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can be considered as good carriers for transportation of 
ReI(CO)3(pterin)(H2O) complex. This is of significant 
importance in relation to the use of this Re(I) complex in 
several biomedical fields, such as photodynamic therapy 
and radiopharmacy.
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Introduction

Re(I) tricarbonyl complexes have been proposed as novel 
therapeutic agents of relevance in photodynamic therapy, 
chemo and radiotherapy (anti-cancer drugs) [1], and anti-
microbial activity [2]. The ability to rationally design the 
nature of the ligand allows us to obtain complexes with a 
large structural variety and stereochemistry that define their 
physicochemical properties (e.g., solubility, catalytic activ-
ity, and photoactivity) [3–6].

In this sense, the photoluminescence of these complexes 
can be modulated to apply them as intracellular fluorescent 
probes [7, 8] for diagnostic purposes. Moreover, “hot” ana-
logues of the Re organometallic complexes (using 188Re 
and 186Re isotopes) can be prepared for be applied for radio 
imaging as well as for therapy [9, 10]. In order for these 
properties can be fully exploited, the complexes must inter-
act efficiently with transport proteins in the bloodstream 
and have a good solubility in water at physiological pH 
(pH = 7.4).

Serum albumins are the major protein constituents in the 
circulatory system of mammalians. These macromolecules 
have important physiological role as they contribute to the 
osmotic blood pressure [11] as well as they help to control 
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aqueous solution. The complex has been obtained with suc-
cess via the fac-[ReI(CO)3(H2O)3]Cl precursor complex. 
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ated employing UV–vis fluorescence and absorption spec-
troscopy and circular dichroism. The results suggest that 
the serum albumins-ReI(CO)3(pterin)(H2O) interactions 
occurred in the domain IIA-binding pocket without loss 
of helical stability of the proteins. The comparison of the 
fluorescence quenching of BSA and HSA due to the bind-
ing to the Re(I) complex suggested that local interaction 
around the Trp 214 residue had taken place. The analysis of 
the thermodynamic parameters ΔG0, ΔH0, and ΔS0 indi-
cated that the hydrophobic interactions played a major role 
in both HSA-Re(I) and BSA-Re(I) association processes. 
All these experimental results suggest that these proteins 
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the blood pH and increase the solubility of fatty acids. 
However, the most important physiological function of 
albumins is the transport of numerous ligands in the blood 
stream [12]. The delivery and pharmacokinetics of these 
pharmacologic compounds depend on their binding ability 
with albumins. Therefore, it is important to study the inter-
actions of drugs with these proteins. These kinds of stud-
ies are usually carried out using a model protein to Human 
Serum Albumin (HSA), such as Bovine Serum Albumin 
(BSA).

Albumins fluorescence is originated by three amino-acid 
residues with intrinsic fluorophore groups present in the 
protein, i.e., tryptophan (Trp), tyrosine (Tyr), and phenyla-
lanine (Phe). In fact, the fluorescence of albumins comes 
almost completely from Trp and Tyr, since the fluorescence 
from phenylalanine has a very low quantum yield [13]. 
The emission spectra of HSA and BSA at λexc = 280 nm 
arise from both tryptophan and tyrosine residues, because 
the incident radiation can be absorbed efficiently by both. 
Tryptophan emission comes not only from tryptophans 
excited by the external radiation, but also from tryptophans 
excited by radiationless energy transfer from excited tyros-
ine. Whereas at λexc = 295 nm, HSA and BSA fluorescence 
is only due to tryptophan residues, because tyrosine is not 
electronically excited with such wavelength and thus it 
neither emits nor transfers energy [14, 15]. When a small 
molecule binds to albumins, it may prompt changes in the 
intrinsic fluorescence intensity due to alterations in the 
micro environment of the emitter residues. Albumin con-
sists of a single polypeptide chain with three homologous 
domains (I, II, and III). Each domain is composed of two 
subdomains (A and B), which are predominantly helical 
and extensively cross-linked by several disulphide bridges. 
BSA contains two tryptophans located in two different 
subdomains, i.e., Trp214 deeply buried in the hydropho-
bic loop in the IIA subdomain, and Trp 135 exposed to a 
hydrophilic environment in the IB subdomain [16], while 
HSA contains only one tryptophan located in the IIA sub-
domain (Trp212). The crystal structure analyses indicate 
that the principal regions of ligand-binding sites in albu-
mins are located in hydrophobic cavities in subdomains IIA 
and IIIA.

To date, there are only a few reports in the literature 
about association studies of Rhenium complexes with BSA 
[17–19]. In addition, these Re complexes studied had not 
high water solubility. However, as far as we know, there are 
not reports about interactions studies between these kinds 
of complexes and HSA.

