A(R-R, R-R, NS-NS) ∼ A(F ,F , h) leads to an interaction term of the form of the Chern-

Simons term in the supergravity action. One obtains this precisely when the external states

have the particular polarizations indicated above. Thus, the Feynman diagram associated

with the minimal coupling comes from an amplitude where the graviton state (with one in-

dex on AdS5 and the other on S5) propagates in the t-channel. In this heuristic approach,

the two incoming dual gauge fields are modes of the self-dual five-form field strength.
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Then, the dilatino and dilaton IR vertices come from the string theory scattering am-

plitudes A(NS-NS,NS-NS,NS-NS) ∼ A(h, φ, φ) and A(NS-NS,NS-R,NS-R) ∼ A(h,Ψ,Ψ),

respectively.

For the Pauli term, on the other hand, one can use a similar reasoning. It is not difficult

to see that from the three-point scattering amplitude A(R-R,R-NS,NS-R) ∼ A(F , ψ, ψ),

supplemented with the corresponding polarizations, one can derive a five-dimensional ef-

fective Lagrangian of the form of the Pauli interaction term (3.2), at least in the AdS5

space. This is so because in terms of the ten-dimensional fields the effective Lagrangian is

of the form

LFΨΨ ∝ FMNOPQ ΨΓMNOPQΨ , (3.14)

and then we only have to take two indices on AdS5 and the other three on S5. Therefore,

we can consider that in this case the exchanged gauge field is a five-form field strength

mode. Then, since in this case the top vertex is derived from the Chern-Simons term, we

conclude that it should be possible to explicitly obtain the effective action coming from

the Pauli interaction term by studying the A(NS-NS, R-R, NS-R, R-NS) ∼ A(F , h,Ψ,Ψ)

four-point amplitude.

3.3 Antisymmetric structure functions

Contribution of the Chern-Simons term. In this subsection we explicitly derive the

antisymmetric structure functions of the spin-1/2 hadron. We need to evaluate the effective

action on-shell, and then use the holographic relation

− iS(A)
eff ≡ nµn

∗
ν Im

[
Tµν(A)

]
=

1

2π
nµn

∗
νW

µν
(A) . (3.15)

Both the heuristic and the string-amplitude approaches give the same effective action. Let

us consider equation (3.7). The AdS5 solutions are given in equation (2.21) for the incoming

gauge field A3
m and in equation (2.23) for the dilatino. Using equations (2.24) and (2.25)

to evaluate the imaginary part of the string pre-factor, we obtain

nµn
∗
ν Im

[
Tµν(A)

]
= εµνρσnµn

∗
νqρ Pσq

−2Q π |ci|2

12
√

4πλ

(
Λ2

q2

)τ−1

Iτ , (3.16)

where the charge is defined as Q ≡ d33CQC . We also define

Iτ ≡
∫
dω ω2τ+2K0(ω)K1(ω) =

√
π

4

Γ2 (τ + 1) Γ (τ + 2)

Γ
(
τ + 3

2

) . (3.17)

Finally, comparing with equation (1.1) and using the relation (1.3) we obtain the Chern-

Simons (CS) term contribution to the antisymmetric structure functions

FCS
3

(
x, q2

)
=

1

x

(
Λ2

q2

)τ−1

Q π
2|ci|2

6
√

4πλ
Iτ , (3.18)

and gCS
1

(
x, q2

)
= gCS

2

(
x, q2

)
= 0.

Note that there is no contribution proportional to Sµ due to the R-current conservation.

This is similar to the case of the symmetric part described in section 2. However, in the
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antisymmetric part there is an important difference. There are examples of holographic

dual models similar to N = 4 SYM in the UV but where the R-symmetry is spontaneously

broken in the IR.8 As noted in [4], in those models our computation actually leads to a

non-zero result for g1, more precisely we have

gCS
1 (x, q2) =

1

2
FCS

3 (x, q2) ∝ 1

x
. (3.19)

With respect to gCS
1 , from now on we assume that we work with a model of this kind. This

will be important in order to analyze the phenomenological implications of our results for

the antisymmetric contributions in section 5.

