Removal of VOCs by catalytic process. A study of MnZnO composites synthesized from waste alkaline and Zn/C batteries

María V. Gallegos a, Miguel A. Peluso a, Elisabetta Finocchio b, Horacio J. Thomas a,c, Guido Busca b, Jorge E. Sambeth a,*

a Centro de Investigación y Desarrollo en Ciencias Aplicadas, “Dr. Jorge J. Ronco” CINDECA (UNLP – CCT CONICET La Plata), 47 N257 La Plata, Buenos Aires, Argentina
b Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Genova, Italy
c PlaPiMu – Planta Piloto Multipropósito, (CICPBA-UNLP) Cno. Centenario y 505, M.B. Gonnet, Buenos Aires, Argentina

HIGHLIGHTS
• Synthesis of MnZnO composites as catalysts for ethanol and toluene oxidation.
• Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries.
• The better performance of MnOx is due to the higher Mn/Zn ratio and the absence of ZnO.
• FTIR show that ethanol is adsorbed to form ethoxy and acetate species.
• Benzene (g) → Benzyl (a), Benzoate (a) → CO2.

GRAPHICAL ABSTRACT

ABSTRACT
Spent alkaline and zinc-carbon batteries were subjected to a biohydrometallurgy process, in order to recover manganese and mixed manganese zinc oxides. Two solids were synthesized, one of them prepared by reaction of MnSO4 and KMnO4 (MnOx) and the other obtained by chemical precipitation with NaOH (ZnMnO).

The characterization by XRD, TPR, FTIR and XPS revealed the presence of Mn3+ and Mn4+ cations in both samples, and the presence of ZnO and Mn-Zn spinels in ZnMnO. The samples were evaluated in the oxidation reaction of ethanol and toluene. The results in the flow reactor showed that ethanol conversion on both catalysts, MnOx and ZnMnO, is rather similar, but toluene conversion is markedly higher on MnOx, due to a greater Mn/Zn ratio and to the absence of a crystallized ZnO phase. The FTIR study demonstrated that ethanol is oxidized to acetaldehyde at low temperature, and to CO2 and CO at 400 °C. Traces of CH4 in the gas phase are also detected at high temperature. The formation of ethoxy and acetate groups is observed at the catalyst surface. With respect to toluene oxidation, CO2 is detected at 300 °C and when the temperature is increased, CO is also observed in the gas phase. The results showed that: (i) the alkaline and Zn-carbon batteries can be recycled as catalysts and (ii) the solids can be used in the catalytic process for VOCs control.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction
Volatile Organic Compounds (VOCs) are recognized as major contributors to pollution and the photochemical formation of smog...
Catalytic oxidation using transition metal oxide based catalysts is an environment friendly and promising control technology for VOC emission remediation [2–4]. Among transition metal oxides used for VOC oxidation, manganese oxide based materials exhibit great potential [5–7]. On the other hand, ZnO is used as photocatalyst [8,9] and in different catalytic reactions, such as steam reforming of alcohols [10,11], synthesis of methanol [12] and complete oxidation of CO [13] and trichloroethyene [14]. Also, ZnO doping with transition metals such as Mn and Cu could affect the electronic surface band structure of ZnO and improve its catalytic applications [13,15,16].

Spent batteries represent a dangerous waste, mainly due to the presence of poisonous and pollutant heavy metals [17–19]. In particular, alkaline batteries contain Zn and Mn. Zinc and manganese are essential elements for plants, animals, and humans, but at high levels it is toxic to all organisms [20–22]. In many countries of the world, spent batteries are usually disposed of in landfills with the domestic garbage [23,24]. The recovery and reutilization of both Zn and Mn from batteries would be very beneficial [25], and a number of procedures have been proposed for their recovery from waste batteries. The two common routes used in Mn and Zn recovery of procedures have been proposed for their recovery from waste and by precipitation with KMnO4. In the present work, after interesting catalytic properties from spent batteries by electrolysis domestic garbage [23,24], the recovery and reutilization of both Zn and Mn-based materials from alkaline and Zn/C cells [26] are pyrometallurgical and hydrometallurgical processes. Hydrometallurgical process has environmental advantages such as lower gas emissions and lower energy consumption [27].

In addition, spent alkaline and Zn/C batteries are used as raw materials for the synthesis of ferrites, where manganese and zinc are recuperated together, but this process include the adding of stoichiometric amounts of analytical reagents (Mn, Zn and Fe salts) to assure the desire final composition [28,29].

