
Accepted Manuscript

Ab initio study of the role of defects on the magnetic response and the structural,
electronic and hyperfine properties of ZnFe2O4

J.J. Melo Quintero, K.L. Salcedo Rodríguez, C.E. Rodríguez Torres, L.A. Errico

PII: S0925-8388(18)33748-4

DOI: 10.1016/j.jallcom.2018.10.082

Reference: JALCOM 47900

To appear in: Journal of Alloys and Compounds

Received Date: 23 July 2018

Revised Date: 27 September 2018

Accepted Date: 8 October 2018

Please cite this article as: J.J. Melo Quintero, K.L. Salcedo Rodríguez, C.E. Rodríguez Torres, L.A.
Errico, Ab initio study of the role of defects on the magnetic response and the structural, electronic and
hyperfine properties of ZnFe2O4, Journal of Alloys and Compounds (2018), doi: https://doi.org/10.1016/
j.jallcom.2018.10.082.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jallcom.2018.10.082


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Ab initio study of the role of defects on the magnetic response and the structural, 

electronic and hyperfine properties of ZnFe2O4. ` 

 

J. J. Melo Quintero1, K. L. Salcedo Rodríguez1, C. E. Rodríguez Torres1, and L. A. 

Errico1,2. 

 

[1] Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La 

Plata (UNLP) and Instituto de Física La Plata, IFLP-CONICET CCT-La Plata, 1900, La 

Plata, Argentina.  

[2] Universidad Nacional del Noroeste de la Provincia de Buenos Aires 

(UNNOBA), Monteagudo 2772, 2700 Pergamino, Buenos Aires, Argentina. 

 

 

In this work the effects of defects (oxygen vacancies, cationic inversion) on the structural, 

electronic and the magnetic response of the spinel ZnFe2O4 (ZFO) are studied by using a density 

functional theory (DFT) based ab initio method (the Full-Potential Linearized Augmented Plane 

Waves plus Local Orbitals, LAPW+lo) on the framework of the Generalized Gradient 

Approximation plus U (GGA+U) level. The changes induced by the defects in the hyperfine 

interactions at the Fe sites of the structure are also presented. In order to discuss the magnetic 

ordering and the electronic structure of the system we considered different spin arrangements. 

We found that, similar to the normal and pristine case, reduced and partially inverted ZFO 

presents an energy landscape characterized by a large number of metastable states. Our 

calculations successfully describe the hyperfine properties (isomer shift, magnetic hyperfine 

field and quadrupole spliting) at the Fe sites that are seen by Mössbauer Spectrocopy (MS) at 4 

and 300 K, enabling us to characterize the local structure around Fe atoms. Our LAPW+lo 

predictions also demonstrate the relevance of both oxygen vacancies and antisites (cationic 

inversion) in the formation of local ferromagnetic coupling between Fe ions, giving rise to a 
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ferrimagnetic ordering in an otherwise antiferromagnetic compound. This results support 

conclusions based in experimental results obtained in x-ray magnetic circular dichroism and 

magnetization measurements performed on zinc ferrites with different cation distributions and 

oxygen vacancy concentrations reported in the literature. 

 

 

2. Introduction 

Transition-metal oxides exhibit an incredibly wide variety of behaviours. They can be 

insulators, semiconductors or metals and present properties such as ferroelectricity, magnetism 

or superconductivity. Different types of defects (vacancies, antisites, structural distortions, 

surface effects, substitutional or interstitial impurities, among others) play a fundamental role in 

the origin of these properties and behaviours. Then, understanding the relation defect-properties 

is fundamental for the development of new functionalities, for example spintronics [1-3]. The 

main goal in this field is to obtain materials that can be semiconducting and ferromagnetic at 

room temperature and integrate them into heterostructures that could be used as spin valves and 

spin filters. 

Within the set of oxides that have been considered for their possible application in 

spintronics, ferrites (MFe2O4) have emerged as a very interesting possibility [4, 5]. Ferrites 

crystallize in the spinel face-centered cubic structure and are characterized by an atomic 

arrangement of two sites for the cations: sites A (tetrahedral oxygen coordination) and sites B 

(octahedral oxygen coordination) [6]. Two types of ferrites can be distinguished, normal and 

inverted. In the first case, the M ions occupy the A sites and the Fe ions occupy the B sites. In 

the case of the inverted ferrites, the A sites are populated by Fe ions and the M and Fe ions 

occupy the B sites in the same proportion. There are also cases of partial inversion. The 

magnetic coupling in ferrites is governed by super-exchange between the metal cations via 

oxygen atoms, resulting in A-O-A, B-O-B and A-O-B couplings [7, 8]. Then, the magnetic 

properties of ferrites strongly depend on the cation distribution in both sub-lattices [8].  
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Among the ferrite group, Zn ferrite (ZnFe2O4, ZFO) is of particular interest not only in 

basic research but also due to their extensive technological applications [9-16]. ZFO ferrite is 

used for the fabrication of magnetic materials [14, 17] and has an important role as absorbent in 

desulphurization process [18] and due to their capability to absorb visible light and its high 

efficiency, ZFO is a promising photo-catalyst semiconductor for various processes such as 

photo-induced transformer, photo-electrochemical cells and photochemical hydrogen production 

[19-22]. 

 In basic research, the underlying magnetism of ZFO has been of interest over the last 

four decades [23-32] and several studies were performed using a large variety of experimental 

techniques until now. In cases where M is a non-magnetic metal (Zn, for example) and normal 

ferrites (as in the case of ZFO) the Fe ions occupy solely the B sites and only B-O-B interactions 

occur. Since the magnetic coupling between the Fe atoms on the B-sublattice is weak, ZFO is 

widely identified as an antiferromagnet with a Néel temperature (TN) around 10 K. But the 

situation is not so simple. Neutron diffraction experiments [23, 26] demonstrated that the 

ground state of ZFO is characterized by a complex antiferromagnetic spin structure and is 

susceptible to geometrical frustration [24, 25, 27], a fact that can give rise to a variety of 

fundamental magnetic states such as ferrimagnetism, local spin canting, and glassy magnetic 

behaviours [29, 33-36]. In this sense, Schiessl et al. [23] performed extensive studies (using 

neutron diffraction and other techniques) on the magnetic properties of ZFO. They found that 

below 10 K a short and a long range orders coexist. Yamada et al. [25] and Usa et al. [27] 

claimed that ZFO remains magnetically disordered even at temperatures as low as 1.5 K and 

suggest that the long-range magnetic order is driven by quenched atomic disorder, allowing the 

interpretation of ZFO as an intrinsically frustrated spin system. Field cooled and zero-field 

cooled DC magnetization experiments [29] suggest that ZFO presents a spin-glass phase at low 

temperatures and Yamada et al. [25] and Tomiyazu et al. [37] proposed a molecular spin model 

for the ground state of ZFO that is consistent with the neutron scattering data [26]. 

In the previously mentioned studies bulk samples and a normal structure for ZFO was 

assumed. Indeed, rarely ZFO can be obtained in a pure normal state but somewhat inverted. 
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Depending on the method and growth conditions of the sample [7, 38, 39, Ref. 5 and references 

therein], or when the characteristic lengths of the sample are reduced to the nanoscale [32], 

meta-stable phases can be formed with a disordered arrangement of Zn and Fe in sites A and B. 

