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In this paper, we consider a family of n-dimensional, higher-curvature theories of gravity whose action is 
given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order 
generalizations of the Branson Q curvature, which is an important notion of conformal geometry that has 
been recently considered in physics in different contexts. The family of theories we study here includes 
special cases of conformal invariant theories in even dimensions. We study different aspects of these 
theories and their relation to other higher-curvature theories present in the literature.
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I. INTRODUCTION
Quantum effects induce higher-curvature modification to 

the gravitational action. This is well understood in the 
context of string theory, where the ultraviolet corrections 
to the low-energy effective action can be systematically 
computed [1]. On general grounds, higher-curvature 
modifications render the theory of gravity renormalizable, 
but at the cost of introducing ghost instabilities [2] and 
other pathologies [3-5]. This implies that, whatever higher- 
curvature correction to Einstein theory to be proposed, it 
has to satisfy very special constraints in order to be physically 
acceptable [6]. One may still ask whether such constraints 
are restrictive enough to define the theory uniquely or, on 
the contrary, there exist more than one consistent way of 
modifying general relativity (GR). In fact, there are known 
higher-curvature actions that define theories with interesting 
properties and which, under certain conditions, no longer 
have ghosts.

One such example is the so-called critical gravity1 (CG), 
which is defined by supplementing the Einstein-Hilbert 

action on anti-de Sitter (AdS) space with a conformally 
invariant linear combination of R2 terms with a specific 
value of the coupling constant [8]. The precise linear 
combination corresponds to the square of the Weyl tensor, 
i.e., L2 f d4Xy/—gC, where the coupling constant 
L2, having mass dimension -2, is adjusted in terms of the 
cosmological constant A. In dimension n = 4, the theory 
includes GR as a particular subsector, is free of the massive 
spin-0 mode that quadratic theories typically engender, 
and acquires a second massless spin-2 mode apart from the 
GR graviton. The presence of a second massless spin-2 
field produces low-decaying modes and it causes the black 
holes and other solutions of the theory to have vanishing 
gravitational energy.

Critical gravity theories can also be defined in higher 
dimension, n > 4 [9]. This amounts to dimensionally 
continue the four-dimensional conaformal invariant by 
simply replacing the action with L2 f dnXy/—gCappljCafipv 

and choosing the coupling constants in such a way that the 
maximally symmetric vacuum is unique. As in four 
dimensions, CG in n > 4 has no massive modes; the 
spin-0 conformal mode decouples and the extra spin-2 
mode becomes massless. However, in contrast to n = 4, in 
dimension n > 4 CG does not generically admit Einstein 
spaces as solutions; the reason being the presence of the 
Kretschmann scalar RpvpoRpvpa in the action, which in n > 4 
contributes dynamically. This does not happen for n = 4
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in virtue of the Chern-Weil-Gauss-Bonnet theorem [10]. 
The latter represents the main difference between CG in 
n = 4 and n > 4.

Another higher-curvature theory that exhibits special 
features is the Lovelock theory [11,12], which is defined by 
dimensionally extending topological invariants to higher n. 
The resulting theory coincides with GR only in dimension 
n < 4, while in n > 5 presents higher-curvature corrections 
up to order Rk, with k < n/2. Despite involving contrac- 
tions of more than one Riemann tensor in the Lagrangian, 
Lovelock action yields second-order field equations. In 
fact, Lovelock field equations are the most general cova- 
riantly conserved symmetric rank-2 tensor in dimension n 
that is of second order in the metric and torsion free. For 
n = 4 the latter requirements single out the Einstein tensor, 
while in n > 5 they allow for more tensor structures. 
Lovelock field equations, however, contain higher powers 
of the second derivatives of the metric, unlike GR. This 
makes the dynamical structure of the theory exhibit special 
features that give rise to peculiar physical phenomena [13].

Here, we will investigate a class of higher-curvature 
theories which are different from CG and Lovelock theories 
but nonetheless share some features with both of them. In 
fact, the family of theories we propose to explore can be 
thought of as a hybrid between CG and Lovelock models, 
in the sense that they are defined by dimensionally 
extending conformal invariants, in opposition to topologi- 
cal invariants. In dimension 4, these theories include 
conformal gravity and CG as particular cases. In dimen- 
sions greater than 4, in contrast, they do not agree with the 
n-dimensional generalization of [9] and they can rather be 
regarded as a different way of extending the CG of [8] to 
arbitrary n. They do include, nevertheless, other higher- 
dimensional theories recently considered in the literature; 
in particular, for n = 6 they include the cubic theories 
studied in Ref. [14].

Other differences with CG and Lovelock theories are the 
following: Unlike the Lovelock theory, the one we propose 
to study here modifies GR even for n < 4. On the other 
hand, unlike the n > 4 CG theories of [9], our theory does 
admit generic Einstein spaces as solutions. The price to be 
paid is that the spin-0 massive excitation around AdSn does 
not decouple and dealing with this requires further imagi- 
nation. There exists, however, a choice of coupling constant 
that renders the extra spin-2 mode massless. In addition to 
Einstein spaces, which persist as solutions up to a renorm- 
alization of the cosmological constant, the theory also 
admits non-Einstein solutions, as we will see.