In a previous paper [30] we obtained a manganese oxide with interesting catalytic properties from spent batteries by electrolysis and by precipitation with KMnO4. In the present work, after leaching of spent alkaline and Zn/C batteries in an acid-reductive medium, we studied a mixed zinc-manganese oxide obtained by co-precipitation with NaOH, and compared to a manganese oxide obtained after precipitation Mn2+ with KMnO4. The solids obtained in this work were analyzed as possible catalysts for ethanol and toluene total oxidation. In addition, the reaction mechanism by FTIR spectroscopy of VOC oxidation onto the recovered catalyst was also studied.

2. Experimental

2.1. Recovery of Mn-based materials from alkaline and Zn-C cells

The biowaste and metal recovery process for the treatment of spent alkaline and Zn/C batteries has been described in a previous work [31]. Briefly, batteries were first cut transversely and separate components, washed with distilled water, filtered and dried, leaving a powder containing 34 wt% Mn and 22 wt% Zn. Leaching tests were performed using bio-generated sulfuric acid of pH = 0.80 (produced in an air-lift bioreactor type, filled with sulfur where a strain of Acidithiobacillus thiooxidans was inoculated [31]). Once completed the leaching step, the solution containing zinc and manganese were used for the synthesis of catalysts:

\(\text{MnO}_2: \text{Over 100 mL of leached solution, 100 mL of KMnO}_4 \text{ were added in order to react with MnSO}_4. \text{The solution was stirred for 30 min. The solid synthesized was filtered, washed with distilled water, dried at 120 °C and calcined in air at 500 °C for 2 h.} \)

\(\text{ZnMnO}: 100 \text{ mL of NaOH was added dropwise to 100 mL of the leachate liquor until pH 8, and the suspension was stirred at 30 °C for 1 h. The product was filtered, washed with distilled water and dried at 120 °C for 24 h. Finally, the solid was calcined in air at 500 °C for 2 h.} \)

2.2. Characterization and spectroscopic techniques

The samples were characterized by X-ray diffraction (XRD) using a Philips PW1390 Diffractometer. The X-ray beam used for diffraction analysis was CuKα radiation. The Scanning Electron Microscopy (SEM) studies were carried out using a Philips SEM 505 microscope. The quantitative and qualitative study was analyzed with an Energy Dispersive X-ray Spectroscopy (EDS), which is coupled to SEM equipment. X-ray photoelectron spectra (XPS) were recorded using a multitechnique system with Al Kα (1486.6 eV) emission as X-ray source. The textural properties were carried using a Micromeritics Accusorb 2100 D sorptometer. Specific surface area was obtained by BET method. Mn and Zn content were determined by atomic absorption spectrophotometry (AAS) using a Varian AA 240 spectrophotometer. FTIR spectroscopy studies were performed on a Bruker IFS66 infrared spectrometer at spectral resolution of 4 cm\(^{-1}\) accumulating 200 scans. The sample reducibility was analyzed by temperature programmed reduction (TPR) tests using a 5% H2/N2 reducing mixture carrier gas flowing at 22 cm\(^3\) min\(^{-1}\). The experiments were performed at a heating rate of 10 °C min\(^{-1}\) from room temperature to 900 °C using 50 mg of sample. Calibration was carried out with NiO.

2.3. Catalytic activity

The catalytic activity of the samples was evaluated by means of the ignition curves of ethanol and toluene in air. The experiments were carried out in a flow U-shape glass reactor at atmospheric pressure. 100 mg of catalyst was placed into the glass reactor and a reactive flow (2 vol% of VOC in air) was passed through it at total flow rate of 100 cm\(^3\) min\(^{-1}\), which gives a gas hourly space velocity of 36,000 h\(^{-1}\). The reactants and products were measuring by GC-FID (Thermofinningan Trace CG) together with CO2 monitoring by an on-line detector (Telaire CO2 sensor). The conversion of VOC (X) and the conversion into CO2 (XCO2) were respectively calculated as X = 1 – FVOC/FVOC,in and XCO2 = FCO2/FVOC,in, where FVOC is the outlet molar flow rate of VOC at steady state, FVOC,in is the inlet molar flow rate of VOC, FCO2 is the outlet molar flow rate of CO2 at steady state and v is the number of carbon atoms in the VOC molecule (for ethanol and toluene, v = 2 and 7, respectively). In the case of ethanol, the conversion into acetaldheyde (Xacetal) was calculated as Facetal/FVOC,in, where Facetal is the outlet molar flow rate of acetalddehyde at steady state.

