
Collaborative, distributed and scalable platform based on
mobile, cloud, micro services and containers for intensive

computing tasks

David Petrocelli 1 2, Armando De Giusti 3 4 and Marcelo Naiouf 3

1 PhD Student at Computer Science School, La Plata National University, 50 and 120, La Plata,
Argentina

2 Professor and Researcher at Lujan National University, 5 and 7 routes, Luján, Argentina
3 Instituto de Investigación en Informática LIDI (III-LIDI), Computer Science School, La Plata

National University - CIC-PBA, 50 and 120, Argentina
4 CONICET - National Council of Scientific and Technical Research, Argentina
dmpetrocelli@gmail.com, degiusti@lidi.info.unlp.edu.ar,

mnaiouf@lidi.info.unlp.edu.ar

Abstract. Compute-heavy workloads are traditionally run on x86-based HPC
platforms and Intel, AMD or Nvidia GPUs; these require a high initial capital
expense and ongoing maintenance costs. ARM-based mobile devices offer a rad-
ically different paradigm with substantially lower capital and maintenance costs
and higher gains in performance and efficiency in recent years. When compared
to their x-86 brethren, they have become ubiquitous in consumer markets and are
making steady gains in the server market. Given this shifting computer paradigm,
it is conceivable that a cost- and power-efficient solution for our world’s data
processing would include those very same ARM-based mobile devices while
they are idling. Given that context, we developed and deployed an auto-scalable,
distributed and redundant platform on the basis of a cloud-based service managed
via container orchestration and microservices that are in charge of recycling and
optimizing these idle resources. We tested the platform performing distributed
video compression. We concluded the system allows for improvements in terms
of scalability, flexibility, stability, efficiency, and cost for compute-heavy work-
loads.

Keywords: Kubernetes & Containers, Pipelines, Microservices, Cloud Compu-
ting & Storage, Mobile Computing, Distributed & Collaborative Computing

1 Introduction

Developing and deploying a high-quality, distributed, collaborative, and scalable soft-
ware platform to process intensive tasks requires the adoption of the newest techniques,
technologies, tools, and infrastructure patterns that allow taking advantage of all the
available benefits on today's computing resources (On-Premise, Cloud and Mobile).
We have implemented the following set of features: a) Build lightweight and more scal-
able applications (Microservices), b) Integrate auto-scalable infrastructure to guarantee

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

10

an cost and power efficient usage of resources (Container and Container Orchestration)
and c) Reuse processing cycles from idle devices (Mobile devices)

Microservices allow for building smaller, lighter, reusable, and self-deployable soft-
ware components which communicate through a simple and lightweight protocol [1].
Implementing a containerized [2] infrastructure allows microservices to be deployed
and run as a naturally distributed application. This provides developers and operations
engineers great benefits such as, nimble deployment of software changes simplifying
the backups, replication and moving of applications and their dependencies. Operation
engineers also use an orchestration layer to track which containers are running and to
control, monitor, and scale (shrink or enlarge) applications [3].

In terms of computing power, mobile devices based on ARM chips have long idle
periods while they are charging [4]; if properly managed them, they could become mas-
sively distributed data centers, consuming only a fraction of the energy [5] for the same
computing power [6] as their traditional counterparts.

2 Collaborative, distributed and scalable platform for HPC

Based on the features we described earlier and considering our previous study [7], we
developed and deployed the platform based on a model composed by a) Kubernetes
container orchestration service (Cloud); b) Tasks management dockerized Micro-
services; c) Dockerized Queue Middleware and Database System; d) HTTP storage
system; e) x86 and ARM-based mobile workers. (see Fig. 1).

Fig. 1. Functional Diagram of the Collaborating Computing Network.

We used Kubernetes (K8s) AWS (EKS) and Azure (AKS) K8s SaaS clusters to host,
orchestrate, heal and monitor our distributed Dockerized services [8]. We configured
an auto-scalability mechanism based on CPU and memory container resources utiliza-
tion thresholds, guaranteeing services (pods) high availability, efficient distribution and
scaling (shrink/enlarge) across the cluster nodes. Finally, we configured DNS to inter-
connect containers, provide traffic routing and load balancing.

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

11

The front-end service allows clients to upload source video files and profile coding
parameters. It also allows users to visualize information about their in-progress tasks
and the result. Once tasks are received in backend microservices, source files are con-
verted into a Video Transport Stream File (ts) due to is the recommended format for
video streaming [9] and is tested impacts positively on latency, playback compatibility
and viewing experience [10]. Once converted, files are split in smaller chunks [11] and
stored in low-cost blob cloud storage [12]. We both use Azure Storage and Amazon S3
[12], to store data reliably and cheaply, upload and download stream files and distribute
content via delivery networks (CDN) for lower latency and content caching.