The fundamental building block to construct the action of 
the theory will be the so-called Q curvature, which is an 
important notion of conformal geometry [15,16]. Originally 
introduced by Branson in [17], the Q curvature is a local 
scalar quantity that plays an important role in topics as 
diverse as spectral geometry, conformal geometry, differ- 
ential topology, and the theory of higher-order differential

equations, among others. Recently, Q curvature has also been 
studied in theoretical physics; in particular, to study anoma- 
lies in quantum field theory [18], higher-derivative field 
theories [19], and other related problems. In Sec. II, we 
will review the definition and the main properties of the Q 
curvature, together with its higher-dimensional and higher- 
order generalizations. In Sec. III, we will discuss its con- 
nection to conformal invariants in even dimensions. This will 
provide us with the ingredients to construct, in Sec. IV, the 
gravitational action of our theory. In Sec. , we will discuss 
the simplest solutions of the theory: their maximally sym- 
metric vacua. We will derive the conditions to have a unique 
such vacuum and for the linear excitations around it to 
become massless. Section VI contains comments about the 
black hole solutions, the expressions of their charges, and 
the associated thermodynamics variables. In Sec. VII, we 
will explore the nonlinear gravitational wave solutions. Non- 
Einstein spaces will be discussed in Sec. VIII, where we will 
provide explicit examples in dimension n = 5. These exam- 
ples include black holes, product of spherical spaces and their 
squashed deformations, and AdS2 x M solutions. In Sec. IX, 
we will comment on other higher-curvature actions also 
associated with the Q curvature. We will comment on the 
relation between these theories and other models such as new 
massive gravity, critical gravity, and the counterterms that 
appear in the context of holographic renormalization.

II. Q CURVATURE

In order to introduce the notion of Q curvature and 
motivate its definition, we will begin by revisiting proper- 
ties of higher-curvature terms under conformal transforma- 
tions: given the Weyl rescaling of an n-dimensional metric

9^v 9e ^9^v, (1)

we consider a linear differential operator Pmn with 
m G 2Z>0, n G Z>0 that transforms covariantly as follows:

P m,n(f) = e-^P^e^f), (2)

with P0,n = 1. Here, f represents an arbitrary differentiable 
function. In other words, Pm,n is an mth-order linear 
differential operator of conformal bidegree (n¿2m,n’2m). 
This operator Pm,n has the form

Pm,n ^m,n +
n — m

2 Qm,n , ^m,n = U 2 + ■■■ , (3)

with U = g^vV^Vv being the Laplace-Beltrami operator. 
The ellipsis stand for terms with no constant term, i.e., Am,n 

is a linear differential operator satisfying Am,n 1 = 0. Qm,n 

is a scalar curvature that transforms as follows:

Q m,n = e-(Qm,n (4)
— m
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and is what is called the mth-order, n-dimensional Q 
curvatura, which satisfies (n — m)Qmn = 2Pmn{1').

The transformation laws above uniquely define the linear 
operators Pm;n and the scalars Qm;n. The simplest example 
of the hierarchy (3) and (4) (i.e., m = 2) is

1
Q2,n R;2(n — 1)

, n — 2
P2,n = □ + 2 Q2,n;

A2,n = □■ (5)

That is, Q2j, corresponds to the Gaussian curvatura and 
P2;n to the Yamabe operator

I

P2,n = □ —
n — 2

4(n — 1)
R: (6)

Branson’s Q curvature corresponds to the case m = 4, 
which takes the form

Q4 ,n
1

2(n — 1)
□R —

2

n2(n — 4) + 16(n — 1) R2 
+ 8(n — 1)2(n — 2)2 (7)

where P4;n is the so-called Paneitz operator; see (10) below. 
Operator P4;n was originally defined by Fradkin and 
Tseytlin in [20] and independently by Riegert in [21].

The case m = 6 takes the form

Q6,n = — — — 2-------- , . ((n5 — 8n4 + 64n3 — 240n2 + 1008n — 960)R3
32(n — 4)(n — 2)2(n — 1)3

+ 512(n — 1)3R^R/V — 4(n — 1)(n4 — 14n3 + 100n2 — 168n + 96)R^R 

— 64(n — 1)2(n2 — 4n + 28)RR/VR/V + 1024(n — 1)3R  ̂R^Ra/}v): (8)

In n = 6 and up to boundary terms, (8) coincides with the 
particular combination of conformal invariants proposed in 
[14], which has the property of being the unique conformal 
invariant combination in six dimensions that admits generic 
Einstein manifolds as solutions. This provides us with a 
criterion to select our theory and define the general 
Lagrangian of order m, in dimension n: we will consider 
Lagrangians consisting of dimensionally extended con
formal invariants and that preserve Einstein spaces as 
solutions. The generalization of the Paneitz operator to 
n = 6 has been discussed, for example, in [22].

The hierarchy Qmj, continues ad infinitum, although the 
expressions become cumbersome for m > 6. The case 
m = 8, for example, is a dimension 8 operator involving 
quartic operators such as R4, R2R/VR/V, (R/VR/V)2, 
RR^aufiRa^R/v, ...R/V^2R/V, R^2R, whose explicit form 
can be found in [23]. Written in terms of the Schouten tensor 
P/v = (R/w — Rg^v/(2n — 2))/(n — 2) and the Weyl tensor 
C/uafí R/waf) + 9avP— 9a/Pvf) + 9()/Pva — 9fivP/a, the 
expression for Q8j, simplifies notably, but the number of 
terms still rises to more than 40.