The ethanol ignition curve over the catalysts was also studied using N\(_2\) in absence of air, in the same apparatus described above.

2.4. FTIR in situ

The surface chemistry study was performed by using Nicolet 380 FT-IR (Fourier transform infrared spectroscopy) spectrometers, with the pure powders pressed into self-supporting wafers (~30 mg).

The catalysts were activated in the IR cell connected with conventional gas-manipulation apparatus at 500 °C in air and under vacuum (10\(^{-4}\) torr). The activated samples were then contacted with ethanol or toluene vapor at room temperature (r.t) and at increasing temperatures up to 500 °C. In another set of experiments, air was admitted in the IR cell together with the organic compound. The IR analysis of surface species arising from organics oxidation as well as the analysis of gas phase species was carried out at each temperature.
3. Results and discussion

3.1. Characterization of materials

By EDS analyses the sulfur content in the samples was less than 3 wt% for the MnOₓ solids, and about 10 wt% for the ZnMnO solid. The samples obtained from the leachate liquor after leaching of spent batteries contained both metals, Mn and Zn. The manganese/zinc ratio along with the specific area of the samples used is listed in Table 1. MnOₓ presents a higher specific area than ZnMnO, possibly due to the formation of an α-MnO₂ oxide (see next paragraph). As can be seen, the surface area is of a similar order and the preparation techniques showed that the amount of Zn in ZnMnO catalyst is higher than that of MnOₓ solid.

The X-ray diffraction patterns of the synthesized oxides are depicted in Fig. 1. The X-ray diffraction pattern of MnOₓ presents diffraction lines corresponding to α-MnO₂ phase (JCPDS 44-1386) and additionally, some diffraction lines corresponding to Mn₂O₃ (Bixbyite JCPDS 89-4836) were detected. No peaks corresponding to ZnO or Mn-Zn mixed compound are found. On the other hand, in the ZnMnO sample, the diffraction lines corresponding to hexagonal ZnO wurtzite (JCPDF 36-1451) are observed. Additionally, small peaks corresponding to ZnMnO₃, Mn₂O₃ and λMnO₂ were detected.

SEM images of the synthesized oxides (Fig. not shown) indicated that the morphology of the solids obtained is in general rather similar.

The FT-IR spectrum of the oxides is shown in Fig. 2. Two bands are detected at 506, 613 cm⁻¹ assigned to stretching of Mn-O [32] and Mn-O-Zn [33], respectively. In addition, a broad band at around 1200 cm⁻¹ is detected, characteristic of a S=O sulfate bonds [34].

In order to know about the chemical bonding structure of the oxides, the XPS spectra for the valence bonds of Mn 2p 3/2, Zn 2p 3/2 and O 1s states were recorded and are shown in Fig. 3. The corresponding binding energies of the above states are also listed in Table 2. The spectra of Zn 2p 3/2 of the samples exhibit a symmetric single peak that could be nicely fitted to a single peak, ruling out the possibility of the existence of multiple components of Zn in these samples. The peak corresponding to Zn²⁺ ions in MnOₓ, shifted to lower binding energies compared to ZnMnO sample. Taking into account than the manganese percentage of MnOₓ is higher than ZnMnO, this shift in binding energy is due to the ZnMn bonding structure [35], and to the different bonding states of the elements on the surface [36]. Zn atoms bonded to manganese (which are less electronegative than oxygen) will contribute to the shift of the Zn 2p_{3/2} peak [37].

For all the samples, the O1s peak is in general composed of three components centered at about 529, 530 and 532 eV. The lower binding energy (Oι) is ascribed to lattice O, the medium binding energy peak (Oi) is assigned to surface adsorbed O, OH⁻ groups and O vacancies [38] and the higher binding energy peak correspond to adsorbed molecular water. OII species have greater mobility than lattice oxygen (Oι) and may give rise to beneficial spillover phenomena at the solid surface [6]. The OII/OI ratio is higher for MnOₓ (0.67) than ZnMnO (0.42). Taking into account that OI species are nucleophilic reagents, they are usually considered responsible for selective oxidation reactions, although their participation to the first steps of catalytic combustion cannot be ruled out. On the other hand, OII oxygens are electrophilic species and are reported to be highly reactive for total oxidations reactions [39].

