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This work deals with the configuration interaction method when an N-electron Hamiltonian is pro-
jected on Slater determinants which are classified according to their seniority number values. We
study the spin features of the wave functions and the size of the matrices required to formulate states
of any spin symmetry within this treatment. Correlation energies associated with the wave functions
arising from the seniority-based configuration interaction procedure are determined for three types of
molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from
minimizing the expectation value of the N-electron seniority number operator. The performance of
these bases is analyzed by means of numerical results obtained from selected N-electron systems
of several spin symmetries. The comparison of the results highlights the efficiency of the molecular
orbital basis which minimizes the mean value of the seniority number for a state, yielding energy val-
ues closer to those provided by the full configuration interaction procedure. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4882881]

I. INTRODUCTION

The solutions of the Schrödinger equation correspond-
ing to an N-electron system for a given basis set are those
provided by the full configuration interaction (FCI) method.
However, as is well known its practical application requires
a high computational cost, especially when dealing with
medium and large size systems and extended basis sets. Con-
sequently, this treatment is usually approximated by means
of configuration interaction (CI) procedures in which the N-
electron Hamiltonian is projected on a limited number of
Slater determinants, that involves truncations in the FCI wave
function expansions.1–7 Traditionally, these Slater determi-
nants are selected according to the particle-hole excitation
level from a determined reference; however in some situa-
tions that selection criterion yields spin contaminated wave
functions.8, 9 Alternatively, the concept of seniority number of
a determinant10, 11 is another feature which allows one to clas-
sify the Slater determinants involved in the Hamiltonian pro-
jection (the seniority number has been defined as the number
of singly occupied functions or number of unpaired electrons
in a determinant). Results arising from both excitation- and
seniority-number-based CI expansions have been reported in
Ref. 12 as well as a discussion on the conditions of applicabil-
ity of each procedure. Likewise, the closed-shell wave func-
tions in the double-occupied configuration interaction method

a)Author to whom correspondence should be addressed. Electronic mail:
qfplapel@lg.ehu.es

have been related to the seniority CI expansions.13, 14 One of
the purposes of the present work is to enlarge the insights
into the seniority-labeled CI method. We show that the wave
functions arising from that procedure are eigenstates of the Ŝ2

operator and hence it provides spin contamination-free wave
functions. Furthermore, we describe the size of the matrices
required to implement this procedure in any system (closed-
or open-shell one) and for any spin symmetry.

In a recent work, the concept of seniority number of a de-
terminant has been extended to N-electron wave functions and
to N-electron spin-adapted spaces.15 In this reference we have
shown that the expectation value of the seniority number oper-
ator for an N-electron spin-adapted space is an invariant with
respect to any unitary transformation of the basis set, while its
expectation value for a determined wave function which de-
scribes a state is an orbital basis dependent magnitude. This
dependence has allowed us to propose transformations of the
orbital basis set in order to achieve a minimum value for the
seniority number of the FCI N-electron wave function. The
compactness of the FCI wave functions has been studied by
means of an analysis of their expansions in the basis sets of
the canonical molecular orbitals (CMO), in the natural or-
bitals (NO),16, 17 and in the molecular orbital sets in which
the seniority number possesses a minimum value (Mmin).15

Since the energies and the convergence of the CI expansions
depend upon the orbitals from which the configurations are
formed, another purpose of the present work is to study the
performance of these three types of molecular orbital ba-
sis in the seniority-number-based CI expansions, in order to
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identify the basis which leads to the energy values closer to
the FCI results.

The organization of this work is as follows. In Sec. II
we describe the seniority number operator and the N-electron
spin-squared operator in terms of spin-free replacement op-
erators. This formulation allows one to study suitably the
spin features of the seniority-number-based CI wave func-
tions. We also show in that section the size of the matrices
required to construct the seniority-number-based CI expan-
sions for closed- and open-shell systems, in states of any spin
S. Section III reports results of correlation energies in atomic
systems and in linear molecular species at several internuclear
distances. CI expansions composed of Slater determinants at a
specified seniority number level are studied in the above men-
tioned molecular orbital bases, in order to investigate their
convergence to the FCI values. Finally, Sec. IV discusses the
main conclusions of this work.