In consequence, depending on the synthesis method or the dimensions of the sample, changes in 

the Fe-Fe interactions (and therefore in the magnetic response of the system) can occur. As an 

example, Pandey et al. [32] and Jesus et al. [33] showed that thin films or ZFO-nanoparticles 

present ferromagnetic behaviour at high temperatures. This result was attributed to cationic 

inversion [40]. Stewart et al. [41] demonstrated by X-Ray Absorption Near Edge Spectroscopy 

(XANES), magnetic circular dichroism (XMCD) and Mössbauer spectroscopy (EM) that ZFO 

nanoparticles that present cationic inversion exhibit ferrimagnetism at room temperature and 

concluded that the cationic inversion (and not necessarily the size-effects) is the factor that 

modifies the long-range magnetic order and increases the magnetic moment of the system. 

Similarly, Nakashima et al. [39] reported the effects of cationic inversion on the XANES 

spectra of ZFO films deposited by sputtering. From the comparison of the experimental XANES 

spectra and those obtained by means of ab initio calculations, they inferred the presence of some 

degree of inversion in their samples. In addition, through successive thermal treatments, 

observed that the inversion-degree decreased while the magnetic behavior changes from an 

antiferromagnetic to a spin-glass. This effect was associated to the dominating interaction (A-O-

A, A-O-B, A-O-A) for a given inversion-degree.  

The oxygen concentration also seems to be crucial for the magnetic response of ZFO 

since samples grown under low oxygen pressure show a large magnetic response at room 

temperature [26, 42, 43]. Rodríguez Torres et al. [5] studied how the variation of oxygen 

pressure during the growth process of ZFO films modifies its magnetic response. By means of 

XMCD experiments and ab initio calculations they have proved that the formation of oxygen 

vacancies can be at the origin of the ferrimagnetic response of ZFO. This result is in agreement 

with those found for other transition-metal oxides in which ferromagnetic coupling between 

cations can be associated to the presence of a sufficiently high concentration of oxygen 

vacancies in a certain region of the material [44, 45]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
From the theoretical point of view, realistic theoretical studies of ZFO (besides those 

previously mentioned) are scarce and in general have been limited to study structural and 

electronic properties for the case of the pristine and normal structure. We must cite here the ab 

initio study performed by Ching Cheng [46], in which the author predicts that normal ZFO 

presents topological frustration and that the system will remain in a paramagnetic state still at 0 

K. More recently, some of us presented an ab initio study of the structural, electronic and 

magnetic properties of pristine ZFO [47].The calculations revealed that the energy landscape of 

ZFO is characterized by a large number of closed local energy minima, pointing to a spin-glass 

behavior. Studies of defective ZFO are even scarce. We can cite the work of Jinhuan Yao et al. 

[48] that reported the effect of Zn-, Fe- and O-vacancies on the structural and electronic 

properties of ZFO.  

As a conclusion, the knowledge of the structure of ZFO at the microscopic level is 

limited and the spin configuration of ZFO remains unclear. Other open question is whether the 

ferrimagnetic response of ZFO can be attributed to the inversion degree or also to defects such 

as oxygen vacancies and how the cation inversion (antisites) is influenced by an oxygen 

vacancy. In order to unravel these questions, in this work we will present an ab initio study of 

the role of defects (oxygen vacancies and antisites) on the structural, electronic, magnetic and 

hyperfine properties of bulk ZFO. We will study the relationship between magnetic response 

and the type and concentration of defects, showing that cationic inversion and oxygen vacancies 

play a fundamental role in the origin of ferromagnetic regions in ZFO, giving rise to a 

ferrimagnetic response of the system.  

This paper is organized as follows. In section 2 we will present the detail of the 

calculation method. In section 3 we will discuss our results for the defective (reduced) system 

ZnFe2O4-δ. In section 4 the effect of cationic inversion on the structural, electronic and magnetic 

properties of ZFO considering different inversion-degrees will be presented. In section 5 the 

effect of combined oxygen vacancies and cationic inversion will be discussed. Finally, in 

section 6 the conclusions will be presented. 
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2. The system under study, computational method and hyperfine parameters. 

ZFO ferrite crystallize in a face-centered cubic lattice with a close-packed arrangement 

of oxygen ions (spinel structure, space group Fd3m (Oh7)), with Zn and Fe ions at two different 

crystallographic sites (sites A and B, Ref. 49). These A and B sites have O4 (tetrahedral) and O6 

(octahedral) oxygen coordination, respectively. ZFO adopts the normal spinel structure.  In this 

normal structure the Zn atoms are located at tetrahedral A-sites (Wyckoff position 8a (1/8, 1/8, 

1/8)), whereas the Fe atoms (which carries a magnetic moment due to the partially filled 3d 

shell) occupy the octahedral B-sites (16d, (1/2, 1/2, 1/2)). The O atoms are at 32e (u,u,u) 

positions of the f.c.c. structure (u= 0.258 [50] for the -3m origin). Different values of the lattice 

parameter a have been reported for ZFO ranging from 8.43 to 8.46 Å [23, 50-53]. The Fe-O and 

Zn-O bond lengths are 2.04 and 2.00 Å, respectively.  

Our goal here is to calculate the structural, electronic, magnetic and hyperfine properties 

of ZFO within density functional theory (DFT, 54-56). For the exchange and correlation 

functional we employed the Wu–Cohen parameterization of the generalized gradient 

approximation (GGA) [57]. To better describe the 3d-levels of Fe and Zn a Hubbard U term 

(GGA+U) in the self-interaction correction (SIC) scheme was included [58]. In this study we 

took U=5 eV for the3d-Fe and 3d-Zn orbitals [47]. 

For solving the scalar-relativistic Kohn–Sham equations, we have used the augmented plane 

waves+local orbital (LAPW+lo) method [56, 59, 60] as implementedin the WIEN2K package 

[61]. In this method, the wave-functions are expanded in spherical harmonics inside non-

overlapping atomic spheres (muffin-tin spheres) of radius RMT and in plane-waves in the 

remaining space of the unit cell (the interstitial region). The RMT used for Zn and Fe were 1.06 Å 

and for the oxygen atoms the RMT value employed were 0.8 Å. The plane wave expansion of the 

wave function in the interstitial region was truncated at Kmax=7/Rmin
MT (Rmin

MT is the minimum 

muffin-tin radius). We introduced local orbitals to better describe O-2s, Fe-3p and Zn-3p 

orbitals [61]. A very-well converged k-mesh of 50 k-points in the irreducible part of Brillouin 

zone was used. In all cases, atomic positions were relaxed until the forces were below 1meV/Å. 
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By examining the effect of different basis sets and k-point samplings we conclude that 

for Kmax=7/Rmin
MT  and 50 k-points numerical errors are negligible and our results are converged 

in 2% or less, giving confidence to our conclusions. In particular, energies differences are 

converged in the order of 1meV per unit formula (for a detailed description of our convergence 

tests see Ref. 47). 