In this study, we evaluated the association with both 
HSA and BSA of the complex fac-ReI(CO)3(pterin)(H2O), 
where pterin = 2-amino-4-oxo-pterinate. We report a new 
synthetic route to obtain this Re(I)-pterin complex which 
has interesting features such as both its relatively high 

solubility in water and its remarkable stability in a broad 
pH range [20]. Our results show that fac-ReI(CO)3(pterin)
(H2O) complex is able to bind to both HSA and BSA. The 
study of the binding properties between Re(I)-pterin com-
plex with these transport proteins was performed using 
steady-state and time-resolved luminescence. Fluorescence 
measurements can offer information of the binding of small 
molecules to biopolymers as DNA and proteins at the 
molecular level, such as about the binding mechanism and 
mode of the interaction, binding constant, intermolecular 
distances, etc. [21, 22].

The nature of the binding forces was established by 
studying the interaction at different temperatures, in the 
298–310 K range. The thermodynamic parameters of the 
association process ΔG0, ΔH0, and ΔS0 were calculated.

The results obtained regarding the association constants, 
binding forces, and the binding distances show that there 
is strong-binding affinity between Re(I) complex with BSA 
and HSA. Moreover, the analysis of the circular dichroism 
spectra shows that no significant conformation changes are 
induced after the interaction between this Re(I) complex 
and the albumins.

Materials and methods

Materials

ClRe(CO)5 and 2-amino-4-oxo-3H-pteridine (pterin) 
were purchased from Sigma–Aldrich. The solutions of 
fac-ReI(CO)3(pterin)(H2O) (RePtr) was prepared in Tris 
buffer (0.1 M Tris, 0.1 M NaCl, pH 7.4 ± 0.1) and the 
concentrations were calculated using the molar absorption 
coefficient ε366nm = 4200 M−1 cm−1 [20]. HSA (albumin 
human ~99%, fatty acids free (~0.005%), essentially glob-
ulin free A3782) and BSA (albumin from bovine serum, 
minimum 98% electrophoresis A7906) were purchased 
from Sigma Chemical Co. and used without further purifi-
cation. Ultrapure water was obtained with a Milli-Q water 
purification system (Millipore, USA). All other chemical 
reagents used throughout the experiments were analytical 
grade.

Equipment and spectroscopic measurements

The UV–visible spectra were recorded on an Agilent 8453 
diode array detector spectrophotometer and a Shimadzu 
UV-1800 spectrophotometer. FTIR spectra were recorded 
with a Nicolet 8700 Thermo Scientific instrument. NMR 
spectra were recorded at 300 K with a Bruker AM-500 
spectrometer operating at 500 MHz. [D6]DMSO was 
used as a solvent and the chemical shifts were referenced 
relative to the (CH3)2SO in [D6]DMSO (δ = 2.50 ppm). 
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Emission spectra were recorded at several temperatures 
on a Fluoromax 3 spectrometer from Horiba Jobin Ivon 
equipped with a Hamamatsu R928 PMT in a photon 
counting detector using a Peltier F-3004. The excitation 
wavelengths were 280 and 295 nm, the excitation and the 
emission slit widths were set at 3.0 nm, and appropriate 
blanks corresponding to the buffer were subtracted to cor-
rect background fluorescence. Fluorescence lifetimes were 
measured using a Fluoromax 3 spectrometer equipped with 
NanoLED source (λexc = 295 nm). The emitted photons, 
after passing through the monochromator, were detected by 
a TBX-04 detector and counted by a FluoroHub-B module. 
Fluorescence decay data were analysed by the DAS6 decay 
analysis software. The circular dichroism (CD) spectra 
were recorded on a JASCO J-810 spectropolarimeter. All 
the spectrometric measurements were carried out in quartz 
cuvettes of 1 cm path length.

Procedures

An albumin solution was prepared in Tris buffer, pH 7.4 
(BSA and HSA). The emission spectrum of each protein 
was recorded using 2 mL of the solution. Subsequently, 
aliquots of albumin solution with the same concentra-
tion containing Re(I) complex were added to the above 
solution. Final concentrations of RePtr were in the range 
0–28 μM, while the protein concentration was fixed at 
1.55 and 1.95 μM for BSA and HSA, respectively. After 
each addition, the sample solution was incubated during 
5 min prior to record the spectrum. The spectra of the solu-
tion with increasing concentrations of Re(I) complex were 
recorded.

Emission spectra were corrected for internal filter effect 
according to Eq. (1) [23].

where Icor and Iobs are the corrected fluorescence intensities 
and observed fluorescence intensities at 344 nm, respec-
tively, whereas εexci , εemi ,ci, and l are the molar absorption 
coefficients of the absorbent species at excitation and emis-
sion wavelengths, their concentrations, and the optical path, 
respectively.