III. CONFORMAL INVARIANTS

Now, let us comment on the connection between Q 
curvature and conformal invariants. We begin by reviewing 
well-known facts of two-dimensional manifolds: Consider 
a closed Riemann surface with Euclidean signature (M2,9). 
According to the Gauss-Bonnet theorem, its Euler charac- 
teristic, /(M2), is computed by the integral

I-----------------------------------------------------------------------------------------------

1 = — - d2xp9Q2,2 = -7~ d2xp9R = X (M2);
2n J m2 4n./ m2

(9)

where 9 is the determinant of the Euclidean metric 9/v, and 
R is the Ricci scalar (i.e., the Gaussian curvature). This is a 
topological invariant. In dimension 2, all metrics are locally 
conformally equivalent and we also have the following 
properties: provided one rescales the metric as 9/v e2l?9/v

the Ricci scalar transforms as R e—2^(R — 2A2
while the Laplace-Beltrami operator transforms simply as 
A2;2 e—2^A2;2. These transformations are important to
understand in what sense the Branson Q curvature is the 
natural generalization of Gauss curvature to dimension 4. 
To motivate the definition of the Q curvature [17,24], let us 
explicitly write the Paneitz operator [25],

P4,4 = A4,4 = (□)* + 2G/vV^Vv +1 (V"R/v)Vv + 3 £□,

(10) 

where G/v = R/v — (1/2)R9/v is the Einstein tensor. This is 
a linear fourth-order, four-dimensional differential operator 
that under the rescaling of the metric 9/v e2l?9/v trans
forms as A4;4 e—4^A4;4. From this, the definition of the Q
curvature is natural: it is the fourth-order, four-dimensional 
curvature invariant that, having the same scaling dimension 
as A4;4, transforms simply as Q4;4 e—4^(A4;4^ + Q4;4).
This has the form

Q - Q4,4 = — 1 □R — 2R/vR/v + 6R2: (11)
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To reinforce the analogy with what Gaussian curvature 
R a Q2;2 means in dimension n = 2, let us mention that in 
the same way as how Q2 2 computes the Euler characteristic 
in two dimensions, Q4;4 computes the Euler characteristic 
X(M4) of a four-dimensional Riemann manifold (M4,g) 
within a particular conformal class. More precisely,

1 í 11=»¡?L.dxVia,A+32?

X í d4xp-gC^vafiC"vafi = X(M4) (12)
Jm4

where CAafi, is the Weyl tensor. Notice that both terms on 
the left-hand side are conformal invariants. That is, Q 
curvature computes a topological invariant within a given 
conformal class. In dimension 2, of course, there is only 
one conformal class and thus (12) turns out to be a natural 
generalization of (9).

Branson also provided [17] a definition of the Q 
curvature in arbitrary dimension n > 3. For n / 4, its 
definition is given in terms of its transformation rules 
under Weyl rescaling and not by its topological meaning. 
This is given by

Q4,n = AnOR + BnR,RV + C„R2; (13)

with An = -1/(2(n - 1)), Bn = -2/(n - 2)2, Cn = 
(n2(n - 4) + 16(n - 1))/(8(n - 1)2(n - 2)2).

This is the second term in the list of scalars Qmn 
we discussed ain the previous section. In particular, all 
the integrals J d6^/-gQ6;6 are conformal invariants. 
The scalars Qmn will constitute the Lagrangian density 
of the theory we propose to explore.

IV. THE ACTION

The gravity action we will consider is defined by the sum 
of the dimensionally continued conformal invariants; 
namely,

/
TO 

dnxp-g^2L2k-2bkP2k,n(1); (14)
k=0

where P2k,n(1) = (n/2 - k)Q2¿,n, with k E Z>0, and 
where P0;6 = 1 = (n/2)Q0n. We are now considering 
n-dimensional pseudo-Riemannian manifold (Mn,g) with 
Lorentzian mostly plus signature. L is a constant of mass 
dimension -1. This sets the length scale L at which the 
ultraviolet corrections due to the higher-curvature terms 
Qm>2;6 start to contribute significantly. The dimensionless 
coupling constants bk are usually normalized in such a way 
that b0 = -AL2/(8nG) and b1 = -(n - 1)/(4nG(n - 2)), 
where G is the n-dimensional Newton constant. Our 

conventions will be such that b2 = - 1/(4nG(n - 4)2). 
That is,

1 f { 4l2
I = dnxp-g R - 2A + ------ -- ---------

16nGjMn \ (n - 2)2(n - 4)
í n3 - 4n2 + 16n - 16 9\ \X R R'--------- 16(n - 1)2 R2J +'J •

(15)
16(n - 1)2

where the ellipsis stand for higher-curvature, higher- 
derivative terms.

Of course, for bk>) = 0 action (14) reduces to Einstein 
theory. Other particular choices are also interesting: The 
case bk = S2 k for n = 4 corresponds to four-dimensional 
conformal gravity. The special case b0 = -AL2/(8nG), 
b) = -3/(8nG), b2 = -L2/(4nG(n - 4)) with L2 
3/(2A) in the limit n 4 reduces to the critical gravity- 
theory proposed in [8]; see also [26]. The case bk = S3;k 

for n = 6 corresponds to the cubic theory defined in [14], 
whose action is given by the linear combination of 
conformal invariants in six dimensions that supports 
Einstein manifolds as solutions. In general, action (14) with 
bk = Sn/2;k defines a conformal invariant theory, classically.