Similar to the case of pristine ZFO reported in Ref. 47, we have considered in our study 

several spin configurations that include the ferromagnetic case, different antiferromagnetic spin 

arrangements and some ferrimagnetic configurations. Most of these magnetic configurations 

present a symmetry that is smaller than the crystal space group. For these reason a cubic super-

cell (SC) that contains 56 atoms was constructed from the 14-atoms primitive cell in order to 

describe all the magnetic structures. These spin configurations are listed in Table 1. The spin 

arrangement called AF1 is formed by spin chains with two orientations crossing each other 

along the lattice. The second structure (AF2 in the following) consists of a pair of spins aligned 

ferromagnetically but antiferromagnetically to another pair from the nearest layer. The other 

spin-arrangements (AF3, AF4, AF5) consist of random distributions of 8 Fe atoms with positive 

spins and 8 Fe atoms with negative spins in the 16 B sites of the structure. 

To conclude this section, we briefly resume the calculation of the hyperfine parameters 

of interest for this work. Nuclear techniques, such as Mössbauer Spectroscopy (MS),have the 

“ability” to measure charge-symmetry related properties, such as the electric field gradient 

(EFG) tensor, as well as magnetic properties, such as magnetic hyperfine fields (BHF), making 

it possible to obtain a characterization of the electronic and magnetic configuration near and at 

the probe nucleus [62, 63]. In this work we will compared our calculations with three 

experimentally determined parameters: the isomer shift (IS), which provides information on the 

local chemical bond, the quadrupole splitting (QS), which is a “fingerprint” of the local 

symmetry around the probe nucleus and the BHF, an observable that is directly related to the 

magnetic configuration and the spin polarization near and at the probe nucleus. The IS is given 

by [62, 63]: 
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IS = α(ρA− ρR)   (1) 

 

where ρA and ρR stand for the electron charge densities at the nuclear positions in two different 

solid state environments, the absorber (A) and the reference (R, B.C.C.-Fe), respectively. α is a 

calibration constant with a value 0.27 a.u.3/mms for the 14 keV excited state of 57Fe [47]. 

 The QS is originated by the interaction of the nuclear quadrupole moment with the 

crystalline electrostatic potential. For the case of the I=3/2, 14.4 KeV excited state of 57Fe, the 

QS is given by [62, 63]: 
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the asymmetry parameter. In the above equations e is the elementary charge and Q is the nuclear 

quadrupole moment of the 14 keV excited state of the 57Fe Mössbauer-probe nucleus [62]. VXX, 

VYY and VZZ are the principal components of the diagonal EFG tensor in a coordinate system 

with the convention |VXX| ≤|VYY| ≤|VZZ|, being Vii the second derivative (with respect to the 

spatial coordinates) of the Coulomb potential V(r) created by the charge density surrounding a 

given nucleus. The Vii components can be determined straightforwardly once the total charge 

distribution has been accurately calculated. 

 Finally, the BHF will be calculated using the model proposed by Novak and Chlan [64]. 

In this model, the spin magnetic moments of the Fe-3d (µ3d) and the Fe-4s (µ4s) electrons are 

obtained and BHF is expressed as their linear combination:  

 

BHF=a µ3d +b µ4s   (4) 
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With a=16.92 T/µB and b=1229 T/µB [64]. 

 

3. Results. 

3.1. Pristine ZFO. 

Initially, for a simple comparison with the results that we will discuss in the next 

sections, we will briefly report the results obtained for bulk ZFO. For a detailed discussion of 

these results see Ref. 47.  

For pristine ZFO, the lowest energy configuration corresponds to the antiferromagnetic 

configuration AF2 (see Table 1) [47]. For this arrangement our calculations predict a=8.46 Å, 

u=0.260, a band gap in the order 2.0 eV and magnetic moments at the Fe sites, µ(Fe), of ±4.20 

µB (no spin polarization was found at the Zn sites, while the magnetic moment at the oxygen 

atoms is smaller than ±0.05 µB). These theoretical results are in excellent agreement with the 

experimental ones (see Refs. 23, 50-53, 65). Concerning the hyperfine parameters, the 

LAPW+lo calculations predict that all the antiferromagnetic configurations present similar 

hyperfine parameters (BHF in the order of 51 T, IS of 0.38 mm/s and QS in the order of 0.20-

0.24 mm/s). For the ferromagnetic configuration, a smaller BHF is predicted by LAPW+lo (48.5 

T) and a larger QS value (0.28 mm/s). The IS value is 0.39 mm/s. These results are in excellent 

agreement with the experimental ones [23, 47]. All these results will be the base-line in our 

study of the role of the defects in the different properties of ZFO. For all the magnetic 

configurations the energy required to flip one spin resulted to be ∆E=EAFi-Eflip= -10 

meV/formula unit (f.u.), being EAFi the energy of a given antiferromagnetic configuration.  

 

 

3.2. Oxygen vacancies (ZnFe2O4-δ).  

In order to study how an oxygen vacancy affect the structural, magnetic and hyperfine 

properties of ZFO and the role that it plays in the magnetic response of the system we use the 56 

atoms SC´s previously described removing an oxygen atom (δ=0.125, a vacancy concentration 
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of 3%) and taking into account the volume changes and the structural distortions induced by the 

oxygen vacancy.  

From the study of the total energy as a function of the lattice constant a (see Fig. 1) we 

found that the lowest energy states correspond to the antiferromagnetic cases and, for all 

antiferromagnetic configurations studied here, the lowest energy corresponds to the AF2 spin 

arrangement. As can be seen in Table 2, the energy differences between configurations AF2, 

AF3, AF4 and AF5 (that also consist of parallel spin clusters) are very small, close to our 

convergence error. This result show that the energy landscape of reduced ZFO is, similar to the 

results found for stoichiometric ZFO, complex and characterized by a number of very closed 

local energy minima, 

Independently of the spin configuration considered, the oxygen vacancy induces a small 

enlargement of the volume cell (the lattice parameter is increased from 8.46 Å for the pristine 

system to 8.47 Å for the reduced case. Differences in the a values for the different spin 

configurations are smaller than the precision error). This result is in clear contradiction with 

those obtained by J. Yao et al. [48], who predicted a=8.204 Å. This result raises many doubts, 

since the same authors and using the same method of calculations reports a=8.274 Å for pristine 

ZFO [66], in very bad agreement with the experimental results [23, 49-53]. We have to mention 

here that in both works the authors employed a pseudopotential method in the framework of the 

GGA approximation. It is well-known that the exchangeand correlation effects included in GGA 

are insufficient to describe 3-d transition oxides and in ZFO ferrite in particular [47], Also spin-

polarization was not considered by J. Yao et al. in their calculations.  

The oxygen vacancy also induces a strong structural relaxation of the atomic positions in 

the SC. Due to the highly ionic character of the ZFO crystal, the Fe nearest neighbors to the 

vacancy site repel each other and leave a big “hole” in the place of the vacancy. Depending on 

the spin arrangement, these Fe atoms are displaced as much as 0.15 Å away from their original 

positions. Particularly, for the AF2 configuration the distance Fe-vacancy site are enlarged from 

2.04 Å to 2.10 Å (for two of the Fe neighbors, Fe1 and Fe2 in Fig. 2) and 2.13 Å (for the third 

one, Fe3 in Fig. 2). The next-nearest Fe atom (Fe4), originally located at 3.53 Å, is essentially 
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not affected by the presence of the oxygen vacancy (after the structural relaxation, the vacancy 

site distance is 3.54 Å). 