Let us briefly comment on the results we have obtained so far. We have obtained new

relations of the Callan-Gross type for the antisymmetric structure functions in the range

λ−1/2 � x � e−
√
λ. They can be compared for example with the corresponding ones in

the 1 > x � λ−1/2 region [6]. We find that the relation F3 = 2g1 holds for low x. In

addition, the structure function g2 vanishes for λ−1/2 � x � e−
√
λ, which could seem to

be surprising since in the x ∼ 1 regime g2 is of the same order as F3, however, this is in

agreement with the discussion presented in reference [4]. We should emphasize that in the

string theory regime the structure functions F3 and g1 are of the same order as F2. A

similar behavior was found in the scalar case for F3 [3]. Also, it is important to note that,

in contrast to the symmetric case, the antisymmetric structure functions we have obtained

are proportional to the dilatino charge QC .

Contribution of the Pauli term. Up to this point we have not considered the Pauli

interaction arising from the Lagrangian (3.2). The computation is analogous to the one

made in the previous section. One arrives to an FP3 (x, q2) structure function that behaves

in a similar way as the one we found in equation (3.18) with two differences: firstly instead

of d33CQC the new structure function is proportional to d33Cβ
C , and secondly there is an

extra twist-dependent factor (τ −1). The relation between the Chern-Simons (CS) and the

Pauli (P) contributions to the g1 structure function can be summarized as

gP1
d33CβC

∝ gCS
1

d33CQC
(τ − 1) , (3.20)

and similarly for F3, which means that the Pauli contribution becomes more important for

hadrons with larger twist.

It is interesting to remark that from a holographic dual string theory perspective the

mechanism which leads to the antisymmetric structure functions at low x is very different

with respect the one in the 1 > x � λ−1/2 range studied in [6] and [8]. In the latter

regime, F3, g1 and g2 (together with g3, g4 and g5) come from the right handed nature

of the (massless) dilatino solution in AdS5 near the boundary. On the other hand, in the

low-x regime, they come from the non-Abelian Chern-Simons and Pauli terms. As it has

been shown in [3] this also happens in the dilaton case.

The total contribution to the antisymmetric structure functions is given by the sum

to F3 = FCS
3 + FP3 and g1 = gCS

1 + gP1 . Note that both the Chern-Simons and Pauli

8For a specific example see [4] and references therein.
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contributions lead to the same dependence on the Bjorken parameter as well as on the

virtual photon momentum for each antisymmetric function. Thus, for each function the

only difference is a multiplying constant which can be fixed through an overall fitting. We

shall do this in section 5.

4 DIS from spin-1/2 hadrons at exponentially small x: the Regge region

In this section we consider the parametric region where the Bjorken parameter becomes

exponentially small. In this regime the so-called ultra-local approximation does not hold.

In terms of the four-dimensional center of mass energy and the ’t Hooft coupling, this

occurs when both s and λ are large but satisfy the relation

log(s)

λ1/2
= constant . (4.1)

We can understand this by looking at the factor mα′ t̃/2 in the imaginary part of the string

theory scattering amplitude pre-factor in equation (2.24), which within this parametric

region cannot be replaced by a constant. The point is that even if the four-dimensional

Maldestam variable t vanishes, the ten-dimensional one t̃ could be non-vanishing [5]. More-

over, in terms of our field solutions the radial component9 corresponds to a Laplacian acting

on the mode that propagates in the t-channel.