The theory described by (14) with bk = S2;k in arbitrary 
dimension n is also special: defined on a closed Euclidean 
n-dimensional manifold (Mn^g), it corresponds to the 
variational problem of minimizing the Branson Q curvature 
on Mn. For n > 4, the Euler-Lagrange equations derived 
from such action, E^v = SI/bg111 = 0, have trace equal to 
Q4;6 . (Therefore, turning on b0 / 0 yields field equations 
whose solutions solve the uniformization problem 
Q4;6 = const on Mn). For bk = S2;k in dimension n > 4, 
the tensor E^v obeys the following three properties: 
E = = Q4;6, E^v = EVft, and = 0. That is,
it is a covariantly conserved, symmetric rank-2 tensor 
whose trace is the Q curvature. These properties are 
reminiscent of the properties that Lin and Yuan required 
to define their J-tensor in [27], i.e., a symmetric rank-2 
tensor canonically associated with the Q curvature. 
However, the divergence of the J-tensor does not vanish 
but it turns out to be proportional to the gradient of Q. More 
precisely, the Lin-Yuan J-tensor obeys: J = (fvJ^v = Q4;6, 
J.v = and VJ = (1/4)V^Q4;6. The motivation to
define such a tensor is the following: if one insists with 
the idea that Q curvature is the fourth-order analog of the 
Gaussian curvature R, then a natural question is what is 
the analog of the Ricci tensor R^v and of its derived notions 
such as Ricci flatness, Einstein manifolds, etc. To answer 
this question, one recalls the basic properties of R and R^v, 
namely, g^R^ = R, Rv = R^ and V"Rv = (1/2)V"R. 
Then, the analogy becomes evident: in the same manner 
as how the Q curvature can be regarded as the fourth- 
order generalization of R, the tensor J^v turns out to be the

104023-4



Q CURVATURE AND GRAVITY PHYS. REV. D 98, 104023 (2018)

generalization of the Ricci tensor R"V. From this, definitions 
such as J flatness, J Einstein, etc. follow naturally. Along 
the same lines, our tensor E"V should be regarded as the 
natural fourth-order generalization of Einstein tensor G"V, 
and thus it is natural to consider it as the completion of our 
gravity ñeld equations. The precise relation between our 
tensor E"V and the Lin-Yuan tensor is

with a curvature radius l given by

Al4 +
(n _ 1)(n _ 2)l2 , (n + 2)(n _ 2)L2 

2 + 8 = 0. (21)

4 ( 1 A

E"v = (4 _ n) J"v - 4 g"v J ’

(4 _ n) ! 1
JJv 4 E"" + 4 9"v E; (16)

with J = E = Q4;„. Summarizing, our action (14) provides 
a definition of the Einstein-Hilbert variational problem for 
the Lin-Yuan J-tensor, i.e., it gives an action functional 
definition of J"V (for n > 4).

The classification of conformally invariant and confor- 
mally covariant higher-curvature actions is an interesting 
problem to which different authors have contributed. 
Some interesting results are scattered in the literature. 
For instance, six-derivative Lagrangians with interesting 
conformal properties were studied in [28,29]. In [30], a 
purely algebraic method to classify the locally Weyl 
invariant scalar densities in dimension 8 has been given. 
Higher-curvature gravity theories with conformal invari- 
ance have been also discussed in [31].

V. VACUA

Now, we go back to the interpretation of action (14) as 
defining a theory of gravity. For concreteness, we focus on 
the case that includes higher-curvature terms up to the 
quadratic order Qm<4,„. In this case, the action is given by

I = 1¿G / _ 2A + aR2 + ^vR""); (17)

with

a= _L2
(n3 _ 4n2 + 16n _ 16) 

4(n _ 1)2(n _ 2)2(n _ 4) ’

P L2 4
(n _ 2)2(n _ 4)

(18)

This theory admits solutions of constant curvature, 
namely,

R 
•A-"a"P (19)

which are maximally symmetric spaces obeying the 
Einstein equations

R"" = _ ^^12^ 9""; (20)

This equation, for n > 4, yields two values for l2. 
Generically, the theories with Q2k.„ contain k maximally 
symmetric vacua with different curvature radii. For special 
choices of the coupling constants bk, however, some of 
these vacua degenerate. For instance, the condition for (21) 
to yield a unique vacuum reads

L2 = _2l2 . (22)(n + 2) v 2

In this case, the theory has a unique maximally symmetric 
solution with an effective cosmological constant Aeff 
_(n _ 2)(n _ 1)/(4l2). The condition for this unique 
vacuum to be AdSn is l2 > 0, i.e., L2 < 0, a > 0, P < 0.

For arbitrary l2/L2, the degrees of freedom of fluctua- 
tions about AdSn include a massless spin-2 mode and a 
massive spin-0 mode. These modes are typically tachyonic 
(for conventions of the generalized Breitenlohner-Freedman 
bound for spin-s fields in n-dimensional AdS space, see, 
for instance, Ref. [32]). In fact, demanding the effective 
Newton constant to be positive one finds that one of the 
two spin-2 fields has a mass m2=2 = _(n_2)2((n2_4) + 
2(l2=L2)(n_ 1)(n_4))=(8l2(n_ 1)); (hereafter 16nG= 1, 
unless explicitly declared). One can easily choose the value of 
the coupling constant L2 such that ms2 2 0. In that case, as 
we will see, also the black hole solutions of the theory become 
massless. The massive spin-0 mode, on the other hand, has 
mass m2=0 = (n _ 1)(4m2=2 _ (2=L2)(n _ 2)2)=(n _ 2)2. 
One can in principle accept the values ms2 < 0 and compare 
them with the Breitenlohner-Freedman (BF) bound2: m2 > 
mBF = _((n _ 1)2 + 4s)=(4l2). This poses a bound for 
L2, which is n dependent. The scalar conformal mode is 
frequently the most problematic. We will discuss in Sec. IX a 
series of theories that permits us to decouple this mode. There 
exist different ways of dealing with it: One way is considering 
values of the coupling constant such that the mass of this 
mode becomes infinite and it eventually decouples [33-36]. 
Another possibility is to look for boundary conditions that 
suffice to elimínate the mode in a dynamically consistent way, 
cf. [14,37-39]. One could also investigate a special type of 
matter to which the theory can be coupled without the scalar

2Here, for the scalar field we are using conventions coming 
from the Klein-Gordon theory, while for the spin-2 field we are 
using the bound coming from the Pauli-Fierz theory. In relation to 
that, it can be argued that the generalization of BF bound for 
arbitrary spin proposed in [32] is actually surplus, the reason 
being that the unitary bound for the massive spin-s field results 
stronger than the generalization of the generalized BF inequality 
proposed in [32]. We thank the referee of The Physical Review for 
pointing this out.
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mode to introduce pathologies. Another logical possibility is 
invoking nonlinear effects that cure the theory. Last, one can 
also look for backgrounds around which the propagating 
modes result well-defined.