For the evaluation of the Mn valence state, the Mn2p 3/2 spectra were studied. Although the Mn 3 s level is usually used for the determination of the Mn oxidation state, this energy region was overshadowed by the presence of a very strong Zn 3p peak, and thus Mn 2p lines were analyzed instead. In both samples, MnOₓ and ZnMnO, the Mn2p 3/2 peak level is centered near 642 eV, and could be deconvoluted into two Mn2p 3/2 components, which could be associated with Mn³⁺ and Mn⁴⁺ species [40].

The reduction behavior of the catalysts was followed by H₂-TPR, as shown in Fig. 4. It is assumed that MnO is the reduced state of

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>SBET (m² g⁻¹)</th>
<th>Vp (cm³ g⁻¹)</th>
<th>Mn/Zn EDS</th>
<th>Mn/Zn AA</th>
<th>TPR Area (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnMnO</td>
<td>33</td>
<td>0.15</td>
<td>0.6</td>
<td>0.4</td>
<td>6.4</td>
</tr>
<tr>
<td>MnOₓ</td>
<td>37</td>
<td>0.16</td>
<td>6.7</td>
<td>2.5</td>
<td>12.0</td>
</tr>
</tbody>
</table>
the MnO₂ species above 800 °C [41]. As is illustrated in Fig. 4, in the TPR curve of the samples, there is one broad peak spanned within the temperature range of 200–600 °C. On both samples, the reduction starts at about 250 °C, and presents a maximum at 405 and 430 °C for MnOₓ and ZnMnO, respectively. Taking into account that the reduction of ZnO starts at above 600 °C [42,43], the reduction peaks may consist of the following successive reduction steps: MnO₂ – MnO – MnO₁₋₂ – MnO₂ – MnO [44] or the reduction series MnO₂ – MnO – MnO₁₋₂ – MnO – MnO [45]. Additionally to the reduction steps described above, in ZnMnO sample, the reduction peaks may also include the reduction of the ZnMnO₂ phase, which reduction could be easier than that of MnOₓ due to the ZnO properties, as it was reported by Liang et al. [42].

Taking into account H₂ consumption in the samples, a manganese average oxidation state (AOS) of 3.8 and 3.7 was calculated for ZnMnO and MnOₓ, respectively, which indicates the presence of manganese cations in different oxidation states.

3.2. Catalytic combustion data

The results of catalysts activity for ethanol oxidation in the presence of air are shown in Fig. 5 and Fig. 6. The T₅₀ (temperature for 50% conversion) is 156 and 170 °C for ZnMnO and MnOₓ, respectively. These values of T₅₀ are on the same order as the results obtained by different authors [46,47]. On the other hand, the T₉₀ (temperature for 90% conversion) on ZnMnO is higher than the values reported in bibliography and is also higher than the MnOₓ prepared in this work (Table 3).

In all cases, the main product is CO₂, but the formation of partial oxidation product of ethanol, namely acetaldehyde, has been detected. Figs. 6 and 7 show some formation of acetaldehyde on both catalysts, MnOₓ and ZnMnO. The ethanol adsorption – oxidation could be divided in two parts; one of them between 0 and 50% and the other between 50 and 100% of conversion. In the first range ethanol oxidation on ZnMnO catalyst is higher than in MnOₓ (see Table 3). At high temperature the acetaldehyde production in both catalysts is detected. In MnOₓ, acetaldehyde selectivity was 6% at 300 °C (more than 90% conversion), whereas in ZnMnO solid, acetaldehyde selectivity was 18% at 250 °C, where the ethanol conversion was 80%.

The ethanol ignition results in absence of air (N₂ Air Liquid 99.9%) can be seen in Figs. 5 and 6. The results showed that the conversion reached 20 and 10% at 300 °C on MnOₓ and ZnMnO, respectively.

In Fig. 7 the light-off curves relative to toluene combustion in air on the two catalysts are compared. MnOₓ is the most active one, showing high toluene conversion (≈70%) already at 350 °C, while at this temperature the ZnMnO catalyst the conversion is 40% only. In all cases the only product is CO₂, showing no by-product formation for this reaction.

When toluene is adsorbed on MnOₓ, the aromatic ring became unstable and conducts to total oxidation to CO₂. Over manganese oxides with cryptomelane structure, Santos et al. [46] shown that adsorbed toluene affects the mobility of the oxygen species, making them less reactive and the oxide is able to retain toluene at high temperatures.