Let us briefly review the general ideas used in this context. First, it is useful to define

a spin-j second order differential operator according to

∆j = z2∂2
z + (2j − 3)z∂z + j(j − 4) . (4.2)

This operator can only differ from the actual Laplacian only by a (j-dependent) constant,

i.e. ∇2
j = ∆j +f(j). These constants can be fixed by looking at the supergravity equations

of motion. The case j = 2 corresponds to the propagation of a graviton in the t-channel and

it gives f(2) = 0. On the other hand, f(1) = 3 corresponds to the propagation of a gauge

field. In terms of the scattering amplitude, we see that the introduction of the differential

operator effectively breaks the local approximation. It leads to an effect of diffusion in the

z-direction, which modifies the amplitude dependence on q2. As we will see, it also gives an

O
(
λ−1/2

)
correction to the exponent of 1/x in the structure functions. There are different

ways of dealing with this operator, which are described in detail in references [10, 31] for

j ≈ 2, which is associated with a Reggeized graviton exchange. This is the relevant case for

the symmetric structure functions. On the other hand, the spin-j ≈ 1 exchange has been

studied in references [3, 4], and it is important for the antisymmetric structure functions.

Let us briefly explain how it works. We can assume that the operator ∆j acts on a generic

9Here we neglect the contributions from the angular directions on the S5. These differential operators

are present for s̃ as well, but they can be neglected in comparison to the four-dimensional contribution

proportional to s.
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field Φ(z). Then,

(α′s̃)α
′ t̃/2Φ(z) = (α′s̃)ρ∇

2
j/4Φ(z) (4.3)

=

∫
dz′ (α′s̃)ρ[∆j+f(j)]/4δ(z − z′)Φ(z′)

=

∫
dz′

z′

(
z′

z

)j−2
[
eζρ
] 1
4

(f(j)−4)

√
πζρ

e
− 1
ζρ

log2(z/z′)
Φ(z′) ,

where we have defined

ρ ≡ 2/
√
λ , ζ ≡ logα′s̃ = log

(
α′zz′s

)
, (4.4)

and inserted a Dirac delta function written in the form

z′ δ(z − z′) =

∫
dν

2π

(
z′

z

)j−2+iν

=

∫
dν

2π
e(j−2+iν)(u−u′) , (4.5)

where z = e−u. This is equivalent to considering the identity written in terms of eigen-

functions of the operator ∆j . However, for non-conformal backgrounds one has to impose

suitable boundary conditions. In the hard-wall model where there is a cut-off at z = z0

we can impose Neumann-type conditions. Thus, only a different linear combination of the

previous eigenfunctions survives. This is taken into account by the following replacement

eiνu → eiνu +

(
ν − 2i

ν + 2i

)
e−iνu . (4.6)

The only change in the final expression analogous to (4.3) is

e
− 1
ζρ

log2(z/z′) → e
− 1
ζρ

log2(z/z′)
+ F(z, z′, ζ) e

− 1
ζρ

log2(zz′/z20)
. (4.7)

The function −1 < F(z, z′, ζ) < 1 is defined as in [9] (equation (5.8) of that reference).

The expressions we have obtained are related to the so-called Pomeron exchange. By

inserting the particular case j ≈ 2 and j ≈ 1 into the respective on-shell effective actions

we obtain the explicit integral form for the leading contributions to the amplitude of the

dual FCS process. Schematically, the general amplitude takes the form

A = 2s

∫
d2b

∫
dzdz′ PA(z)Pψ(z′)χ(z, z′, s, b)|t=0 , (4.8)

in this kinematic regime where PA(z) contains the information on the gauge field wave-

function and Pψ(z) contains that of the dilatino,10 while χ is the corresponding modified

propagator. By taking the imaginary part, this propagator corresponds to the conformal

and the hard-wall Pomeron kernels. We present the explicit forms of all these quantities

for the cases of interest in the following section. Although in the DIS context we have been

dealing only with the imaginary part of A, the expression in equation (4.8) is valid for the

real part as well. It has also been extended to non-zero t, which corresponds to non-zero

10In particular, in the present context it is proportional to the generic Ψ(z′) defined above.
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Figure 5. Ladder diagrams re-summed by the eikonal exponentiation, corresponding to a multi-

Pomeron exchange.

transverse momentum transfer in the flat directions, and it has also been written in the

impact-parameter space. The form of these amplitudes shows a formal similarity to the

weak-coupling BFKL results [10, 31].