Using official Bitnami RabbitMQ and MariaDB Kubernetes helm charts [13], we
built an auto-scalable and fault-tolerant queue and database system where jobs and sta-
tistics are published respectively. RabbitMQ is used to securely and asynchronously
store, publish and distribute backend service jobs to worker processing nodes. High
Availability is guaranteed by RabbitMQ Policies and non-losing tasks are guaranteed
by implementing a manual ACK mode model where should a server error, client-side
issue, execution timeout happen, RabbitMQ thread moves the task back to queue. Mar-
iaDB is used to register job information (parameters, chunks, completed tasks and stor-
age endpoint) the user interface periodically uses to be refreshed. Furthermore, it stores
information about executed tasks (task, worker node and executed time). We use these
statistics to evaluate the platform and worker efficiency in different scenarios. High
Availability is configured via Galera active-active multi-master topology, guaranteeing
scalability, smaller latencies, no slave service and no lost transactions.

Meanwhile, workers are continuously pulling from the RabbitMQ queue to obtain
tasks and compress using the FFmpeg library. When chunks are completely processed,
the Joiner backend microservice unifies parts and uploads it to the cloud storage end-
point. Both worker and joiner process tasks parallelly using Linux pipelines. While the
source is stream downloaded via HTTP GET curl request, is also processed by FFmpeg
and parallelly streamed to the cloud storage vía HTTP PUT curl request. As a result,
disk and memory operations are reduced, improving system performance.

3 Platform test and obtained results

So far, we have evaluated K8s microservices behaviour, scalability (defining auto-
scale sets based on CPU and memory pod usage) and reliability. First, we forced crash-
ing instances and verified K8s pod recreation and data integrity. Later, we stressed K8s
services instances and checked horizontal scaling and load-balancing.

We have experimented with video compression tasks, following streaming best-
practices [10][11], selecting representative source videos (see Table 1) and defining a
set of h.264 compression profiles (see Table 2) to be executed on ARM-based and x86-
based devices. Thus, we obtained performance and power usage metrics.

Table 1. Most relevant source videos features (codecs and bitrate) used for compression tests

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

12

Table 2. Most relevant compression profiles properties (size, codecs, resolution and bitrate)

4 Preliminaries conclusions

K8s architecture running platform microservices, based on the experiments we
made, might be considered as an interesting infrastructure for HPC tasks. The results
showed stability, scalability, good response time and efficiency for different scenarios.
Regarding mobile workers, we tested ARM devices are capable of encoding video with
a competitive power and cost advantage over traditional x86 architecture. We have
recently improved, via pipeline implementation, the worker stability, performance and
efficiency.

References

1. Fritzsch J., Bogner J. et al From Monolith to Microservices: A Classification of Refactoring
Approaches. First International Workshop, DevOps 2018, France. (2018)

2. Matthias K., Kane S. Docker: Up & Running - 2nd Edition, Shipping Reliable Containers in
Production. O’Reilly Media. (2018)

3. Dobies J., Wood J. Kubernetes Operators - Automation the container Orchestration Plat-
form. O’Reilly Media. (2020)

4. Chethan K, Chiranthan H and D’Silva K. A Distributed Computing Infrastructure Using
Smartphones. International Advanced Research Journal in Science, Engineering and Tech-
nology JSS Academy of Technical Education Vol. 4, Special Issue 8 (2017)

5. Pramanik P., Sinhababu N et al. Power Consumption Analysis, Measurement, Management,
and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage. IEEE Ac-
cess 7. DO 10.1109/ACCESS.2019.2958684. (2019)

6. Andatech - The Snapdragon 865 Performance Preview: Setting the Stage for Flagship An-
droid 2020, https://bit.ly/2ZzFdd6, last accessed 2020/05/20

7. Petrocelli, D., De Giusti, A. E. & Naiouf, M. Hybrid Elastic ARM&Cloud HPC Collabora-
tive Platform for Generic Tasks. Springer. Communications in Computer and Information
Science. Cloud Computing and Big Data (2019)

8. Hausenblas M., Schimanski S. Programming Kubernetes: Developing Cloud-Native Ap-
plications. O’Reilly Media. (2019).

9. ETSI - Specification for the use of Video and Audio Coding in Broadcasting Applications
based on the MPEG-2 Transport Stream, https://bit.ly/36segJI, last accessed 2020/05/20

10. 2019 Global Media Format Report, https://bit.ly/2ZBmZIi, last accessed 2020/20/05
11. Dash Industry Forum - Guidelines for Implementation: DASH-IF Interoperability Points,

https://bit.ly/3ghFxTT, last accessed 2020/05/20
12. Daher Z., Hajjdiab H. Cloud Storage Comparative Analysis Amazon Simple Storage vs.

Microsoft Azure Blob Storage. Int. Journal of Machine Learning, Vol. 8, No. 1. (2018)
13. 13. Bitnami Helm Charts, https://bit.ly/3gsNci7, last accessed 2020/20/05.

Short Papers of the 8th Conference on Cloud Computing Conference, Big Data & Emerging Topics

13