As remarked by Lüth et al. [48], oxygenated VOCs can be adsorbed strongly on oxide surfaces through coordination of their nonbonding oxygen electron pairs, thus they are more strongly chemisorbed than aromatic hydrocarbons that adsorb through their π-type C@C orbitals. For this reason, the activation energy of O-VOC combustion is lower than that of aromatic compounds. These results and our results allow us to say that the limited interaction VOCs–ZnO is mainly responsible for the different catalytic activity over each catalyst, for instance, the lower toluene conversion on the ZnMnO catalyst.

It has been reported that the activity of manganese oxides in the oxidation of VOCs is due to the presence of the Mn³⁺–Mn⁴⁺ couple and the tunnel structure of the oxide [49,50]. On the other hand, some authors have also reported a correlation between the presence of the OI species and the catalytic activity, due to the higher mobility of the OI species compared to that of the OII species [51].

In our two catalysts, XPS results confirm the presence of the Mn³⁺–Mn⁴⁺ couple and show that the concentration of OII species
is slightly higher on MnO$_x$, possibly explaining the best ethanol and toluene conversions obtained on this catalyst.

In sum, taking into account that both catalysts present similar specific area, and contain Mn$^{3+}$ and Mn$^{4+}$, the better performance of the MnO$_x$ catalyst could be due to the higher Mn/Zn ratio and to the absence of a crystallized ZnO phase [13].

To have some more information, we compared the catalytic activity of these materials to those of an active manganese oxide catalyst studied previously [49], synthesized by chemical reaction between Mn(NO$_3$)$_2$ and KMnO$_4$, composed of α-MnO$_2$ and bixbyite α-Mn$_2$O$_3$ and with a specific area of 39 m2 g$^{-1}$. Indeed, the reference catalyst (Zn-free and sulfate-free) presents a lower T_{100} for ethanol oxidation than the MnO$_x$ catalyst studied here. This oxide also presents the couple Mn$^{3+}$-Mn$^{4+}$, and the better conversion could be associated with the absence of Zn and sulfate species. Nevertheless, acetaldehyde production in this catalyst is higher than that of the MnO$_x$ obtained using spent alkaline and Zn/C batteries. It is worth noting that the conversion of VOCs in the catalysts prepared in this work is not so different from that of catalysts prepared using commercial salts. In addition, the production of incomplete oxidation products on MnO$_x$ catalyst is low. These features render manganese catalysts prepared using spent alkaline and Zn/C batteries as raw material suitable for reducing oxygenated VOC emissions.

The reference manganese oxide was also studied in the oxidation of toluene, and results are presented in Fig. 7. In this case, the reference catalyst presents again a lower T_{100} for toluene oxidation.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>O 1s BE(eV)</th>
<th>specie</th>
<th>%</th>
<th>Mn 2p$_{3/2}$ BE(eV)</th>
<th>specie</th>
<th>%</th>
<th>Zn 2p BE(eV)</th>
<th>specie</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnMnO</td>
<td>529.8</td>
<td>O$^{2-}$</td>
<td>48</td>
<td>642.8</td>
<td>Mn$^{4+}$</td>
<td>49</td>
<td>1021.0</td>
<td>Zn$^{2+}$</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>531.7</td>
<td>OH$^{-}$</td>
<td>20</td>
<td>641.9</td>
<td>Mn$^{3+}$</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>532.6</td>
<td>H$_2$O</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO$_x$</td>
<td>529.4</td>
<td>O$^{2-}$</td>
<td>43</td>
<td>642.9</td>
<td>Mn$^{4+}$</td>
<td>35</td>
<td>1020.7</td>
<td>Zn$^{2+}$</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>531.1</td>
<td>OH$^{-}$</td>
<td>29</td>
<td>641.3</td>
<td>Mn$^{3+}$</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>532.5</td>
<td>H$_2$O</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

XPS results of the oxides.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Ethanol Conversion</th>
<th>CO$_2$ Yield</th>
<th>Acetaldehyde Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnMnO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO$_x$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. [46]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. [47]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Ethanol and toluene conversion on ZnMnO and MnO$_x$ catalysts.