II. THEORETICAL ASPECTS

A. Spin-adapted CI wave functions

Let {i, j, k, l, . . . } be a set of K orthonormal orbitals and
let Êi

j and Êik
j l be the first- and second-order spin-free replace-

ment operators, respectively, which have been formulated as18

Êi
j =

X
σ

a
†
iσ ajσ , (1)

Êik
j l =

X
σ1,σ2

a
†
iσ1 a

†
kσ2 alσ2 ajσ1 (2)

in which a
†
iσ /aiσ is the fermionic creation/annihilation opera-

tor corresponding to a spin-orbital iσ (σ means the spin coor-
dinate, α or β).

The N-electron seniority number operator Ä̂ can be ex-
pressed by means of these spin-free replacement operators
as15

Ä̂ =
KX

i=1

¡
Êi

i − Êii
ii

¢
. (3)

The expectation value of this operator hÄ̂i, respect to an N-
electron Slater determinant, expresses the difference between
N (number of electrons), which is the expectation value of theP

i Êi
i operator, and the number of electrons corresponding

to doubly occupied orbitals in that determinant, which is the
expectation value of the

P
i Êii

ii operator. Consequently, the
Ä = hÄ̂i quantity for a determinant is an integer which ac-
counts for the number of singly occupied orbitals or number
of unpaired electrons.19, 20

The spin-free version of the N-electron spin-squared op-
erator has also been formulated in terms of second-order
replacement operators as21

Ŝ2 = 1

2

X
i,j,k,l

·
4 − N

2(N − 1)
δij δkl − δilδjk

¸
Êik

j l (4)

in which the δ symbols indicate the well-known Kronecker
deltas.

The formulation of Eqs. (3) and (4) by means of second-
order replacement operators turns out to be especially suit-
able to evaluate the commutation relationship between the
operators Ä̂ and Ŝ2, which requires to take the product of
two second-order spin-free replacement operators. The gen-
eral procedure to calculate this type of products has been re-
ported in Refs. 22 and 23 and according to that procedure, the
product of two second-order replacement operators turns out
to be

Êik
j l Ê

pr
qs = Ê

ikpr

j lqs + δpj Ê
ikr
qls + δrj Ê

ikp

slq + δplÊ
ikr
jqs

+ δrlÊ
ikp

jsq + δpj δrlÊ
ik
qs + δplδrj Ê

ik
sq . (5)

Consequently, one straightforwardly finds

[Ŝ2, Ä̂] = 0. (6)

Likewise, it can be shown that

[Ŝz, Ä̂] = 0. (7)

These relationships show that the eigenfunctions of the
operators Ŝ2 and Ŝz (the spin-adapted configurations) corre-
sponding to an N-electron system may be expressed by means
of linear combinations of Slater determinants having the same
Ä value. These eigenfunctions constitute an antisymmetric
and spin-adapted finite-dimensional Hilbert space of N elec-
trons constructed with K orbitals; that space will be denoted
as HA(N, K, S, Sz, Ä), where the superscript A stands for anti-
symmetric and obviously Ä ≥ 2S.

Likewise, it is possible to construct linear combinations
of degenerate eigenfunctions of the Ŝ2 and Ŝz operators with S
and Sz spin quantum numbers corresponding to several values
of seniority number Ä (distinct). These linear combination
functions are also eigenfunctions of both spin operators but
they are no longer eigenfunctions of the operator Ä̂, yielding
an expectation value hÄ̂i, which may be a non-integer num-
ber. They constitute the model space that will be denoted as
HA(N, K, S, Sz, Ä, Ä0, . . . ); obviously when all possible Ä