Under certain conditions, the analysis described in the previous paragraphs has been

extended in order to include an infinite number of 1/N2 corrections. This has been achieved

in the context of the eikonal approximation, which gives the sum of all the t-channel ladder

diagrams shown in figure 5. The flat-space eikonal approximation is well-known, and its

extension to the curved AdS5 background for the graviton and a (j ≈ 2) Pomeron exchanges

was investigated in several important papers [9, 32–34]. In the eikonal regime, by including

the higher orders in the ladder expansion, it leads to an exponentiation of the amplitude

of equation (4.8) in the form

A = 2is

∫
d2b

∫
dzdz′ PA(z)Pψ(z′)

[
1− exp

(
i χ(z, z′, s, b)|t=0

)]
, (4.9)

where b is the impact parameter. The previous case corresponds to the first non-trivial

term in the power series expansion of the exponential. We should stress that in the present

work we only consider a single Pomeron exchange. The following contributions are then

associated with multi-Pomeron exchanges, each order being suppressed by a 1/N2 fac-

tor. The implications of these results in the context of the unitarity restrictions and the

saturation regime were studied in [35].

The kind of factors in equation (4.3) present in the amplitude are crucial when analyz-

ing both the x and q2 dependence of the DIS amplitude and the structure functions. The

Bjorken parameter is contained in the ζ-variable since for low x one has

ζ = log
(
α′zz′s

)
≈ log

(
zz′

ρ

2

q2

x

)
. (4.10)

Thus, we straightforwardly see that the behavior 1/x2 and 1/x of the different struc-

ture functions at small but not exponentially small values of x has to be modified by an

extra factor [
eζρ
] 1

4
(f(j)−4)

∼
(

1

x

)− 1

2
√
λ

(4−f(j))

. (4.11)
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For f(j) < 4, this implies that the increase of the amplitudes and the structure functions

when x→ 0 becomes softened. The actual correction depends on the spin of the propagat-

ing field. For the Reggeized graviton, j ≈ 2 hence f(j) ≈ 0 (up to O(λ−1/2) terms), leading

to a correction in the exponent of − 2√
λ

. This correction affects all the functions contained

in the symmetric part of the hadronic tensor. On the other hand, when the exchanged

field is a Reggeized gauge field j ≈ 1, which implies that f(j) ≈ 3. Thus, the correction

is somewhat less important, namely: − 1
2
√
λ

. Therefore we conclude that, for exponentially

small x as x→ 0, the antisymmetric structure functions obtained in this work grow faster

than F2 in the same parametric regime.

Having described the general considerations, let us write down the explicit expressions

for the structure functions at tree-level and in the hard-wall model. Due to the energy-

momentum tensor conservation we have seen that for small values of x the symmetric part

of the hadronic tensor is dominated by the universal contributions associated with F1 and

F2. Inserting the corresponding (imaginary part of) the j ≈ 2 kernel one obtains the

following expression for the F2 [9]

F2(x, q2) ∼
∫
dz

z

dz′

z′
PA(z, q2)Pψ(z′)(zz′q2)

eζ(1−ρ)

√
ζ

(
e
− log2(z/z′)

ρζ + F(z, z′, ζ)e
−

log2(zz′/z20)
ρζ

)
.

(4.12)

The wave-function dependent terms are defined as

PA(z, q2) = (qz)2
(
K2

1 (qz) +K2
0 (qz)

)
, Pψ(z′) = z−3|f+(z′)|2 ∼ (z′Λ)2τ−2 , (4.13)

being f+(z′) given in terms of the initial state ψ(x, z) = eiP ·x [f+(z)P+ + f−(z)P−]u(P )

as equation (2.22). In the last formula we have written its near-boundary expansion. The

analogous expression for 2xF1(x, q2) can be obtained by omitting the K2
0 term in PA.