VII. GRAVITATIONAL WAVES

Now, we move to explore exact gravitational wave 
solutions. We consider the ansatz

VI. BLACK HOLES
Theory (14) admits Einstein spaces (20) as solutions, 

provided 1 satisñes (21). In particular, it contains black 
holes. The metric of an AdS-Schwarzschild black hole is 
given by

l2 

ds2 — 2 (-(1 + 2H)dt2 + 2dtd£ + dr2 + ¿¿jdVdx7'),

(27)

rn -3 r2 rn -3 r2 -1- '(1 - + ^) + 0 - + l2)

x dr2 + r2d^-2, (23)

where dQ)-2 is the metric on the unit (n - 2)-sphere and r0 

is an integration constant associated with the mass. In fact, 
the mass of this black hole solution is given by [40-44]

M = 1 ,L2(n - 2)(n+2)3
BH 8nG\ + 212(n - 1)(n - 4) J (n - 2)Vol(Q„-2)r0-3,

where H is a function that does not depend on the lightlike 
coordinate Here, S¡j is the (n - 3)-dimensional Kronecker 
delta that defines the Euclidean metric on Rn-3. We consider 
deformations of the universal covering of AdSn, so the 
coordinates take values t G R, £ G R, and r G R>0. H — 
const corresponds to AdSn space in Poincaré coordinates, 
with its boundary located at r — 0. For the deformation, we 
consider the null geodesic vector k^d. — (r/l)d^, which 
enables us to interpret these backgrounds as Kerr-Schild 
transformations of AdSn; namely,

9.v — gAd8 - 2Hk^kv, (28)

where gAdS is the metric of AdSn; recall k.k^ — 0.
The Ricci tensor for a metric like (28) takes the form

(24)

where we have reinserted the overall normalization 
(16nG)-1 in the action. Vol(Qn-2) in (24) stands for 
the volume of the (n - 2)-sphere, namely, Vol(Qn-2) — 
2nn-7r(n-i).

The Hawking temperatura associated with the black hole 
solution (23) is

R.v — - ( |2 ) 9.V + k.kv^H; (29)

and it yields constant scalar curvature R — -n(n - 1)/12, 
which turns out to be independent of H. It also yields the 
dimension 6 operators

(n - 1)r+ + (n - 3)12 
4n12r+ (25)

which is a geometrical quantity and consequently inde- 
pendent of the presence of higher-curvature terms. In 
contrast, the entropy does depend on the coupling constant 
L in a way that can be computed by different methods. 
The result reads

R,aRva — 9.V - k.kvOH, (30)

R.avPRap — 9,v - k.kvOH, (31)

Rw<tfRvYap — 9.V -12k.kvOH, (32)

and

sbh —
Vol(Qn-2 )r+-2

4G
( L2(n - 2)(n + 2) \

212(n - 1)(n - 4)

OR.v — k.kvO (o -H. (33)

Area
4G

+ O(L2/l2), (26)

Using the expression for the Ricci tensor and the 
properties of k^, one finds that the only nontrivial con- 
tribution to the field equations is

where the first term between brackets gives the Bekenstein- 
Hawking contribution Area/(4G), accompanied by higher- 
curvature corrections to the prefactor. Notice that the 
entropy SBH and the mass MBH satisfy the first principle 
dMBH — THdSBH. It is also easy to check that both SBH and 
MBH vanish when the mass of the spin-2 fluctuating mode 
m2=2 is zero.

k.kv(O - M2)OH — 0,

with M2 being given by

(34)

M2 — -81 (-_1) (("2 -4)+2L2(n - 1>(n -4>).

(35)
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The condition for (35) to be zero is

f2 = _L2 (n~ 2)(n + 2)
2(n - 1)(n - 4)’ (36)

and we observe that when M2 = 0 the gravitational energy 
of the AdS-Schwarzschild black hole is also zero. This is 
analogous to what happens in CG in arbitrary dimension 
[45]. Another special value for M2 is the one for which the 
AdSn vacuum results unique. This happens when

where the squashing parameter " is related to the radius 
t by

3' ± T2)
X±(t) with X±(t) = 2t4 ± 5t2 - 1;

and where the coupling constants take the values

L2 = 48l2 X±(t) 
Y ±(t)

3 Z±(t)
2l2 X±(t)Y±(t) ;

(41)

(42)