 After the determination of the lower energy configuration, we can discuss the results for 

electronic and magnetic properties. Initially, we study the stability of ZFO with an O-vacancy 

through the vacancy formation energy (Evac) defined as: 

 

Evac = EAF2+vac - EAF2 + µ(O) 

where EAF2+vac and EAF2 are the total energies of the AF2 configuration with one oxygen vacancy 

and stoichiometric ZFO respectively and µ(O) is the chemical potential of the oxygen atom. 

Assuming that µ(O) is the half of the total energy of an oxygen molecule (calculated with the 

same precision that the energy of stoichiometric and reduced ZFO), the vacancy formation 

energy resulted to be +7.8eV, indicating that O-vacancy in ZFO cannot be formed 

spontaneously. However, depending on the method and growth conditions of the sample [5, 7, 

38, 39, and references therein], physical conditions can induce the formation of reduced ZFO. 

At this point, we study the possibility to flip one spin but now in presence of an oxygen 

vacancy. To do this, total energies calculations were performed flipping the spin of one Fe atom 

of the SC from positive to negative (or negative to positive) for the different spin 

configurations. We found that the flip is more favorable (less energy required) in the case of the 

spin configuration AF2 and when Fe1 or Fe2 atoms are changed from positive to negative. For 

this new spin arrangement (FERRI3 in the following) all the magnetic moments are the same, 

with the exception of Fe1 that changes from +4.0 µB to -4.0 µB, giving raises to a cell with a 

lattice parameter a=8.47 Å, a net magnetic moment of -8.0 µB (0.5 µB/Fe atom in the cell) and a 

region with three spin with parallel alignment, see Fig. 2. It is important to note that the energy 

difference ∆E=EAF2-EFERRI3 is -1 meV/u.f.(see Table 2). This energy difference is in the order of 

our convergence error, so the AF2 and the FERRI3 configurations can be considered as 

degenerate solutions. In consequence, the lowest energy configuration of reduced ZFO could be 

antiferromagnetic or ferrimagnetic. This result is in agreement with the experimental ones 

reported by Rodríguez Torres et al. [5] who demonstrated (by means of XMCD and 
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magnetization measurements) the relevance of oxygen vacancies in the formation of local 

ferromagnetic coupling between Fe ions at octahedral sites in zinc ferrites thin films. This 

coupling gives rise to a ferrimagnetic ordering with a Curie temperature above 300 K. Our 

results are also in agreement with experimental and theoretical works [44, 45, 67] that probed 

that an adequate concentration and distribution of oxygen vacancies could play a fundamental 

role in the magnetic response of otherwise non-magnetic oxides.   

  The oxygen vacancy also produces changes in the electronic populations in the Fe 

muffin-tin spheres.  Based in a Bader analysis [68] we found that the oxygen vacancy induces 

an increment in the charge in its Fe nearest neighbors. For the case of the lowest energy 

configurations (AF2 and FERI3) the charge in the muffin-tin spheres of Fe1 and Fe2 increase 

from 23.695e to 23.766e. For Fe3, the charge in its muffin-tin spheres is 23.903e (the charge of 

the other atoms of the SC remains unaltered). These changes are reflected in the Fe-magnetic 

moments. For the case of the Fe atoms close to the vacancy, magnetic moments of +4.0 µB (Fe1 

and Fe2) and -3.6 µB (Fe3) were found. All the other Fe atoms of the cell present magnetic 

moments of ±4.2 µB, as in the case of the stoichiometric structure. Additionally, spin 

polarization in the order of ±0.1 µB at the O sites is predicted (the Zn atoms remains non-

polarized). These changes in the magnetic moments of the Fe atoms close to the vacancy site are 

also predicted for the other antiferromagnetic and the ferromagnetic configurations studied here.  

The changes in the band structure of ZFO induced by the oxygen vacancy can be 

visualized in the density of states (DOS) presented in Fig. 3. The formation of an oxygen 

vacancy produce a displacement of the Fermi level towards the conduction band and partially 

occupied vacancy-levels appears in the band gap of ZFO. These states have mainly Fe1-, Fe2- 

and Fe3-3d and O-2p character, and are spatially located at these atoms. 

 The structural and electronic changes induced by an oxygen vacancy in ZFO will be 

also reflected in the hyperfine parameters at the Fe sites, magnitudes that can be directly 

measured in MS experiments. The comparison of experimental results and ab-intio calculated 

hyperfine parameters can be used to determine the local structure around a probe site (Fe in the 

present case), as it was demonstrated in Ref. [69]. In Fig. 4 we present our predictions for the IS, 
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QS and BHF at the Fe sites of the 56-atoms SC of ZnFe2O4-δ obtained for the lowest energy spin 

configurations, i.e., AF2 and FERRI3. For the case of the configuration AF2, the IS at two of 

the three Fe atoms neighbors of the oxygen vacancy (Fe1 and Fe2) increases up to 0.47 mm/s 

and the IS at the other neighbor (Fe3 site) grows up to 0.87 mm/s. This changes in the IS 

indicates a transition from Fe+3 to Fe+2 oxidation state, in agreement with the increment in the 

electronic charge of  the Fe atoms that surrounds the vacancy site. Similar results were obtained 

for the configuration FERRI3, but in this case the IS at the Fe1 site is also in the order of 0.87 

mm/s. In consequence, the effect of the oxygen vacancy is to increase the average IS to 0.44 

mm/s (0.40 mm/s for the pristine structure). In the case of the BHF, for both AF2 and FERRI3 

spin configurations the formation of an oxygen vacancy induce a reduction in the magnitude of 

the hyperfine field at the sites Fe1, Fe2, and Fe3, while for the other Fe sites (far away from the 

oxygen vacancy site) the BHF is very similar to those predicted for the pristine structure (see 

Fig. 4). As a consequence of the presence of the oxygen vacancy, and the structural and 

electronic distortion induced by it, an increment of the QS at the Fe atoms nearest neighbours of 

the vacancy site is predicted (see Fig. 4) for both AF2 and FERRI3 spin configurations.The QS 

for the Fe atoms far away from the oxygen vacancy are similar to those predicted for the pristine 

system, being the average value of the QS= 0.25 mm/s.  

Resuming, the overall, effect of an oxygen vacancy in the hyperfine properties at the Fe 

sites of reduced ZFO is to increase the average values of the IS and QS, and a reduction of the 

average BHF value. These conclusions were obtained for the case of one vacancy in the SC. 

When more than one oxygen vacancy in the SC is considered, the average IS, BHF and QS will 

depend on the concentration and distribution of vacancies in the cell, but calculations performed 

including two oxygen vacancies and different locations in the SC reveals that the general 

conclusions presented here are still valid.             