For the case of the antisymmetric contributions one has to use the j ≈ 1 kernel. In this

context it is interesting to consider situations in which the R-symmetry is spontaneously

broken in the IR in such a way that it allows for a contribution to the g1(x, q2) structure

function. In such case, g1 does not vanish, moreover it is related to F3 through 2g1 = F3.

Assuming that the kernels can be approximately described in the same way, this leads to

the holographic dual description of the structure function g1 at low x:

g1(x, q2) =
Qπ2

24

∫
dy dy′ PA(y, q)Pψ(y′)

× eζ(1−ρ/4)

√
πζρ

(
e
−

√
λ

8ζ
(y−y′)2

+ F(y, y′, ζ)e
−

√
λ

8ζ
(y+y′)2

)
, (4.14)

with y = −2 log(z). Note that the PA factor has to be replaced by

PA(z, q2) = (qz)3K1(qz)K0(qz) , (4.15)

reflecting the use of the Chern-Simons term. For more details of the computation we refer

the interested reader to references [3, 4]. Equation (4.14) is very similar to the one obtained

for F3 in the scalar case in [3].
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Equations (4.12) and (4.14) are difficult to evaluate analytically. In the next section

we describe a possible way to extract the relevant information, from which we perform a

very interesting phenomenological analysis.

5 Analysis of the results and conclusions

In reference [5] Polchinski and Strassler have shown that in the region 1 > x � λ−1/2

the results obtained from the computation of the s-channel amplitude in the supergravity

approximation are different from the QCD expectations in the parton model for weak

coupling. This is partly because in the planar limit, where the supergravity approximation

holds, particle creation in the bulk becomes suppressed. It means that the virtual photon

interacts with the entire hadron since the latter does not effectively contain partons in that

limit. The structure functions show a behavior of the form (Λ2/q2)τ−1. This is related

to the fact that the hadron wave-function is localized near z0 = Λ−1. Thus, in order for

inelastic scattering to occur, the string (which holographically represents the hadron) must

tunnel to the region near the boundary (z < q−1).

Let us very briefly consider the x-dependence of the structure functions in the region

1 > x � λ−1/2. They are somehow similar to bell-shaped curves, with maxima around

x? ∼ 0.6 which are larger than the experimental observations. In this regime, these results

have been extended for charged and neutral polarized spin-1/2 hadrons [6, 8], and also for

scalar and polarized vectors mesons for different Dp-brane models, both in the Abelian

and non-Abelian cases [24, 25]. However, by considering supergravity one-loop corrections

in this x-regime very interesting results have been found [28, 29]. Particularly, the first

moments of the structure function F2 for the pion [24, 25] can be compared with the lattice

QCD ones [56], having found discrepancies under 20%, while the supergravity one-loop level

calculation improves quite significantly that prediction reaching an accuracy of 1.27 % or

better. Similarly, it occurs for the first three moments of F1 of the rho meson, which gives

tree-level results with accuracy of 20% [24, 25], while for the one-loop level calculations the

agreement with respect to lattice QCD results [56] reaches an accuracy of 3% [30].11

On the other hand, at low x the holographic dual calculation must include the exchange

of excited string states in the t-channel. This approach leads to important new insights on

Regge physics since the AdS/CFT duality provides a unified description for both the soft

Pomeron and the BFKL Pomeron [10]. In QCD when q2 becomes small, it is not possible to

think of the constituents of a hadron as approximately free partons. Confinement as well as

saturation effects become important. These phenomena are related to modifications of the

Pomeron kernel and the inclusion of multi-Pomeron exchange respectively. In reference [9]

it has been done a remarkable comparison with F2(x, q2) data for the proton obtained by

the HERA Collaboration [11–13].