values are taken into account (Ä = 2S, 2(S + 1), . . . , N) that
space coincides with the spin-adapted full CI space HA(N, K,
S, Sz). Let us now consider the model space HA(N, K, Sz, Ä,
Ä0, . . . ) constituted by the Slater determinants of Sz eigen-
value and Ä, Ä0, . . . values. As is well known, the spin-free
N-electron Hamiltonian operator Ĥ commutes with the Ŝ2

and Ŝz spin operators, however the operators Ĥ and Ä̂ do
not commute,12 i.e., [Ĥ , Ä̂] 6= 0. Consequently, the diagonal-
ization of the N-electron Hamiltonian matrix arising from a
representation of the operator Ĥ in the Hilbert space HA(N,
K, Sz, Ä, Ä0, . . . ) yields spin-adapted eigenstates with spin
values S = Sz, (Sz + 1), . . . , N

2 and identical Sz value; they
are spin-adapted CI wave functions whose seniority numbers
must be expressed by expectation values hÄ̂i. These features
ensure that the wave functions derived from the CI method
based on the seniority number, which are linear combinations
of all Slater determinants with selected Ä values, are pure spin
states. However, this result is not ensured in the case of the tra-
ditional CI method based on the construction of the N-electron
Hamiltonian matrix over the Slater determinants arising from
the excitations of a reference Slater determinant, where it is
possible to find spin-contaminated states.8, 9 This feature ap-
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pears mainly in open-shell systems, coming from the ambigu-
ity in defining the excitations either in terms of orbitals or in
terms of spin-orbitals.

B. Dimension of the seniority-number-adapted spaces

The parameter Ä for a Slater determinant is an integer
number meaning the number of single occupied orbitals in the
determinant. Consequently, that parameter may be formulated
as Ä = N − 2r, where r stands for the number of repeated
indices (doubly occupied orbitals) in that determinant. For a
quantum number Sz ≥ 0, the number of α and β orbitals occu-
pied in a determinant is N

2 + Sz and N
2 − Sz, respectively. The

number of ways of picking (N
2 + Sz) α-spin orbitals from K

basis orbitals is
¡

K
N
2 +Sz

¢
. This partial result must be multiplied

by the factor
¡ N

2 +Sz

r

¢
, the number of possibilities for selecting

r doubly occupied orbitals. Consequently, the number of pos-

sibilities to select the unpaired β orbitals is
¡K−( N

2 +Sz)
N
2 −Sz−r

¢
. The

product of these three binomial coefficients yields the dimen-
sion of the space HA(N, K, Sz, Ä), that is the number of Slater
determinants of N electrons having a Sz eigenvalue and a se-
niority number Ä that can be constructed with K orbitals, so
that

dim HA(N,K, Sz,Ä)Ä=N−2r

=
µ

K
N
2 + Sz

¶µN
2 + Sz

r

¶µ
K − ¡

N
2 + Sz

¢
N
2 − Sz − r

¶
. (8)

This result constitutes a generalization of that reported in
Ref. 12, where only the particular case Sz = 0 was consid-
ered. Formula (8) can be applied to any Sz value providing the
description of both closed- and open-shell systems.

The sum of the right-hand side terms in Eq. (8) for all
possible values of the index r (r = 0, . . . , (N

2 − Sz)) and the
use of the Vandermonde relationship lead to

µ
K

N
2 + Sz

¶ N
2 −SzX
r=0

µN
2 + Sz

r

¶µ
K − ¡

N
2 + Sz

¢
N
2 − Sz − r

¶

=
µ

K
N
2 + Sz

¶µ
K

N
2 − Sz

¶
(9)

which is the dimension of the space HA(N, K, Sz) that is the
sum of the dimensions of the spaces HA(N, K, Sz, Ä) ∀Ä.