Finally, we also study the case of two oxygen vacancies in the supercell (δ =0.25). We 

found that the oxygen vacancies repel each other, being the lowest energy configuration those 

that corresponds to one oxygen vacancy far away from the other. None of the conclusions 

obtained for δ=0.125 are modified when this second oxygen vacancies is introduced. Lattice 
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parameters, the DOS, and the magnetic moments follows the same trends previously discussed. 

Concerning the magnetic ordering, a ferrimagnetic spin arrangement in which one Fe atom close 

to one of the oxygen vacancy and one Fe atom close to the second one change it spin 

orientations have an energy that differs in about 1 meV/u.f from those of ANTI2 (degenerate 

solutions). This ferrimagnteic configuration has a net magnetic moment of 15.0 µB per unit cell 

(0.95 µB/Fe atom). 

 

 

3.3. Antisites (cationic inversion), (Zn1-αFeα)[ZnαFe2-α]O4.  

The second defect studied was the antisites (cationic inversion), that consists in the 

swapping between Fe and Zn atoms, as shown Fig. 5. Partially inverted ferrites can be described 

as (M1-αFeα)[MαFe2-α]O4 where round and square brackets denote A and B sites, respectively and 

α is the inversion parameter.α=0 correspond to a normal ferrite, α=1 to inverted ferrites and 

intermediate values of α corresponds to partially inverted systems.   

 We study here the two limit cases: α=0.125 (partially inverted ZFO, one Fe at A-site and 

one Zn at the B-site) and α=1 (inverted ZFO, the 8 sites A occupied by Fe atoms and 8 Fe and 8 

Zn atoms at the B sites). In both cases, different questions must be answer prior to any 

discussion. For the partial inversion case (α=0.125) first question concerns the preferred 

distance between the Fe and Zn atoms involved in the inversion. So we perform calculations 

swapping one Zn atom with one of it first neighbor Fe atom (Fe-Zn distance of 3.5 Å) and 

secondly we swap one Fe atoms and one Zn atom that are far away each other. Total energy 

calculations indicated that the lower energy correspond to the case in which one Fe atom is 

swapped with one of its Zn nearest-neighbours. We will use this configuration in the following 

studies of partially inverted ZFO. 

The second question is the spin orientation of the Fe atom at the A site. So, we performed 

calculations considering the AF2 spin configuration and two possible scenarios:  
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i) One Fe atom with positive spin is swapped with a Zn atom keeping its original spin 

orientation, see Fig. 5b.   

ii) Same as i), but now the spin orientation of the Fe atom located at the A-site is 

changed to negative. 

 

In case i), the magnetic moment of the Fe atom at the A-site (FeA) is +4.2 µB, the same value that 

we obtained for Fe at the B-sites in the pristine structure. The Fe atoms that remain at the B-sites 

present magnetic moments of +4.2 µB (seven Fe atoms) and -4.2 µB (eight Fe atoms). O atoms, 

the Zn atoms at A-site and the Zn atom located at the B-site (ZnB) are not spin-polarized. In 

consequence, the total magnetic moment of the cell is null and the system is still 

antiferromagnetic. However, as we will discuss below, the inversion promotes the flip of other 

Fe in B site then, a ferrimagnetic configuration will has the lower energy. In case ii), the 

predicted value of the magnetic moment of FeA is -4.2 µB. The magnetic moments of the Fe 

atoms that remain at the B-sites, the O atoms and the Zn atoms are not affected by the change in 

the spin orientation of FeA. In consequence, the resulting system is ferrimagnetic (a net magnetic 

moment of -8.5 µB per unit cell). Comparing energies of cases i) and ii) we found that the lowest 

energy corresponds to the antiferromagnetic system (case i). 

In the case of the inverted system, all the 8 A-sites of the structure are occupied by Fe atoms 

and 8 Fe and 8 Zn occupies the 16 B-sites of the SC. The question that appears here is the 

distribution of the Fe and Zn atoms in these 16 sites. From the study of different distributions 

we conclude that the lowest energy structure correspond to the case in which the 8 Fe with spin 

+ in Table 1, AF2 configuration, are swapped with the Zn atoms, the 8 Fe atoms with spin - 

remains in its sites and the Zn atoms occupy the remaining B-sites. For this structure, the 

magnetic moments of Fe at A- and B-sites are +4.2 µB and -4.2 µB, respectively, and therefore 

the net magnetic moment of the cell is null. 

After these previous studies, we can discuss the effect of antisites on the different properties 

and the magnetic response of ZFO. The equilibrium lattice parameter a for the partially inverted 

and the inverted structures were found to be 8.45 and 8.44 Å, respectively, see Fig. 6. These 
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results imply that inversion induce a small volume reduction when comparing to the normal 

case (a=8.46 Å). This reduction of the volume cell as a function of the increasing inversion 

degree is in perfect agreement with the results reported by M. Niyaifar [70], who found that 

when the inversion degree increases from α=0.0375 to α=0.16, the lattice parameters diminishes 

from 8.452 Å to 844 Å. Also, the antisite induces local geometrical distortions in the ONN 

coordination-spheres of FeA and ZnB (the magnitude of the structural distortions rapidly 

decreases for atoms located beyond the ONN spheres of FeA and ZnB). FeA induces a contraction 

of the Fe-ONN bond-lengths. On the other hand, ZnB induces an enlargement of the Zn-ONN, see 

Table 3. The magnitudes of these structural distortions are nearly independent of the degree of 

inversion, and properties like magnetic moments or charge in the atomic spheres are nearly 

independent of the structural distortions.     

An important result is that the normal structure has lower energy than the inverted or the 

partially inverted ones (see Fig. 6), in agreement with the literature that affirms that ZFO is a 

normal spinel [10]. By comparison of the energies of the normal and partially inverted 

structures we can obtain that 85 meV/u.f. is the energy necessary to exchange a Fe atom with 

one of its Zn neighbors.  

With these results, we return to the ferromagnetic and the five antiferromagnetic 

configurations. In Table 4 we present the results obtained for the energy of each spin 

arrangement for the partially inverted structure. As in the other cases previously studied, the 

lowest energy configuration corresponds to the AF2 one, but now AF3, AF4, AF5 and AF2 

differs in less than 3 meV/u.f., an energy difference that is close to our precision error. Similar 

results were obtained for the case of the inverted structure. Similar to the previous cases, we 

also study the energy necessary to flip one spin from positive to negative (or from negative to 

positive), flipping the spin of different Fe atoms.  From these studies we found that the lowest 

energy case corresponds to the flip of a Fe spin (initially with positive spin, Fe5 in Fig. 5) that is 

a first next nearest neighbor of the FeA atom (FeA-Fe5 distance of 3.53 Å). When the spin of Fe5 

is flipped, the magnetic moment of Fe5 changes from +4.2 µB to -4.2 µB and the resulting system 

(that we will call FERRI4) has a lattice parameter of 8.45 Å and a net magnetic moment of -10.0 
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µB per unit cell (0.62 µB/Fe atom). More interesting, the energy difference ∆E=EAF2–EFERRI4is +6 

meV/u.f., see Table 4. This positive energy difference implies that the solution with a net 

magnetic moment is energetically favorable. In this spin arrangement a cluster of three Fe atoms 

with parallel spins is formed, showing that the inversion (even a small degree of inversion) 

could play a fundamental role in the ferrimagnetic response of ZFO as it was suggested in Ref. 