11It is interesting to also compare the level of accuracy for other physical observables calculated in

terms of the AdS/CFT duality. For instance in the bottom-up AdS/QCD model observables obtained by

the calculation of two-point functions lead to an overall fitting of 5% or better [58, 59]. For observables

depending on four-point functions, for instance for the ∆I = 1/2 rule for the kaon decay the level of

agreement is about 25% or better [60, 61].
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Also the gauge/string theory duality has been applied to other scattering processes

such as deeply virtual Compton scattering (DVCS), double diffractive Higgs production,

generalized parton distributions (GPD) and form factors.12

5.1 Structure functions results at low x

In the first part of this work we have computed both the symmetric and antisymmetric

structure functions of a polarized spin-1/2 hadron in the low x regime. The target is

represented by a dilatino KK mode in the dual type IIB superstring theory on AdS5 ×
S5, with an IR deformation. This has been done in two separate but equivalent ways:

from superstring theory scattering amplitudes and in a heuristic way developed from the

supergravity interactions.

For the symmetric structure functions we have shown that F1 and F2 behave as x−2

and x−1, respectively, and found a new generalized Callan-Gross relation given by equa-

tion (2.29). It is analogous to the one found for the scalar glueball [5] and also in the meson

case [26]. Moreover, the g3,4,5 vanish in this regime, in contrast to the results obtained in

the 1 > x � λ−1/2 regime [6]. Although it is not obvious at first sight from the gravity

computation, from the CFT point of view we know that the dominant contribution to the

JJ OPE is proportional to the energy-momentum tensor. Since the g3,4,5-terms in the

hadronic tensor are proportional to the spin vector Sµ, they cannot appear at this order.

By considering the t-channel j ≈ 1 exchange, we have also described the leading

contributions to the antisymmetric part of the hadronic tensor. This leads to g1 ∼ x−1

(and the same for F3). Strictly speaking, an argument similar to that of the previous

paragraph implies that in the hard-wall model g1 should vanish. However, there is an

important difference: here the relevant term comes from the JJ ∼ J term in the OPE. If

one considers a QFT where the R-symmetry is spontaneously broken in the IR, it is possible

to obtain a non-vanishing g1 = 1
2F3. On the other hand we find that the structure function

g2 vanishes in this regime. Recall that in the parton model g2 also vanishes, moreover

there is no simple interpretation for this function in the parton model [62]. In the following

we shall concentrate on the comparison of our results for the phenomenologically relevant

structure function g1 with respect to experimental data.

5.2 New predictions for g1 and comparison with COMPASS data

In the hard-wall model, symmetric structure functions at low-x and exponentially small-

x depend on a finite set of parameters as shown in equation (4.12). Since the z and z′

integrals are difficult solved analytically, it has been proposed to approximate the Pi factors

by Dirac delta functions supported at appropriate reference scales [9]

Pψ(z′) ≈ 1

q′
δ(z′ − 1/q′) , PA(z) ≈ 1

q
δ(z − 1/q) , (5.1)

where q′ is some scale of order of the hadron mass. Using this approximation the integrals

in equation (4.12) can be performed, obtaining an expression that has four free parameters,

12See for example [36–40] and references therein.
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namely: an overall constant, z0, ρ and q′. These parameters can be fixed by fitting F2 to

data. In fact, there is considerable amount of experimental results from HERA obtained

from DIS off protons at low x which have been used in order to fit the structure function

F2. This has been done by considering the H1-ZEUS data [11–13] for x < 10−2. In [9]

the authors fitted F2 for the conformal and the hard-wall models. In the conformal model

their fit leads to

ρ = 0.7740± 0.0103 , q′ = 0.5575± 0.0432 GeV , (5.2)

with a reduced chi-square χ2
d.o.f. = 0.75. On the other hand, their best fit for F2 using the

hard-wall model gives [9]

ρ = 0.7792± 0.0034 , q′ = 0.4333± 0.0243 GeV , z0 = 4.96± 0.14 GeV−1 , (5.3)

with χ2
d.o.f. = 1.07. Interestingly, their values of the parameters are reasonable since ρ

lies between the strong/weak coupling transition, q′ is of order of the proton mass, while

z0 ∼ O(Λ−1
QCD) as expected in hard-wall model.