The difference between the dimensions of the spaces
HA[N, K, (Sz = S), Ä] and HA[N, K, (Sz = S + 1), Ä] is the
dimension of the spin-adapted space HA(N, K, S, Sz, Ä), that
is24

dim HA(N,K, S, Sz,Ä)Ä=N−2r

=
µ

K
N
2 + S

¶µN
2 + S

r

¶µ
K − ¡

N
2 + S

¢
N
2 − S − r

¶

−
µ

K
N
2 + (S + 1)

¶µN
2 + (S + 1)

r

¶µ
K − (N

2 + (S + 1))
N
2 − (S + 1) − r

¶

(10)

which is identical ∀Sz quantum number corresponding to
a spin S. Likewise, the sum of the right-hand side terms
in Eq. (10) for all possible values of the Ä parameter (all
possible values of the index r) reproduces the Weyl-Paldus
formula,25, 26 which is the dimension of the space HA(N, K,
S), ∀Sz

dim HA(N,K, S) = 2S + 1

K + 1

µ
K + 1

1
2N − S

¶ µ
K + 1

1
2N + S + 1

¶
.

(11)
The consistency of the dimensions of the Ä-adapted sub-
spaces confirms that the partitioning of S- and Sz-adapted
spaces according to the values of the seniority number pa-
rameter Ä guarantees the use of pure spin states.

III. ENERGY DETERMINATION BY MEANS OF
SENIORITY-NUMBER-BASED CI EXPANSIONS

We have calculated electronic energies of atomic and
molecular systems in several spin symmetries using CI ex-
pansions expressed by means of Slater determinants which
have been selected according to the values of the parame-
ter Ä. As mentioned in the Introduction, our purpose is to
shed some light on which is the most suitable basis set to re-
cover the largest amount of correlation energy (in absolute
value) for a given sequence of values Ä in those determinants.
Three types of molecular orbital bases have been utilized in
this study: (i) the canonical Hartree-Fock molecular orbitals
(CMO), (ii) the natural orbitals (NO) in which the FCI spin-
free first-order reduced density matrix is diagonal (generally
considered as the one yielding the fastest CI convergence but
whose behavior has been questioned,5, 17 and (iii) the orbitals
(Mmin) which minimize the expectation value h9FCI|Ä̂|9FCIi
for a given FCI wave function 9(N, S).15 The Hartree-Fock
reference energies, the Hartree-Fock molecular orbital basis
sets, and the one- and two-electron integrals have been ob-
tained from a modified version of the PSI 3.3 package.27 We
have used our own codes to calculate the spin-free second-
order reduced density matrix elements required to determine
the orbitals of the basis set Mmin. These orbitals have been
determined following a modified version of the iterative pro-
cedure described in Ref. 28 which uses the CMOs as ini-
tial basis. In subsequent steps we have also used our own
codes to calculate the wave functions of the lowest energy
states of each spin symmetry series at several CI levels and at
FCI level for these systems; besides we constructed efficient
codes to perform the corresponding basis set transformations.
In the case of the atomic systems we have used the Huzi-
naga and Dunning double ζ quality s-type GTO basis sets29, 30

while the energies of the molecular systems have been cal-
culated in the STO-3G basis sets at several internuclear dis-
tances (close to the equilibrium distances and stretched ones).
These computational conditions have allowed us to carry out
our numerical determinations at an affordable computational
cost.

Table I reports correlation energies for isoelectronic
atomic series in singlet, doublet, triplet, and quartet spin sym-
metries arising from CI expansions constructed with several
sequences of values of the parameter Ä. These sequences start
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TABLE I. Values of correlation energies (in millihartrees) for isoelectronic atomic systems in singlet, doublet, triplet, and quartet spin symmetries, described
at CI (seniority Ä) and FCI levels, in the basis sets: molecular (CMO), natural (NO), and that minimizing the seniority number (Mmin). Results correspond to
Huzinaga and Dunning double ζ quality s-type GTO basis sets. Eref = energy(RHF/ROHF) (in Eh).