41.  

We can understand the preference of Fe5 atom to change its spin from positive to negative 

with a simple model for the super-exchange interaction. FeA and Fe5 present parallel alignment 

in the AF2 configuration and both atoms are linked by an oxygen atom, forming a FeA-O-Fe5 

path. The bond-lengths FeA-O and Fe5-O are 1.98 and 2.01 Å, respectively, and forms an angle 

of 130º. In this geometric configuration the favorable configuration of both Fe is antiparallel 

[26, 71] and in consequence the system reaches the lowest energy when one of the Fe atoms 

change its spin orientation. 

In Fig. 7 we present the DOS of partially inverted and inverted ZFO. As can be seen, the 

system is still a semiconductor upon inversion, but the band gap is reduced to 2.1 eV (a 

reduction of 0.1 eV comparing with the pristine case). All the general features of the DOS are 

very similar to those previously discussed for pristine ZFO [47] and are nearly independent of 

the spin configuration. 

 Concerning the hyperfine parameters, the IS at the 15 Fe-atoms located at B-sites is the 

same that those of pristine ZFO (0.38 mm/s), while FeA present a smaller IS (0.30 mm/s), see 

Fig. 8. This result (IS for Fe atoms at sites A 0.08 mm/s smaller than that of Fe atoms at sites B) 

does not depend on the inversion degree and neither the spin configuration. This means that the 

average IS over the entire 56-atoms SC will be 0.375 mm/s in the case of one inversion or 0.34 

mm/s in the case of the inverted ZFO. Similarly, the BHF at Fe atoms located at B-sites is very 

similar to those obtained for pristine ZFO, while BHF at FeA is 2 T smaller (see Fig. 8). In the 

case of the QS, FeA is characterized by QSA=0.23 mm/s while a QS distribution was found for Fe 

at sites B, with an average QS of 0.33 mm/s and width of 0.09 mm/s. 
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 At this point, we can compare our predicted results with experimental ones. Lima et. al. 

[72] and Isfahani et al. [73] and performed MS experiments at 4K in ZFO nanoparticles. By 

applying an external magnetic field the contributions of Fe located at both cationic sites could 

be resolved. As can be seen in Table 5, our ab initio predictions for the IS and BHF are in 

excellent agreement with the experimental results. We can also compare our ab initio 

predictions with MS experiments performed at 300 K using ZFO nanoparticles samples with a 

known degree of inversion [70]. Experimental results at 300 K can only be crudely compared 

with the ab initio predictions (that correspond to 0 K) because all possible thermal effects are 

not included in the calculations. From the experimental side, at 300 K is not possible to resolve 

the contribution of each site to the spectra. In consequence, the MS results consist of one 

doublet originating from a quadrupole interaction. The average QS and IS values obtained for 

each sample are reported in Table 6. From this Table we can see that the effect of the inversion 

in the hyperfine parameters that our ab initio predictions is good agreement with the 

experimental results. Due to the extreme sensitivity of the hyperfine interactions to small 

changes in the electronic and magnetic structure of the system under consideration, the 

agreement theory-experiment for the IS, the QS and the BHF gives confidence to the results of 

our study of defective ZFO.    

 

 

3.4. Oxygen vacancies and antisites, (Zn1-αFeα)[ZnαFe2-α]O4-δ 

In previous sections we study the effect on the magnetic response and different 

properties of ZFO of the oxygen vacancies and antisites separately. Now, we will consider both 

defects in conjunction. In this case, the calculations were performed considering the presence of 

a single oxygen vacancy (δ=0.125) and the partially inverted system (α=0.125). Based in the 

previous results we considered the inversion process involving Fe and Zn atoms that are first 

neighbors (Fe-Zn separation distance of 3.50 Å), keeping the original spin orientation for FeA. 

However, an important question must be resolved, the vacancy site location in the partially 

inverted structure. Accordingly, different positions for the oxygen vacancy in the structure were 
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considered. By comparing the total energy for the different oxygen vacancy locations we 

identify the most stable site for it, that corresponds to an oxygen vacancy site that is first 

neighbor to ZnB and not first neighbor of FeA, see Fig. 9 (distance oxygen vacancy site-FeA= 

3.45 Å). This preferential site for the oxygen vacancy can be understood in the framework of a 

simple ionic model. Zn presents a +2 oxidation state. When Zn is exchanged with a Fe+3 to a site 

with a six-fold ONN coordination, a vacancy is required to compensate charge. On the other 

hand, the Fe presents oxidation states 2+ and 3+, so when replacing a Zn2+ no charge unbalance 

at the defect site occurs. 

From the study of the different spin configurations reported in Table 1 we found that the 

lowest energy spin configuration is the AF2 one (see Table 7) with a = 8.48 Å (a value that is 

nearly independent of the spin configuration). In consequence, the oxygen vacancy and the 

partial inversion induce a small increase in a with respect to the pristine structure (a = 8.46 Å). 

In addition, and as can be seen in fig. 10, reduced ZFO with normal structure has lower energy 

than the reduced and partially inverted system. However, the energy difference between these 

structures is now 32 meV/u.f. This difference in energy is smaller than the energy required for 

the inversion process without oxygen vacancies (85 meV/u.f.), so we predict that reduced ZFO 

will have a larger inversion degree than the stoichiometric system. Similarly, the formation 

energy of one oxygen vacancy resulted to be (in presence of cationic inversion) 7.4 eV, which is 

a value slightly lower than those found in the normal structure (7.8 eV).  

Now we will centre our attention in the ferrimagnetic solutions, studying the energy 

necessary to flip one Fe-spin in presence of inversion and oxygen vacancies. Based in the 

previous results we also considered the inversion of the spin of both Fe1 (Fe atom that is a first 

neighbour of the vacancy site) and Fe5 (next-nearest neighbour of FeA) atoms. Interestingly, our 

calculations predict that when the spin of these two atoms are inverted the resulting 

ferrimagnetic system (FERRI5) have a net magnetic moment of 20.0 µB per unit cell (1.25 µB/Fe 

atom) and its energy is -62 meV/u.f. In consequence FERRI5 is clearly the lowest energy 

configuration of (Zn1-αFeα)[ZnαFe2-α]O4-δ. Consequently, samples grown in reducing atmosphere, 

in which the number of oxygen vacancies is increased, will have more cationic inversion than 
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samples grown in oxygen-rich atmospheres and therefore the magnetic response of the samples 

will be different, being the ferrimagnetic response favored in accordance with the experimental 

findings reported in Refs. 5, 38, 40, and 41. Also, our results are in agreement with those 

reported in Ref. 24 that suggest that the long-range order in ZFO is driven by defects and 

quenched atomic disorder. 

Regarding electronic and magnetic properties, we found that the magnetic moments of 

the two Fe atoms first neighbors to the vacancy site (Fe1 and Fe3. Fe2 is now located at the A 

site) present magnetic moments lower (-3.6 and +3.6 µB, respectively) than those of the other 14 

Fe atoms of the structure (±4.2 µB). In addition, some of the oxygen atoms in this reduced and 

partially inverted system present a polarization of 0.1 µB. Consequently, none of the results 

discussed in the previous sections (when both defects were treated separately) changes when 

both structural defects are treated jointly. 