The emission spectrum of proteins was recorded at four 
temperatures using a Peltier heat pump (298–310 K).

Time-resolved fluorescence data were fitted to biexpo-
nential functions after deconvolution of the instrumental 
response function by an iterative reconvolution approach 
utilizing reduced χ2 and weighted residuals as param-
eters for goodness of fit. Average fluorescence lifetime (τ ) 
for biexponential iterative fittings was calculated from the 
decay times and the normalized pre-exponential factors (Bi) 
using the following equation:

(1)
Icor = Iobs10

(

∑

εexc
i

ci l

2

)

10

(
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εem
i

ci l

2

)

Fluorescence study

For a simple 1:1 ligand binding, the intrinsic-binding con-
stants between RePtr with albumins BSA and HSA were 
determined by decrease of the fluorescence intensity of 
albumins at 344 nm, with increasing concentrations of the 
complex, by the Ryan–Weber equation (Eq. (3) [24, 25].

where F is the measured fluorescence, while F0 and F∞ 
are the fluorescence intensities when the protein is com-
pletely free or complexed; [Q]t is the total concentration of 
quencher (RePtr); [P]t is the concentration of albumin; [PQ] 
is the concentration of associated quencher-protein at equi-
librium; and Kb is the binding constant.

Nature of binding forces

The acting forces between a Re(I) complex and albumin 
may include van der Waals, hydrophobic, electrostatic, and 
hydrogen-bond interaction forces, within others [26, 27]. 
Enthalpy change of the interaction can be regarded as a 
constant if the temperature range is not too wide. Tempera-
ture effect on thermodynamic interaction parameters has 
been followed in the 298–310 K range.

Assuming that the standard enthalpy change (ΔH0) does 
not vary significantly over the temperature range studied, 
then its value and that of entropy change (ΔS0) can be 
determined from the Van’t Hoff equation (Eq. 4) combined 
with the relationship of Gibb’s free energy (ΔG0) (Eq. 5).

The term R has its usual meaning. The change in Gibb’s 
free energy was calculated from the relation shown in the 
following:

Circular dichroism study

The secondary structure of proteins is composed of 
α-helical, β-sheet, random coil, and β-turn. The decrease 
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in α-helical content in the secondary structure can reflect 
the unfolding extent of proteins [28, 29]. To investigate the 
effect of RePtr complex on the secondary structure of albu-
mins, CD spectra of albumins ([protein] = 1 × 10−4 M in 
phosphate buffer) and the albumins-Re(I) complex adduct, 
at a molar ratio (pi) of Re(I) to protein, were recorded in 
the wavelength region between 200 and 250 nm. The cor-
responding absorbance contributions of buffer and free 
Re(I) complex solutions were recorded and subtracted with 
the same instrumental parameters. The CD results were 
expressed as MRE (mean residue ellipticity) in deg cm2 
dmol−1 according to the following equation:

where [θ ]obs is the observed molar ellipticity in milli-
degree, Cp is the molar concentration of the protein, n the 
number of amino-acid residues (582 and 585 for BSA and 
HSA, respectively [11]), and l is the path length (0.2 cm) 
[28, 30].

Results and discussion

Synthesis

fac-ReI(CO)3(pterin)(H2O) complex was prepared by a 
modification of procedures reported recently in the litera-
ture [20]. In a first step, we obtained the precursor com-
plex fac-[ReI(CO)3(H2O)3]Cl (1). To this end, a suspension 
of Re(CO)5Cl in water was refluxed for 20 hs (Eq. (8)) in 
nitrogen atmosphere. Upon boiling, the mixture became a 
clear solution. After cooling to room temperature, the sol-
vent was evaporated under vacuum until dryness and the 
resulting light green powder was dried under vacuum at 
60 °C for 24 h.

The FTIR spectrum of 1 in aqueous solution shows 
strong absorptions at 2028 (with shoulder at 2036) and 
1918 cm−1, assigned to ν(C≡O), Fig. S1. These infrared 
absorptions are consistent with the facial configuration of 
the carbonyl ligands in tricarbonyl complexes of Re(I) and 
are in agreement with those observed for [Re(CO)3(H2O)3]
Br [31]. In the second step, we proceeded to obtain the 
RePtr complex as described below. A 100 mL round-bot-
tomed flask was loaded with an aqueous solution of pterin 
(163 mg, 1.0 mmol) (75 mL) and was heated at ca. 60 °C. 
Then, 75 mL of an aqueous suspension of 1 (360 mg, 
1.0 mmol) was slowly added to the hot aqueous solution. 
The mixture refluxed for 6 h under a N2 atmosphere. The 