Ä = 0 Ä = 0, 2 Ä = 0, 2, 4

System Spin Eref CMO NO Mmin CMO NO Mmin FCI

B+ 0 − 24.234344 − 12.114 − 10.240 − 12.403 − 14.740 − 14.269 − 14.769 − 14.964
C++ 0 − 36.403824 − 11.190 − 8.128 − 11.685 − 13.717 − 12.635 − 13.770 − 13.933
N++ + 0 − 51.074229 − 10.649 − 6.795 − 11.506 − 13.169 − 11.359 − 13.241 − 13.374

Ä = 1 Ä = 1, 3 Ä = 1, 3, 5

CMO NO Mmin CMO NO Mmin FCI
B 1

2 − 24.101537 − 11.446 − 12.564 − 12.755 − 12.769 − 12.769 − 12.769 − 12.769
C+ 1

2 − 36.544050 − 10.952 − 12.352 − 12.466 − 12.503 − 12.503 − 12.503 − 12.503
N++ 1

2 − 51.602375 − 10.679 − 12.246 − 12.251 − 12.365 − 12.365 − 12.365 − 12.365

Ä = 2 Ä = 2, 4

CMO NO Mmin FCI
B+ 1 − 23.592326 − 12.691 − 12.550 − 12.993 − 12.993
C++ 1 − 35.291522 − 12.454 − 12.318 − 12.787 − 12.993
N++ + 1 − 49.350131 − 12.326 − 12.197 − 12.680 − 12.680

Ä = 3 Ä = 3, 5

CMO NO Mmin FCI
B 3

2 − 8.662608 − 1.419 − 1.419 − 1.419 − 1.419
C+ 3

2 − 13.403273 0.000 0.000 0.000 0.000
N++ 3

2 − 19.609185 0.000 0.000 0.000 0.000

with the lowest value Ä = 2S, growing up to the highest one
Ä = N (the complete sequences become the FCI method).
These numerical determinations have been performed in the
three mentioned types of molecular orbitals, in order to ana-
lyze the performance of each of them and their closeness to
the FCI values. Obviously the three molecular orbital sets lead
to identical results in the FCI case. As can be observed in that
table, the basis sets Mmin yield better results than the NO and
CMO ones in all the cases studied. In the case of N = 4 elec-
trons for singlets and triplets the basis sets CMO also presents
better results than those provided by the NO orbitals. We may

justify these results in terms of the high dominances found in
the CI expansions of the Slater determinants possessing two
doubly occupied orbitals (Ä = 0) for singlets and one doubly
occupied orbital (Ä = 2) for triplets in the CMO basis sets.
These features are not longer exhibited in the open-shell sys-
tems with N = 5 electrons and Ä = 1 (doublets) in which the
convergence in the NO basis sets is superior to the CMO ones.
Tables II, III, and IV show results of the correlation energies
in linear molecular systems of 4, 5, and 6 electrons, respec-
tively, at several spin symmetries. The atoms of these species
have been situated at distances shorter and longer than the

TABLE II. Values of correlation energies (in millihartrees) for diatomic species of 4 electrons in singlet and triplet states at several internuclear distances
(R), described at CI (seniority Ä) and FCI levels, in the basis sets: molecular (CMO), natural (NO), and that minimizing the seniority number (Mmin). Results
correspond to standard STO-3G basis sets. Eref = energy(RHF/ROHF) (in Eh).

Ä = 0 Ä = 0, 2 Ä = 0, 2, 4

System R (Å) Eref CMO NO Mmin CMO NO Mmin FCI

LiH 0.9949 − 7.764767 − 14.150 − 17.010 − 17.010 − 16.959 − 17.044 − 17.044 − 17.121
(S=0) 1.5949 − 7.862027 − 15.983 − 20.254 − 20.254 − 20.369 − 20.373 − 20.373 − 20.378

2.5949 − 7.759038 − 33.790 − 58.464 − 58.464 − 58.613 − 58.663 − 58.663 − 58.670
3.5949 − 7.653305 − 59.381 − 133.484 − 133.484 − 133.699 − 133.739 − 133.739 − 133.739