Please cite this article in press as: M.V. Gallegos et al., Removal of VOCs by catalytic process. A study of MnZnO composites synthesized from waste alkaline and Zn/C batteries, Chem. Eng. J. (2016), http://dx.doi.org/10.1016/j.cej.2016.11.001
3.3. Infrared studies

The spectra of all the pure catalyst disks present a clear strong absorption band in the region 1100–1200 cm\(^{-1}\), which is assigned to the S=O stretching mode of sulfate species (exemplified in Fig. 8. a for the sample MnO\(_x\)). This band is more or less complex, showing several components. The position of the main maximum is similar to that observed in the case of the KBr disk spectrum. This position and the similarity of the KBr spectrum (recorded in air) to that of the pure powder pressed disk (recorded in vacuum after previous outgassing at 500 °C) suggest that it is due at least in part to highly coordinated sulfates present in the bulk of the solid. In fact, surface sulfates usually absorb at 1400–1200 cm\(^{-1}\) [52], i.e., at higher frequency than bulk sulfates. The IR spectra of the catalyst disk show, at the lower frequency side, the cutoff typically due to the bulk metal-oxygen vibrations near 700 cm\(^{-1}\) [53].

3.3.1. Adsorption of ethanol

The oxidation of ethanol performed in static conditions on the IR cell both, in the presence and in the absence of air, has been followed studying the IR spectra of surface species and gas-phase species.

The results of this experiment performed on the MnO\(_x\) sample in the absence of air are reported in Fig. 8. After ethanol adsorption at r.t. a weak absorption band is found near 1030 cm\(^{-1}\), overlapping the strong sulfate band, which can be assigned to CO/CC stretching of surface alkoxy groups. This absorption band disappears progressively above 250 °C, when weak bands at 1550 and 1430 cm\(^{-1}\) form, due to surface acetates (COO asymmetric and symmetric stretchings modes, respectively). In order to evidence the newly formed adsorbed species, in Fig. 9 the subtraction spectra are reported. These spectra are obtained by subtracting the spectrum of MnO\(_x\) surface outgassed at high temperature from the spectrum of the surface in the presence of ethanol at the reported temperature. The spectral analysis confirms that ethoxy groups form upon ethanol absorption (positive band in the spectrum 9.a) and disappear when surface acetate species and acetaldehyde form (negative band of ethoxy groups and positive band of acetate species in the spectrum 9.b). The sequence of the spectra suggests that ethoxy groups are precursors of acetaldehyde formation while acetate species are not, being still observed at 380 °C. Correspondingly, in the gas phase spectra (Figs. 10 and 11), besides bands characterizing ethanol vapor at 3600 cm\(^{-1}\) (OH stretching mode), 3000–2800 cm\(^{-1}\) (CH stretching modes) and 1100–1000 cm\(^{-1}\) (CC/CO stretching modes), new bands are detected, corresponding to the formation of reaction products. In these conditions, the oxidation of ethanol starts at 250 °C with the formation of acetaldehyde (bands at 1700 cm\(^{-1}\), C=O stretching mode, and at 2700 cm\(^{-1}\), CH stretching with Fermi resonance band). On the
other side, bands due to residual unreacted ethanol are still detected. The subtraction spectra also show that the spectrum of the sulfate species undergoes some slight changes, with the disappearance of a band at 1250 cm\(^{-1}\) upon adsorption of ethanol. This indicates that part of the sulfate band is due to surface sulfate species, characterized by the S=O stretching at the higher frequency side. This band is surface sensitive, being shifted to lower frequencies (similar to those of bulk sulfates) upon ethanol adsorption. Surface sulfate species may consequently be involved in the adsorption and conversion of ethanol.

In the experiment performed in the IR cell with some oxygen in the cell, acetaldehyde forms in the same temperature region as in the experiment performed without oxygen gas (Fig. 10), showing that reticular oxygen is likely involved in ethanol oxidative dehydrogenation. At 400 °C, however, CO\(_2\) forms in significant amounts, while CO and CH\(_4\) are also observed. Correspondingly ethanol bands are not detected anymore. Likely, in our static conditions, some by-products such as CO and methane are formed due to the high VOC/O\(_2\) ratio, and possibly arising from a limited fraction of acetaldehyde molecules which undergo a parallel conversion path.

Fig. 9. FT IR subtraction spectra of surface species arising from ethanol adsorption over MnO\(_x\) catalyst at 25 °C (a) and at 380 °C (b). The activated surface has been subtracted.