Fig. 11 shows the DOS of (Zn1-αFeα)[ZnαFe2-α]O4-δ. Comparison of Fig. 3, 7 and 11 

shows that the effects induced by the oxygen vacancy and cationic inversion appears here: 

vacancy levels in the band-gap and the Fermi level is shifted to the conduction band and the gap 

between the filled O-2p and the empty Fe-3d band is reduced in about 0.2 eV.    

Finally, the ab initio predictions for the hyperfine parameters at the Fe sites of (Zn1-

αFeα)[ZnαFe2-α]O4-δare shown in the Fig. 12.  Here we can see that the IS at the Fe sites that are 

close to the vacancy site (Fe1 and Fe3) increases it value to 0.87 mm/s, which is in accordance 

with the already discussed transition from Fe3+ to Fe2+ of these atoms. On the other hand, the IS 

at FeA site decreases to 0.30 mm/s, as occurs in the stoichiometric partially inverted structure. 

For the other Fe atoms, the IS value is very similar to that obtained for the pristine structure 

(0.38 mm/s). This behavior is very similar for all antiferromagnetic and the FERRI5 

configurations. In the case of the QS (see Fig. 12) it presents a value of 2.45 mm/s in the case of  

Fe1 and Fe3 sites, while for the FeA site QS=0.24 mm/s is predicted. For the other Fe atoms that 

remains is the B-sites of the structure, a distribution of QS values (originated by the structural 

and electronic distortion induced by the oxygen vacancy and the antisite) with a centroid of 0.32 

mm/s and a width distribution of 0.07 mm/s was found. Therefore, the effect of oxygen 
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vacancies and inversion is to increase the magnitude of the average QS value. Finally, BHF at 

the sites Fe1, Fe3 and FeA decreases its magnitude see Fig. 13, while the Fe atoms located at the 

B-sites present BHF values that are very similar to that obtained for the pristine structure of 

ZFO (51.1 T). Consequently, the average value of the BHF for the structure with vacancies and 

inversion decreases to 49.6 T. In summary, the effect of oxygen vacancies and cationic 

inversion (when are considered together) in the hyperfine ZFO properties to increase the IS and 

the QS and to reduce the average BHF, in agreement with the experimental results reported in 

Ref. 69.  

 

 

4. Conclusions.  

In the present work we have studied by means of ab initio GGA+U calculations the 

structural and electronic properties of reduced, partially inverted and partially inverted and 

reduced ZFO. The hyperfine parameters at the Fe sites for different spin arrangements 

(ferromagnetic and different ferromagnetic and antiferromgnetic configurations) were 

determined.  

We study the effect of cationic inversion and oxygen vacancies on the cell-volume and 

the internal atomic positions, characterizing the local structure around the Fe-sites in each case. 

Concerning electronic properties we found that the oxygen vacancy induces the formation of 

levels at the Fermi level. Inverted ZFO presents a semiconducting nature with a band-gap 10% 

smaller than normal ZFO. This band-gap reduction slightly depends on the inversion degree. 

The hyperfine parameters (isomer shift, quadrupole splitting and hyperfine fields) 

reported by MS experiments at 300 and a 4 K are successfully reproduced by our calculations, 

enabling us to characterize the electronic and magnetic structure around the Fe-sites. Since the 

hyperfine parameters are very sensitive to fine details of the electronic and magnetic structure 

around the Fe-probes, these result gives confidence to our study. 

Our calculations predict that, when defect are introduced in ZFO ferrimagnetic solutions 

have lower energies than the antiferromagnetic ones. In these cases, net magnetic moments of 
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0.5 µB/Fe (reduced ZFO), 0.625 µB /Fe (partially inverted ZFO) and 1.25 µB/Fe (ZFO with one 

oxygen vacancy and partially inverted) are predicted. These results are in agreement with the 

experimental ones that show that samples with defects present net magnetic moments and high 

ordering temperatures (ferrimagnetic behavior) while a null magnetic moment is reported for 

pristine and normal ZFO. Now, our calculations enable us to discriminate the role played by 

each defect in the origin of the observed ferromagnetic response of defective ZnFe2O4.  

 An important result obtained here is that the energy necessary to produce cationic 

inversion in reduced ZFO is smaller than in the stoichiometric system. In consequence, we 

predict that samples grown in reducing atmosphere will have a higher degree of cationic 

inversion than samples grown in oxygen-rich atmospheres. Since the magnetic properties of 

ferrites strongly depend on the cation distribution in both cationic sites of the structure, the 

magnetic response of the samples grown in reduced or oxidant atmospheres will be different. In 

particular we probe that both oxygen vacancies and antisites (cationic inversion) play a 

fundamental role in the formation of local ferromagnetic coupling between Fe ions, giving rise 

to a ferrimagnetic ordering in an otherwise antiferromagnetic compound, in accordance with the 

experimental findings obtained by means of x-ray magnetic circular dichroism and 

magnetization measurements performed on zinc ferrites with different cation distributions and 

oxygen vacancy concentrations reported in the literature. So, the ferrimagnetic response 

observed ZFO thin films or ZFO nanoparticles can betaken as a further example of defect-

induced magnetism. 
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Fe position FM AF1 AF2 AF3 AF4 AF5 FERRI1 FERRI2 

0.5; 0.5; 0.5 + + + - - + + - 

0.5; 0.25; 0.25 + + + + - + + + 

0.0; 0.0; 0.5 + + + + + + + + 

0.0; 0.75; 0.25 + + + - - - + + 

0.0; 0.5; 0.0 + + - - + - + + 

0.0; 0.25; 0.75 + + - + + + - + 

0.5; 0.0; 0.0 + + - - - - - + 

0.5; 0.75; 0.75 + + - - - - - + 

0.75; 0.75; 0.5 + - - + + + - + 

0.25; 0.5; 0.25 + - - + + + - + 

0.25; 0.25; 0.5 + - - - - - - + 

0.75; 0.0; 0.25 + - - + + - - + 

0.25; 0.75; 0.0 + - + - - + + + 

0.75; 0.5; 0.75 + - + + + - + + 

0.75; 0.25; 0.0 + - + + + + + + 

0.25; 0.0; 0.75 + - + - - - + + 

Table 1: The different spin configurations studied in this work. + (-) indicates the relative spin 

orientations.  
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Magnetic configuration E (meV/u.f.) 

FM 0 

AF1 -30 

AF4 -39 

AF3 -40 

AF5 -41 

FERRI3 -43 

AF2 -44 

Table 2: Energy (E) per unit formula (u.f.) of the different magnetic arrangement studied for the case of 

reduced ZFO (ZnFe2O4-δ, δ=0.125). Energies are referred to the ferromagnetic case. A more negative 

value for E indicates a more stable arrangement. 