Now, we can obtain new predictions for the g1 structure function by using the formal

expressions derived in our present work. Considering the approximation (5.1) in equa-

tion (4.14) we obtain the following expression for the antisymmetric structure function g1

which holds for both the conformal (F = 0) and the hard-wall kernels

g1(x, q2) = C ρ−1/2eζ(1−ρ/4)

exp
[
− log2(q/q′)

ρζ

]
√
ζ

+ F(q, q′, ζ)
exp

[
− log2(qq′z20)

ρζ

]
√
ζ


≈ C ρ

1/2

2x

q

q′
eζ(−ρ/4)

exp
[
− log2(q/q′)

ρζ

]
√
ζ

+ F(q, q′, ζ)
exp

[
− log2(qq′z20)

ρζ

]
√
ζ

 , (5.4)

where we have used that eζ ≈ 1√
λ

1
x
q
q′ . Next, we carry out the comparison with experimental

data. For that, firstly note that three of the four free parameters in equation (5.4) are

already determined by the previous fitting of the structure function F2 done in [9] and

shown in equation (5.3) (or (5.2) for the conformal model). Therefore, the only unknown

free parameter is the overall constant C.
The g1 structure function of the proton has been measured by the SMC Collabora-

tion [14], also more recently by the COMPASS Collaboration with the beam energies of

160 GeV and 200 GeV [15, 16]. The corresponding sets of data can be found in the men-

tioned experimental references. Since the calculations performed in the previous sections

are valid for the low-x regime, we consider data within the x < 0.01 region. Therefore, we

have nineteen experimental values that can be used to fit equation (5.4). Proceeding in

this way we obtain the constant value: C = 0.0195± 0.0024 for the conformal model, and

C = 0.0191± 0.0023 for the hard-wall model. Both fits give χ2
d.o.f. = 0.27, which indicates

that our model is over-fitting the data set, thus this is not a good fit. In figure 6 the ex-

perimental data presented in [16] and our first fit for the conformal model are shown. For

completeness we included experimental points up to x = 0.035 obtained by the SMC [14],

EMC [17, 18], HERMES [19], SLAC E143 [20], E155 [21] and CLAS [22] collaborations, at

– 25 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
4

 6

 7

 8

 9

 10

 11

 12

 13

 1  10  100

x=0.0036    (i=0)

x=0.0045

x=0.0055

x=0.007     (i=3)

x=0.009

x=0.012

x=0.017

x=0.024

x=0.035

Ci=12.1-0.7·i

g
1
(q

2
,x

)+
C

i

q
2
 (GeV

2
/c

2
)

COMPASS 200 GeV
COMPASS 160 GeV

E143
E155
EMC

HERMES
SMC

Figure 6. Red curves display our fit for the g1 structure function as a function of q2 for different

values of the Bjorken variable, compared to the experimental data presented in [16] and references

therein, while the yellow lines are the values of g1 considering the error on C. The best fit corresponds

to x < 0.01 (larger values of the Bjorken parameter are shown for completeness) obtaining a constant

C = 0.0195± 0.0024 with a χ2
d.o.f. = 0.27. Note that following reference [16] for each value of x we

are adding a constant Ci = 12.1− 0.7i to the g1 data and the corresponding curve.

q2 > 1 (GeV/c)2. The fit is better in the region x < 0.01 and then it drifts apart from the

experimental data as x increases, i.e. where the Pomeron approach does not hold.

It is very interesting to compare with the most recent data from the COMPASS Col-

laboration. They have published new and more precise data for the g1 structure function

of the proton [23] for photon virtuality q2 < 1 (GeV/c)2 and for the Bjorken parameter

4× 10−5 < x < 4× 10−2. This region seems more suitable for our analysis given that the

Pomeron formalism describes DIS processes at very low values of x. However, one should

keep in mind that we have considered q to be much larger than the Λ scale. Thus, it seems

reasonable to consider only the data set where q2 > q′2, being the latter approximately

0.2-0.3 (GeV/c)2 according to (5.2) and (5.3). In this way, we consider fifteen points, which

represent half of the data presented in [23], and obtain the following results for the fits:

conformal model : C = 0.011± 0.002 , χ2
d.o.f. = 1.140 (5.5)

hard− wall model : C = 0.012± 0.002 , χ2
d.o.f. = 1.074 . (5.6)