M0 = - (n - 2)2(n + 2) :
0 4l2 (n - 1) (37)

with

VIII. NON-EINSTEIN SPACES

Besides Einstein spaces, theory (14) admits a large class 
of non-Einstein solutions. Among them, there are solutions 
with anisotropic scale invariance, with and without 
Galilean symmetry. That is, the theory admits both 
Shrodinger [46] and Lifshitz [47] type metrics for specific 
values of the dynamical exponent, z. There is another class 
of solutions given by the direct product of squashed or 
stretched deformations of AdS spaces and constant curva- 
ture spaces. This class includes the so-called warped-AdS3 

spaces, warped-AdS3 black holes, and AdS2 x S1 spaces. 
To be concrete, let us focus on the five-dimensional case for 
which such metrics take the form

ds2 = -1 -cosh2(r)dt2 + dr2
" + 3 V

+ 2 + 3 (dx + sinh(r)dt)2 + dS2±^; (38)

where dZ2± is a metric of a two-dimensional space of 
constant curvature ±1; namely,

d^2 + = t2 (dy2 + sin2 (y)dz2); 

d^2 - = t2 (dy2 + cosh2(y)dz2); (39)

with t2 being a constant that controls the radius of the 
internal two-dimensional piece of the geometry, X2>±. We 
can take t G R, x G R, and r G R. These coordinates 
parametrize the three-dimensional part of the geometry 
that describes a squashed or stretched deformation of AdS3, 
also known as warped-AdS3 spaces or simply WAdS3. 
The parameter that controls the deformation is r; the value 
" = 1 corresponding to the undeformed AdS3 space written 
as a Hopf fibration of AdS2. The scalar curvature associated 
with the five-dimensional geometry (38) is

R = -
2(3t2 t R2 T 3)

T2l2
(40)

Y±(t) = 78t4 t 267t2 - 145;

Z±(t) = 156t8 t 556t6 - 2661t4 ± 666t2 + 1015.

(43)

Warped AdS3 spaces admit black hole solutions [48] that 
are asymptotically WAdS3 as well as locally WAdS3 [49], 
and they also admit a limit in which the geometry becomes 
AdS2 x S1. All these spaces have very interesting proper- 
ties and deserve to be studied separately.

IX. ALTERNATIVE DIMENSIONAL 
EXTENSION

There exists another way of dimensionally extending to 
n > 4 the theory that, in n = 4, is defined by considering 
the sum of scalars Q2k<4;4 in the Lagrangian density. To see 
this, let us be reminded of the fact that in four dimensions 
one has

Q4.4 + 4 = 1£4 -1 OR; (44)

where the right-hand side is a total derivative as it includes 
OR and the Pfaffian £4 = R^ - 4Rr^Rrv + R2.

While Lovelock theory corresponds to dimensionally 
extending the right-hand side of (44), the theory discussed 
in the preceding sections corresponds to extending the Q 
curvature by replacing Q4;4 by Q4;n. However, this is not 
the only way in which one can extend (44) to n > 4 
dimensions as one could alternatively consider the combi- 
nation £4 - CRVapC"vaP and then extend both the Gauss- 
Bonnet term £4 and the Weyl tensor CRVap to n dimensions. 
To see that the latter differs from the simple extension 
Q4;4 Q4,n, let us notice that in n dimensions the 
following identity holds

Q4,n + 4 C,vapCRVap - 4£4 = -AnOR + aR2 + pR^R"";

(45)
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where

~ (n — 4)(2n3 — 5n2 + 6n — 4)
a = —

8(n — 1)2(n — 2)2

conformal invariant combination Cpvpc¡ Cpvpa. The n > 4 
CG theory of [9], however, does not agree with (47) or 
(48), but actually corresponds to the values

P = (n — 1)(n — 4) 
(n — 2)2 (46) a—

P
2(n — 1) ’

Y = — (n — 2)P
4

We see from this that the right-hand side of (45) is a total 
derivative only for n = 4. Therefore, in n > 4 there exist 
two possibilities to define a higher-curvature theory based 
on the dimensional extensions of identity (44); namely, 
either one considers the action f dn^/—gQ4 n, as we did 
in the preceding sections, or one considers the action 
J dnx^f—~g(£4 — C^vapO:í'ai). Let us now explore the latter 
possibility; namely, consider the Lagrangian density

with (n — 1) 
2(n — 3)P'

(49)

L = L2(E4 — C^P cpvaP)

n(n — 3)L2 R2
(n — 1)(n — 2)

4(n — 3)L2 
(n — 2)

(47)

with a coupling constant L2. This theory exhibits interest- 
ing properties. In fact, it can be alternatively defined by 
minimal requirements: the absence of the conformal mode 
□R, the persistence of Einstein manifolds as solutions, 
and the uniqueness of the maximally symmetric vacuum. 
To see this, let us introduce the notation L2 = aR2 + 
PR,VR,V + YR^prR11^ with coupling constants a, P, y. The 
requirement of Einstein spaces to persist as solutions 
demands the coupling constant of the Kretschmann scalar, 
Y, to be zero. Next, the condition of the conformal mode to 
decouple yields the relation

Last, the condition for the maximally symmetric vacuum 
of the theory to be unique yields the relation

A = (n -1)
2(n — 4)P

which is valid for n / 4. This implies that the effective 
curvature radius is given by

|2 = —(n — 2)Q. — P: (51)

In n = 3, for instance, this agrees with the special point 
l2 = P/2 at which NMG exhibits special features [56,57].

In summary, there exists an alternative quadratic theory 
of gravity for n > 4 that is special and is originally 
motivated by extending the four-dimensional Lagrangian 
density Q4,4 to higher dimensions. This is defined by the 
coefficients

a—
nP

2(n — 1)’ Y = 0, A— (n — 1) 
2(n — 4)P ’

(52)

nP
' = — 4(n — 1) ’ (48)

cf. (49). This theory and, in particular, its relation to 
holographic renormalization deserve further analysis.

which makes □R disappear from the trace of the field 
equations. This is exactly the value of the relative 
coefficient that appears in the counterterm expansion of 
the boundary action in holographic renormalization 
[50-53]. Also, related to that, (48) agrees with the relative 
coefficient of the action that governs the induced gravity 
on a codimension 1 surface in AdSn gravity [54]. 
Equation (48) has also relation with theories in lower 
dimension: For n = 2, it corresponds to a/P = —1/2, for 
which the quadratic terms disappear from the action. For 
n = 3, it yields a/P = —3/8, which corresponds to the 
so-called new massive gravity (NMG) introduced in [55]. 
For n = 4, (48) yields a/P = —1/3, and the quadratic 
piece of the action is, up to a total derivative, the