 

 

Normal ZFO Partially inverted ZFO Inverted ZFO 

ZnA-ONN  FeB-ONN  FeA-ONN  ZnB-ONN  FeA-ONN  ZnB-ONN  

2.00 [4] 

 

2.04 [6] 1.92 [2] 

1.94 [2] 

2.09 [2] 

2.11 [2] 

2.13 

2.18 

1.92 [2] 

1.93 [2] 

2.11 [2] 

2.13 [2] 

2.15 

2.18 

Table 3: Relaxed bond-lengths (in Å) between Fe/Zn atoms and its first neighbor oxygen atoms for the 

normal, inverted and partially inverted ZFO. In square brackets we indicate the multiplicity. 
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Magnetic configuration E (meV/u.f.) 

FM 0 

AF1 -67 

AF4 -75 

AF3 -77 

AF5 -80 

AF2 -80 

FERRI4 -86 

Table 4: Energy/u.f. of the different magnetic arrangement studied for the case of partially inverted ZFO, 

(Zn1-αFeα)[ZnαFe2-α]O4. Energies are referred to the ferromagnetic case.   

 

 

  Fe at site A Fe at site B 

 Tm (K) BHF (T) IS (mm/s) BHF (T) 
IS 

(mm/s) 

Experiment, Ref. 72 4.4 49.76 0.253 52.38 0.364 

Experiment, Ref. 73 4.2 48.912 0.2621 49.377 0.3695 

Ab initio, (α=0.125), this 

work 
0 49.4 0.30 511 * 0.38 

Table 5: Results obtained in Mössbauer Spectrocopy (MS) experiments performed at the 

indicated temperatures TM in (Zn1-αFeα)[ZnαFe2-α]O4 nanoparticles and ab initio predictions the 

IS and the BHF. The theoretical results correspond to the lowest energy spin configuration 

(FERRI4). *: average value over the 15 Fe at sites B of the structure. 
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 Tm (K) α QS (mm/s) IS (mm/s) 

Experiment, Ref. 70 

300 0.0375 0.38 0.32 

300 0.15 0.41 0.32 

300 0.16 0.44 0.32 

Ab initio, this work 0  0.125 
0.19 (siteA) 

0.339 (siteB) * 

0.30 (siteA) 

0.38 (siteB) 

Table 6: Results obtained in Mössbauer Spectrocopy (MS) experiments performed at room 

temperature (paramagnetic system) in (Zn1-αFeα)[ZnαFe2-α]O4 nanoparticles and ab initio 

predictions for the QS and IS. The theoretical results correspond to the lowest energy spin 

configuration (FERRI4). *: average value over the 15 Fe at sites B of the structure. 

 

 

 

Magnetic configuration E (meV/u.f.) 

FM 0 

AF1 -32 

AF4 -37 

AF3 -46 

AF5 -49 

AF2 -54 

FERRI5 -62 

Table 7: Energy/u.f. of the different magnetic arrangement studied for the case of partially inverted and 

reduced ZFO, (Zn1-αFeα)[ZnαFe2-α]O4-δ. Energies are referred to the ferromagnetic case.   
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Figure 1: Calculated energy as a function of the lattice parameter a of reduced ZFO (ZnFe2O4-δ) for 

different spin configurations. The minimum energy lattice parameter corresponds to 8.47 Å, a value that 

is nearly independently of the considered spin arrangement. For simplicity, the spin configurations AF4, 

AF5, FERRI1 and FERRI2 were not included in the figure (the energy differences between configurations 

AF3, AF4, and AF5 are includedin the size of the points). 
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Figure 2: Portion of the un-relaxed spinel structure of ZnFe2O4-δ. The Fe and O atoms are represented by 

gold and red spheres, respectively. The vacancy site is indicated by a white sphere. Arrows denotes the 

relative spin orientations of the Fe atoms. Fe1, Fe2 and Fe3 are the nearest neighbors atoms to the oxygen 

vacancy site and Fe4 is the second neighbor to the oxygen vacancy site. 
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Figure 3: Calculated total density of states (DOS) of a) pristine ZFO; b) reduced ZFO (ZnFe2O4-δ, 

δ=0.125) and partial DOS of Fe atoms nearest-neighborsto the vacancy sites c) Fe1-3d states; d) Fe2-3d 

states; e) Fe3-3dstates. Energies are referred to the Fermi level (EF), denoted by a vertical line. The results 

correspond to the AF2 spin configuration. 
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Figure 4: Hyperfine parameters at the Fe sites of reduced ZFO, ZnFe2O4-δ. The results correspond to 

the lowest energy spin configurations (AF2 and FERRI3). For the sake of comparison, the results for 

pristine ZFO (dashed lines) are also show. 
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Figure 5: Schematic representation of inversion. Gold, grey, and red spheres represent Fe, Zn, and O 

atoms, respectively. a) Normal ZFO (two Fe located at sites B, and a Zn at site A). b) Inverted ZFO (a Fe 

and a Zn located at sites B and a Fe at site A). Arrows denotes the relative spin orientations in the AF2 

configuration. 
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Figure 6: Total energy as a function of the lattice parameter a of normal, partially inverted (α =0.125) and 

inverted (α = 1) (Zn1-αFeα)[ZnαFe2-α]O4. The E Vs. a curves correspond, in each case, to the lowest 

energy spin configurations.  
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Figure 7: Calculated total density of states (DOS) of partially inverted (α =0.125) and inverted (α =1) 

(Zn1-αFeα)[ZnαFe2-α]O4. Energies are referred to the Fermi level (EF), denoted by a vertical line. The 

results correspond to the AF2 configuration. 
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Figure 8: ab initio predictions for the hyperfine parameters at Fe sites of (Zn1-αFeα)[ZnαFe2-α]O4, 

α=0.125. FeA indicates the Fe atom in site A. For the sake of comparison, the results for normal 

ZFO (dashed horizontal lines) are also show. The results correspond to the lowest energy 

(FERRI4) and the AF2 configurations. 
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Figure 9: Portion of the ZFO cell with partial inversion (a Fe and a Zn located at sites B, and a 

Fe at site A) and an oxygen vacancy. Gold, grey, and red spheres represent Fe, Zn, and O atoms 

respectively. The vacancy site is indicated by a white sphere. 
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Figure 10: Energy as a function of a for reduced ZFO with normal structure (ZnFe2O4-δ) and 

partially inverted structure, (Zn1-αFeα)[ZnαFe2-α]O4-δ).  
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Figure 11: DOS of partially inverted and reduced ZFO, (Zn1-αFeα)[ZnαFe2-α]O4-δ.  
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Figure 12: ab initio predictions for the hyperfine parameters at the Fe sites of reduced and 

partially inverted (Zn1-αFeα)[ZnαFe2-α]O4-δ for the lowest energy (FERRI5) and the AF2 spin 

configurations. For the sake of comparison, the results for pristine ZFO are also show. 
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DFT study of structural, electronic and magnetic properties of defective ZnFe2O4. 
 
Prediction of the hyperfine parameters at Fe sites of reduced and inverted ZnFe2O4. 
 
Characterization of the electronic and magnetic structure at the Fe sites. 
 
Defects favour a ferromagnetic coupling of Fe atoms.  
 
Oxygen vacancies and antisites give rise to a ferrimagnetic ordering of ZnFe2O4. 