As we can see, for this new data set we obtain a very good fit. The value of the parameter C
does not change significantly, being always C ' 0.01. This is a very interesting prediction for

the proton structure function g1, and together with expression (5.4) it represents the main

result of this work. As expected, the confining model gives a more accurate description
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Figure 7. Our best fit of the structure function g1 carried out with the newest data presented

in [23]. Solid curves correspond to the best fit for the conformal model, with C = 0.0112 ± 0.0020

and a χ2
d.o.f. = 1.140, while dotted lines correspond to the best fit for the hard-wall model with

C = 0.0120± 0.0020 and a χ2
d.o.f. = 1.074. For values above x = 0.0013 we only show the conformal

model because at the scale used in the plot there are no visible differences. In this case we do

not show the error on C because it is negligible in the displayed scale. Note that for each row

corresponding to different x value, we are adding the constant 3i.

in the region where q and q′ become comparable [9]. As an aside, we should say that,

rather surprisingly, including all data points from [23] it still renders an acceptable fit

(with χ2
d.o.f. = 0.911 and C = 0.0114 ± 0.0011), but only for the conformal model. This

is not so in the confining case. Figure 7 displays the experimental data presented in [23]

together with our best fits. It can be seen that the hard-wall model gives the best fit for

the points with larger values of q2, while the conformal model gives an acceptable fit for

the full data set. Finally, by using our results (5.5) and (5.6) we can predict the behavior

of g1(x, q2) for different values q2 in the small-x regime. This is shown in figure 8.

In order to make the comparison between our fitted g1 function and the experimental

data simpler, figures 6 and 7 are displayed in a similar way as the corresponding figures of

references [16] and [23], respectively. We briefly comment on the range of validity of the fits

we have done. The first set of data described in figure 6 corresponds to larger values of x

and a relatively broad range of q2. On the other hand, the new set of data shown in figure 7

corresponds to much lower values of the Bjorken parameter, although the q2-range is much

smaller (notice the logarithmic scale for q2 in both figures). The ideal situation where our

results should fit better data would be for low x and large photon virtuality. It would be

very interesting to have experimental data in that parametric range. We should also empha-
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Figure 8. Our results for the structure function g1. Solid lines correspond to the conformal

model. Dotted lines correspond to the hard-wall model. The values of the photon virtuality q2 are

indicated.

size that the amount of experimental data for g1 at present is much less than the available

data for F2. Thus, our predictions for g1 in terms of the comparison with experimental

data could possibly be improved, depending on the availability of new data in future.

There is an important and very interesting aspect to emphasize. We know that in QCD

the electromagnetic DIS leads to a vanishing F3 structure function. This changes drastically

when considering DIS for weak interactions mediated by W± or Z0 gauge bosons. Thus

we should stress that although QCD and this IR-deformed N = 4 SYM theory we consider

can have a number of analogous properties in the planar limit, as QFTs they are different.

One important difference is that N = 4 SYM theory is chiral. The R-symmetry current

associated with the global U(1)R ⊂ SU(4)R is promoted to become a gauge symmetry in

order to describe the electric current. Therefore, our prediction for a non-vanishing F3 is

entirely related to an IR deformation of N = 4 SYM theory.

On the other hand, we conclude that the present results for g1 fit very well the experi-

mental data as shown in figure 7. Let us emphasize that our knowledge this is the first fully

string-theoretical derivation and comparison with experimental data from a calculation of

g1 obtained by using the gauge/string theory duality framework, where non-perturbative

physics plays a major role. Also, it is important to remark that the fits for g1 presented

above are totally compatible with those of F2 obtained by Brower et al. [9]. Therefore, this

work also contributes to the understanding of a unified picture of the Pomeron physics by

adding relevant results from the holographic dual description of the antisymmetric struc-

ture functions.
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