Fig. 10. FT IR spectra of gas phase species arising from ethanol conversion over MnO\(_x\) catalyst (no air) at (a) 25 °C, (b) 100 °C, (c) 150 °C, (d) 200 °C, (e) 250 °C, (f) 300 °C and (g) 380 °C.
The spectra of the adsorbed species show again the formation of ethoxy groups at low temperature and of acetate species at higher temperature (Fig. 12). Also, in this case the absorption associated with the Mn-oxygen modes is slightly reduced at high temperature. This indicates that gas phase oxygen is needed to convert ethanol to CO$_2$, with the intermedia of acetaldehyde in the 250–400°C temperature range. If oxygen is not sufficient, acetaldehyde can decompose to CO + CH$_4$ instead of burning to CO$_2$, as reported above.

The data from these experiments compare well with the data on the catalytic conversion of ethanol. These data show that ethanol can be efficiently burnt catalytically over this catalyst, but the
reaction must be performed at 350 °C minimum temperature to avoid the formation of acetaldehyde, an unwanted VOC by-product.

The experiments of ethanol oxidation carried out in static conditions in the IR cell performed on the ZnMnO sample in general show similar results as in the case of MnOx. As comparison, Fig. 13 shows the gas phase spectra of ethanol oxidation in the absence of air, over the ZnMnO sample. As in the MnOx sample, the bands at 3600 cm⁻¹, 3000–2800 cm⁻¹ and 1100–1000 cm⁻¹ are characteristic of ethanol vapor, corresponding to OH, CH and CC/CO stretching modes, respectively. The formation of acetaldehyde (1700 cm⁻¹ and 2700 cm⁻¹) starts at 350 °C in these conditions, i.e. 100 °C above the temperature at which it starts in the MnOx sample.

The results of the ethanol oxidation over the Mn-based catalysts in the presence of air are in agreement with a previous work [49], where the adsorption-oxidation of ethanol in air over a manganese oxides, synthesized using commercial Mn(NO₃)₂ and KMnO₄ aqueous solutions, was studied. It was demonstrated that the oxidation of ethanol in air over a manganese oxide occurs from ethanol adsorption and the oxidation to acetaldehyde or CO₂ as a function of the temperature. In the catalysts prepared in this work, the analysis of catalytic tests and IR spectroscopy results suggest that combustion reaction mechanism follows a completely consistent path:

\[
\text{Ethanol (g) } \rightarrow \text{Ethoxy } \rightarrow \text{Acetaldehyde } \rightarrow \text{Acetate } \rightarrow \text{CO}_2
\]

Adsorbed acetate species can also behave as reaction intermediate and be oxidized directly to CO₂ at high temperature.

When the temperature rises to 350–400 °C, CO and CH₄ are also detected in the IR experiment, together with CO₂ and likely due to the decomposition of acetaldehyde at high temperature in our experimental conditions [54,55].

The study without oxygen evidences that over the MnOx catalysts ethanol adsorption gives rise to surface ethoxy and acetate species. The former are desorbed to the phase gas as acetaldehyde and then the aldehyde is oxidized to CO₂. On the other hand, in absence of oxygen acetate species are quite stable at the surface at high temperature and are not further oxidized, thus acting as spectator species. These results are in agreement with the catalytic activity without O₂ (Figs. 5 and 6).

3.3.2. Adsorption of toluene

Analogous studies have been performed using toluene as the reactant. In Fig. 14 the IR spectra obtained with the catalyst MnOx in the presence of air are reported. The corresponding spectra of gas-phase species are shown in Fig. 15. In this figure, the toluene molecule is characterized by two groups of CH stretching bands, above and below 3000 cm⁻¹, corresponding to CH stretching modes of aromatic and aliphatic CH groups, respectively [56]. Another set of sharp and weaker bands are detected between 1450 and 1600 cm⁻¹, due to the ring vibrational modes. The strong band around 750 cm⁻¹ is typical of the mono substituted aromatic ring [56]. These bands slightly decrease in intensity above 250 °C. Toluene starts to be significantly converted into CO₂ at 300 °C, when the band of CO₂ (2350 cm⁻¹) starts to grow in the gas phase spectra. At 400 °C, CO is also observed (band at 2150 cm⁻¹) but its formation should be related to the reaction conditions in the IR cell (i.e. high content of VOC) No other species are observed in the gas phase. Looking at the surface species, bands at 1600, 1550 and 1430 cm⁻¹ are observed already at 150 °C, and decrease in intensity progressively starting from 300 °C (Fig. 14). This is the typical behavior of the surface intermediate that forms on the surface before the reaction starts and disappears when reactions start to be fast. These bands could be assigned to carboxylate (likely benzoate) species [40], therefore suggesting that toluene conversion occurs first through oxidation at the methyl group, which results