ACKNOWLEDGMENTS

The authors are grateful to Professor Andrés Anabalón 
and Universidad Adolfo Ibáñez at Viña del Mar for the 
hospitality during the early stages of this work. G. G. 
thanks Eloy Ayón-Beato, Mokhtar Hassaine, Olivera 
Miskovic, Rodrigo Olea, and David Rivera for many 
interesting discussions on related matters. The work of 
G. G. is supported in part by the NSF through Grant 
No. PHY-1214302. This work was also partially sup- 
ported by CONICYT Grant No. PAI80160018, Newton- 
Picarte Grant No. DPI20140053, and FONDECYT 
Grant No. 1181047. M. C. is partially supported by 
Mexico’s National Council of Science and Technology 
(CONACyT) Grant No. 238734 and DGAPA-UNAM 
Grant No. IN113618.

104023-8



Q CURVATURE AND GRAVITY PHYS. REV. D 98, 104023 (2018)

[1] D. J. Gross and E. Witten, Nucl. Phys. B277, 1 (1986).
[2] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[3] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. 

Zhiboedov, J. High Energy Phys. 02 (2016) 020.
[4] A. Gruzinov and M. Kleban, Classical Quantum Gravity 24, 

3521 (2007).
[5] D. M. Hofman, Nucl. Phys. B823, 174 (2009).
[6] B. Zwiebach, Phys. Lett. 156B, 315 (1985).
[7] M. Porrati and M. M. Roberts, Phys. Rev. D 84, 024013 

(2011).
[8] H. Lu and C. N. Pope, Phys. Rev. Lett. 106, 181302 (2011).
[9] S. Deser, H. Liu, H. Lu, C. N. Pope, T. C. Sisman, and B. 

Tekin, Phys. Rev. D 83, 061502 (2011).
[10] C. Lanczos, Ann. Math. 39, 842 (1938).
[11] D. Lovelock, J. Math. Phys. (N.Y.) 13, 874 (1972).
[12] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[13] X. O. Camanho, J. D. Edelstein, G. Giribet, and A. 

Gomberoff, Phys. Rev. D 86, 124048 (2012).
[14] H. Lu, Y. Pang, and C. N. Pope, Phys. Rev. D 84, 064001 

(2011).
[15] C. Graham and A. Juhl, Adv. Math. 216, 841 (2007).
[16] A. Juhl, Families of Conformally Covariant Differential 

Operators, Q-Curvature and Holography (Birkhauser 
Verlag, Basel, Switzerland, 2009).

[17] T. Branson, Math. Scand. 57, 293 (1985).
[18] Y. Nakayama, Phys. Rev. D 97, 045008 (2018).
[19] T. Levy and Y. Oz, J. High Energy Phys. 06 (2018) 119.
[20] E. Fradkin and A. Tseytlin, Phys. Lett. 110B, 117 (1982).
[21] R. Riegert, Phys. Lett. 134B, 56 (1984).
[22] H. Osborn and A. Stergiou, J. High Energy Phys. 04 (2015) 

157.
[23] A. Gover and L. Peterson, Commun. Math. Phys. 235, 339 

(2003).
[24] T. Branson and B. Orsted, Proc. Am. Math. Soc. 113, 669 

(1991).
[25] S. Paneitz, SIGMA 4, 036 (2008).
[26] O. Miskovic, R. Olea, and M. Tsoukalas, J. High Energy 

Phys. 08 (2014) 108.
[27] Y-J. Lin and W. Yuan, arXiv:1512.05389; Pac. J. Math. 291, 

425 (2017).
[28] J. Oliva and S. Ray, Classical Quantum Gravity 27, 225002 

(2010).
[29] J. Oliva and S. Ray, Phys. Rev. D 82, 124030 (2010).
[30] N. Boulanger and J. Erdmenger, Classical Quantum Gravity 

21, 4305 (2004).

[31] M. R. Tanhayi, S. Dengiz, and B. Tekin, Phys. Rev. D 85, 
064016 (2012).

[32] H. Lu and K.N. Shao, Phys. Lett. B 706, 106 (2011).
[33] P. Bueno and P. A. Cano, Phys. Rev. D 94, 104005 (2016).
[34] P. Bueno and P. A. Cano, Phys. Rev. D 94, 124051 (2016).
[35] P. Bueno, P. A. Cano, V. S. Min, and M. R. Visser, Phys. 

Rev. D 95, 044010 (2017).
[36] P. Bueno and P. A. Cano, Phys. Rev. D 96, 024034 (2017).
[37] H. Lu, C. N. Pope, E. Sezgin, and L. Wulff, J. High Energy 

Phys. 10 (2011) 131.
[38] J. Maldacena, arXiv:1105.5632.
[39] G. Anastasiou and R. Olea, Phys. Rev. D 94, 086008 (2016).
[40] S. Deser and B. Tekin, Phys. Rev. D 75, 084032 (2007).
[41] S. Deser, I. Kanik, and B. Tekin, Classical Quantum Gravity 

22, 3383 (2005).
[42] S. Deser and B. Tekin, Phys. Rev. D 67, 084009 (2003).
[43] S. Deser and B. Tekin, Phys. Rev. Lett. 89, 101101 (2002).
[44] G. Giribet, O. Miskovic, R. Olea, and D. Rivera (to be 

published).
[45] E. Ayon-Beato, G. Giribet, and M. Hassaine, Proceedings 

of the 13th Marcel Grossmann Meeting (World Scientific, 
Singapore, 2014), p. 1074.