BeH+ 1.0926 − 14.637146 − 12.180 − 15.980 − 15.981 − 16.102 − 16.113 − 16.113 − 16.120
(S=0) 1.3426 − 14.664616 − 15.336 − 21.004 − 21.004 − 21.151 − 21.189 − 21.189 − 21.192

2.0926 − 14.565564 − 35.185 − 56.573 − 56.573 − 56.801 − 56.857 − 56.857 − 56.858
3.0926 − 14.449637 − 88.887 − 120.741 − 120.741 − 121.031 − 121.031 − 121.031 − 121.031

Ä = 2 Ä = 2, 4

CMO NO Mmin FCI
LiH 0.9949 − 7.656232 − 0.300 − 0.247 − 0.454 − 0.454
(S=1) 1.3949 − 7.750976 − 0.235 − 0.232 − 0.280 − 0.280

1.7949 − 7.773036 − 0.270 − 0.271 − 0.290 − 0.290
2.1949 − 7.776973 − 0.288 − 0.289 − 0.303 − 0.303
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TABLE III. Values of correlation energies (in millihartrees) for linear species of 5 electrons in doublet and quartet states at several internuclear distances (R),
described at CI (seniority Ä) and FCI levels, in the basis sets: molecular (CMO), natural (NO), and that minimizing the seniority number (Mmin). In the BeH+

2
radical R stands for Be-H distance. Results correspond to standard STO-3G basis sets. Eref = energy(RHF/ROHF) (in Eh).

Ä = 1 Ä = 1, 3 Ä = 1, 3, 5

System R (Å) Eref CMO NO Mmin CMO NO Mmin FCI

BeH+
2 1.1987 − 15.154890 − 11.666 − 15.424 − 20.301 − 20.848 − 20.868 − 20.857 − 20.873

(S= 1
2 ) 1.3700 − 15.169193 − 13.855 − 19.124 − 23.700 − 24.403 − 24.434 − 24.421 − 24.437

1.7250 − 15.122389 − 20.609 − 31.453 − 35.765 − 36.402 − 36.445 − 36.446 − 36.450
2.7400 − 14.947166 − 79.968 − 100.049 − 100.215 − 100.536 − 100.539 − 100.539 − 100.540

BH+ 0.8714 − 24.412268 − 18.884 − 18.928 − 19.687 − 19.776 − 19.776 − 19.776 − 19.776
(S= 1

2 ) 1.2464 − 24.521517 − 28.494 − 28.068 − 31.558 − 31.684 − 31.684 − 31.684 − 31.684
1.7464 − 24.438312 − 47.027 − 41.218 − 69.980 − 70.022 − 70.022 − 70.022 − 70.022
2.2464 − 24.420022 − 59.389 − 59.345 − 62.020 − 62.022 − 62.022 − 62.022 − 62.022

Ä = 3 Ä = 3, 5

CMO NO Mmin FCI
BeH+

2 1.1987 − 14.950850 − 0.330 − 0.340 − 0.340 − 0.430
(S= 3

2 ) 1.5412 − 14.982740 − 0.460 − 0.470 − 0.470 − 0.590
2.0550 − 14.939650 − 0.490 − 0.500 − 0.520 − 0.640
2.7400 − 14.896900 − 0.280 − 0.290 − 0.300 − 0.430

internuclear equilibrium ones, in order to analyze the possi-
ble influence of the internuclear distances on the results. A
survey of the results in Table II shows a total coincidence of
the obtained numerical values in the NO and Mmin basis sets
for the singlet states (closed-shell systems), which are closer
to the FCI values than those obtained in CMO basis sets; how-
ever for the triplet states (open-shell states) the best behavior
is found in the Mmin basis sets. This performance is also found
in Table III, where the closeness to the FCI values follows the
sequence Mmin > NO > CMO, with notably higher correla-
tion energy absolute values in the Mmin bases for the doublet
systems. Similar comments apply to the results presented in
Table IV where (except the BeH2 singlet system at the short-
est internuclear distance) the Mmin basis sets markedly yield
the best results.