![Fig. 13. FTIR spectra of gas phase species arising from ethanol conversion over ZnMnO catalyst (no air) at (a) 25 °C, (b) 100 °C, (c) 150 °C, (d) 200 °C, (e) 250 °C, (f) 300 °C and (g) 380 °C.](image-url)
in strong adsorption on the catalyst, followed by burning of the ring at higher temperatures (above 200 °C) to \(\text{CO}_2 \) and \(\text{CO} \). No intermediate species having lower oxidation degree such as alkoxides or aldehydes could be detected. These species are likely formed but at a temperature at which further oxidation immediately occurs, as already reported in some early work on VOC combustion [57].

The oxidation of toluene in the IR cell performed on ZnMnO is represented in Fig. 16. In the gas phase spectra, apart from some residual toluene, \(\text{CO}_2 \) and traces of \(\text{CO} \) at the highest temperatures, no other species are detected. Apparently, over this catalyst \(\text{CO}_2 \) and \(\text{CO} \) are formed in lower amount in comparison with the MnO\(_x\) catalyst (see Fig. 15), in agreement with activity tests evidencing the remarkably higher activity of MnO\(_x\) in toluene oxidation.

With respect to toluene oxidation our results are in agreement with the conclusion of Sun et al. [58], who have proposed that toluene is adsorbed like benzoate species. Different authors

Fig. 14. FT IR spectra of surface species arising from toluene adsorption and conversion over MnO\(_x\) catalyst (in the presence of air): (a) activated surface, (b) 25 °C, (c) 100 °C, (d) 150 °C, (e) 200 °C, (f) 250 °C, (g) 300 °C, (h) 350 °C, (i) 400 °C and (j) 500 °C.

Fig. 15. FT IR spectra of gas phase species arising from toluene conversion over MnO\(_x\) (in the presence of air) at: (a) 25 °C, (b) 100 °C, (c) 150 °C, (d) 200 °C, (e) 250 °C, (f) 300 °C, (g) 350 °C, (h) 400 °C and (i) 500 °C.
have shown that the toluene is stable on the surface of the manganese oxides and the total oxidation is reached between 240 and 300 °C. The MnOx catalyst synthesized in this work, which is a recycled solid, reaches complete toluene oxidation at 250 °C without formation of partial oxidation products. This result is very interesting because waste batteries, which are a serious environmental problem, can be used as raw materials to prepared different manganese oxides, which can be used as efficient catalysts for the total oxidation of volatile organic compounds emissions.

4. Conclusions

MnOx and ZnMnO solid catalysts have been obtained from spent alkaline and zinc–carbon batteries by an innovative biohydrometallurgical process.

XRD, XPS and TPR analysis indicates that MnOx is constituted of α-MnO2 and Mn3O2 phases, with the presence of Zn2+ and the Mn3+/Mn4+ couple; whereas ZnMnO is composed of ZnO, ZnMnO2 and Mn2O3. The higher OII/OI ratio was found on MnOx oxide.

In spite of the presence of Zn2+ and surface sulfate formation from the recovery procedure, the MnOx catalyst shows interesting activity in ethanol combustion and also in the most difficult toluene combustion in the temperature range 150–300 °C. The contemporary presence of Mn ions having different oxidation states and of mobile oxygen species is required for an efficient catalytic activity. Although ZnMnO also has the Mn3+/Mn4+ couple, the better performance of MnOx is due to the higher Mn/Zn ratio and the absence of ZnO.

The FTIR spectra show that ethanol adsorbs mainly in the form of ethoxides at the surface of the catalysts. Acetates are actually intermediates rather than spectators in the catalytic oxidation of ethanol over the oxides prepared from waste batteries in the presence of air. In the absence of air, the role of lattice oxygen in the oxidation process has been evidenced. In toluene oxidation, carboxylate species (benzoates) are likely reaction intermediates for total oxidation.

New manganese and zinc based catalysts for VOCs removal could be synthesized using spent alkaline and zinc–carbon batteries as starting materials.

Acknowledgements

Funding by the Italy (MAE)-Argentina (MINCYT, Project IT-1304) exchange program is gratefully acknowledged. The authors acknowledge the CONICET and UNLP (Argentina). We are thankful to Lic. P. Fetsis, Sra. Graciela Valle and Lic. M. Theiller. This work was supported by CONICET (PIP 942), CICPBA and ANPCyT (PICT 2012-2366) – Argentina.

References