[46] E. Ayon-Beato, G. Giribet, and M. Hassaine, Phys. Rev. D 
83, 104033 (2011).

[47] E. Ayon-Beato, A. Garbarz, G. Giribet, and M. Hassaine, 
J. High Energy Phys. 04 (2010) 030.

[48] K. A. Moussa, G. Clement, and C. Leygnac, Classical 
Quantum Gravity 20, L277 (2003).

[49] D. Anninos, W. Li, M. Padi, W. Song, and A. Strominger, 
J. High Energy Phys. 03 (2009) 130.

[50] S. de Haro, S. Solodukhin, and K. Skenderis, Commun. 
Math. Phys. 217, 595 (2001).

[51] M. Henningson and K. Skenderis, J. High Energy Phys. 07 
(1998) 023.

[52] V. Balasubramanian and P. Kraus, Commun. Math. Phys. 
208, 413 (1999).

[53] S. Hyun, W. Kim, and J. Lee, Phys. Rev. D 59,084020 (1999).
[54] R. Myers, R. Purshasan, and M. Smolkin, J. High Energy 

Phys. 06 (2013) 013.
[55] E. Bergshoeff, O. Hohm, and P. Townsend, Phys. Rev. Lett. 

102, 201301 (2009).
[56] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Phys. Rev. 

D 79, 124042 (2009).
[57] J. Oliva, D. Tempo, and R. Troncoso, J. High Energy Phys. 

07 (2009) 011.

104023-9

https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1007/JHEP02(2016)020
https://doi.org/10.1088/0264-9381/24/13/N02
https://doi.org/10.1088/0264-9381/24/13/N02
https://doi.org/10.1016/j.nuclphysb.2009.08.001
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1103/PhysRevD.84.024013
https://doi.org/10.1103/PhysRevD.84.024013
https://doi.org/10.1103/PhysRevLett.106.181302
https://doi.org/10.1103/PhysRevD.83.061502
https://doi.org/10.2307/1968467
https://doi.org/10.1063/1.1666069
https://doi.org/10.1063/1.1665613
https://doi.org/10.1103/PhysRevD.86.124048
https://doi.org/10.1103/PhysRevD.84.064001
https://doi.org/10.1103/PhysRevD.84.064001
https://doi.org/10.1016/j.aim.2007.05.021
https://doi.org/10.7146/math.scand.a-12120
https://doi.org/10.1103/PhysRevD.97.045008
https://doi.org/10.1007/JHEP06(2018)119
https://doi.org/10.1016/0370-2693(82)91018-8
https://doi.org/10.1016/0370-2693(84)90983-3
https://doi.org/10.1007/JHEP04(2015)157
https://doi.org/10.1007/JHEP04(2015)157
https://doi.org/10.1007/s00220-002-0790-4
https://doi.org/10.1007/s00220-002-0790-4
https://doi.org/10.1090/S0002-9939-1991-1050018-8
https://doi.org/10.1090/S0002-9939-1991-1050018-8
https://doi.org/10.3842/SIGMA.2008.036
https://doi.org/10.1007/JHEP08(2014)108
https://doi.org/10.1007/JHEP08(2014)108
http://arXiv.org/abs/1512.05389
https://doi.org/10.2140/pjm.2017.291.425
https://doi.org/10.2140/pjm.2017.291.425
https://doi.org/10.1088/0264-9381/27/22/225002
https://doi.org/10.1088/0264-9381/27/22/225002
https://doi.org/10.1103/PhysRevD.82.124030
https://doi.org/10.1088/0264-9381/21/18/003
https://doi.org/10.1088/0264-9381/21/18/003
https://doi.org/10.1103/PhysRevD.85.064016
https://doi.org/10.1103/PhysRevD.85.064016
https://doi.org/10.1016/j.physletb.2011.10.072
https://doi.org/10.1103/PhysRevD.94.104005
https://doi.org/10.1103/PhysRevD.94.124051
https://doi.org/10.1103/PhysRevD.95.044010
https://doi.org/10.1103/PhysRevD.95.044010
https://doi.org/10.1103/PhysRevD.96.024034
https://doi.org/10.1007/JHEP10(2011)131
https://doi.org/10.1007/JHEP10(2011)131
http://arXiv.org/abs/1105.5632
https://doi.org/10.1103/PhysRevD.94.086008
https://doi.org/10.1103/PhysRevD.75.084032
https://doi.org/10.1088/0264-9381/22/17/001
https://doi.org/10.1088/0264-9381/22/17/001
https://doi.org/10.1103/PhysRevD.67.084009
https://doi.org/10.1103/PhysRevLett.89.101101
https://doi.org/10.1103/PhysRevD.83.104033
https://doi.org/10.1103/PhysRevD.83.104033
https://doi.org/10.1007/JHEP04(2010)030
https://doi.org/10.1088/0264-9381/20/24/L01
https://doi.org/10.1088/0264-9381/20/24/L01
https://doi.org/10.1088/1126-6708/2009/03/130
https://doi.org/10.1007/s002200100381
https://doi.org/10.1007/s002200100381
https://doi.org/10.1088/1126-6708/1998/07/023
https://doi.org/10.1088/1126-6708/1998/07/023
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://doi.org/10.1103/PhysRevD.59.084020
https://doi.org/10.1007/JHEP06(2013)013
https://doi.org/10.1007/JHEP06(2013)013
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1103/PhysRevD.79.124042
https://doi.org/10.1103/PhysRevD.79.124042
https://doi.org/10.1088/1126-6708/2009/07/011
https://doi.org/10.1088/1126-6708/2009/07/011