IV. CONCLUDING REMARKS

In this work, we have studied spin properties of CI wave
functions expanded in Slater determinants selected according
to seniority number criteria. We have proved that the wave
functions arising from this procedure are eigenfunctions
of the Ŝ2 operator with a defined spin quantum number S
and consequently they have no spin contamination, making
the seniority-number-based procedure an interesting option
within the CI approaches. The dimensions of the matrices
required for implementing this treatment at any seniority
level have been reported for the general case of systems with
a number of electrons N, any spin S and K orbitals in the basis
set. The convergence of the CI results to the FCI ones have
been tested in the very popular basis sets CMO and NO as

TABLE IV. Values of correlation energies (in millihartrees) for linear species of 6 electrons in singlet and triplet states at several internuclear distances (R),
described at CI (seniority Ä) and FCI levels, in the basis sets: molecular (CMO), natural (NO), and that minimizing the seniority number (Mmin). In the BeH2

molecule R stands for Be-H distance. Results correspond to standard STO-3G basis sets. Eref = energy(RHF/ROHF) (in Eh).

Ä = 0 Ä = 0, 2 Ä = 0, 2, 4 Ä = 0, 2, 4, 6

System R (Å) Eref CMO NO Mmin CMO NO Mmin CMO NO Mmin FCI

BeH2 1.0225 − 15.474345 − 16.139 − 16.561 − 15.069 − 16.827 − 16.839 − 26.262 − 26.330 − 26.330 − 26.330 − 26.330
(S=0) 1.3400 − 15.559404 − 18.598 − 19.014 − 30.733 − 19.410 − 19.440 − 35.197 − 35.455 − 35.455 − 35.455 − 35.455

1.6575 − 15.485359 − 25.364 − 26.055 − 47.798 − 26.775 − 26.882 − 54.319 − 54.961 − 54.961 − 54.961 − 54.961
2.1338 − 15.300586 − 46.579 − 50.883 − 89.471 − 53.895 − 56.054 − 108.127 − 111.861 − 111.861 − 111.861 − 111.861

BH 1.0324 − 24.730362 − 39.085 − 50.979 − 51.121 − 52.011 − 52.009 − 52.008 − 52.014 − 52.014 − 52.014 − 52.014
(S=0) 1.2324 − 24.752780 − 37.992 − 55.514 − 56.026 − 57.159 − 57.158 − 57.156 − 57.163 − 57.163 − 57.163 − 57.163

1.6324 − 24.695182 − 44.023 − 65.248 − 75.027 − 76.919 − 76.918 − 76.912 − 76.919 − 76.919 − 76.919 − 76.919
2.0324 − 24.604717 − 90.621 − 98.269 − 108.498 − 110.257 − 110.257 − 110.257 − 110.264 − 110.264 − 110.264 − 110.264

Ä = 2 Ä = 2, 4 Ä = 2, 4, 6

CMO NO Mmin CMO NO Mmin FCI
BH 1.0324 − 24.739304 − 15.161 − 15.149 − 15.319 − 17.612 − 17.612 − 17.612 − 17.612
(S=1) 1.2324 − 24.747861 − 20.180 − 20.111 − 20.785 − 23.488 − 23.488 − 23.488 − 23.488

1.4324 − 24.716764 − 27.310 − 26.910 − 29.359 − 32.451 − 32.451 − 32.451 − 32.451
1.8324 − 24.620833 − 42.675 − 30.184 − 62.242 − 65.154 − 65.154 − 65.154 − 65.154
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well as in the recently proposed bases in which the FCI wave
functions reach a minimum seniority number value. The
results found in atomic and molecular systems indicate that,
for restricted CI spaces according to the seniority number,
the Mmin bases more often lead to energy values closer to
the FCI ones than those provided by the more traditional
bases. These results also suggest that the rate of convergence
towards FCI value can be optimized by working in the orbital
basis in which the corresponding CI wave function reaches
its minimum seniority number value.
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