(7)MRE =
[θ ]obs

(10Cpnl)

(8)[Re(CO)5]Cl
H2O,20hs,N2
−−−−−−−→ [Re(CO)3(H2O)3]Cl+ 2CO.

solution, initially colourless, turned orange during reaction 
(Eq. (9)). The progress of the reaction was monitored con-
tinuously by UV–vis spectrometry. The reaction mixture 
was then cooled to room temperature, concentrated under 
reduced pressure, and purified by chromatography in col-
umn of silica gel 60 (eluent: deionised water). Finally, the 
solvent was evaporated to dryness under vacuum.

The Re(I) complex was obtained in good yield (75%) 
and it was characterized by elemental analysis, FTIR, 1H 
and 13C-NMR, MS–ESI, and UV–vis spectroscopy.

IR (KBr, ν [cm−1]): 2028 (s) and 1901 (s). 13C-NMR 
([D6]DMSO): δ = 197.9, 196.9, 192.6, and 190.4 [fac-
Re(CO)3], 177.5, 157.8, 152.2, 141.9, and 126.9 [pterin]. 
MS (ESI): m/z = 452.0 [M + H]+, 434.0 [M–H2O + H]+, 
Fig. S2. UV–vis spectrum was recorded in water at pH 7 
and shows two absorption bands. FTIR, 1H-NMR, and 
UV–vis spectroscopic features are in good agreement with 
those previously published for this complex [20].

The structure of the Re(I)-pterin complex is shown in 
Fig. 1.

Association study

Figures 2 and 3 show the effect of RePtr concentration 
on the fluorescence intensity of HSA and BSA, respec-
tively, in physiological condition (pH = 7.4, buffer Tris), 
λexc = 280 nm and λexc = 295 nm.

The fluorescent emission spectra of HSA exciting at 280 
and 295 nm show maximum at 348 nm, while the spectrum 

(9)
[Re(CO)3(H2O)3]Cl+ Ptr

H2O,6hs,N2
−−−−−−→

Re(CO)3(H2O)(Ptr)+ 2H2O+ HCl.

Fig. 1  View of fac-Re(CO)3(pterin)(H2O) complex [20]
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of BSA exciting at 280 and 295 nm shows a maximum at 
344 nm. In all spectra, the emission band of the Re(I) com-
plex centred at 440 nm can be observed [32].

We can see from Figs. 2 and 3 that the intensities of 
fluorescence emission of BSA and HSA decreased gradu-
ally with the increase of RePtr concentration. F/F0 values 
at 344 nm, for both excitation wavelengths used, decrease 
when the ratio p = [RePtr]/[albumin] increases (Fig. 4).

To determine which fluorophores are involved in the 
interaction with the Re(I) complex, the relative fluores-
cence of albumins excited at 280 and 295 nm in the pres-
ence of RePtr was compared. As shown in Fig. 4a, b, no 

significant differences can be observed between the extent 
of quenching for BSA and HSA exciting at λexc = 280 and 
295 nm. This absence of difference between the quenching 
of both proteins at both excitation wavelengths suggests 
that tyrosine has not taken part in the molecular interac-
tions with RePtr, since at λexc = 295 nm, only tryptophan 
is excited. This is consistent with results reported in the lit-
erature which shows that when quenching by interaction of 
tyrosine happens, the extent of quenching for albumins at 
λexc = 280 nm is greater than that at λexc = 295 nm, i.e., the 
curves of the (F/F0) plots do not overlap due the stronger 
quenching effect at 280 nm by the significant contribution 

Fig. 2  Fluorescence quenching of HSA by RePtr (concentration from a = 0 to i = 24 μM) at [HSA] = 1.95 μM and T = 310 K, a 
λexc = 280 nm, b λexc = 295 nm. Fluorescence of RePtr in dash line, λexc = 280 nm

Fig. 3  Fluorescence quenching of BSA by RePtr (concentration from a = 0 to k = 27 μM) at [BSA] = 1.55 μM and T = 310 K, a 
λexc = 280 nm, b λexc = 295 nm. Fluorescence of RePtr in dash line, λexc = 280 nm
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of the tyrosine residues [27, 30]. For further insight into 
the binding process, the lifetimes of the fluorescent excited 
state of HSA were measured with increasing concentrations 
of Re(I) complex at λexc = 295 nm and λemi = 344 nm. No 
significant changes were observed in the average lifetime 
when the complex was added (Table 1).

Furthermore, the lifetimes of the fluorescent excited state 
of RePtr were measured with increasing concentrations 

of HSA and BSA albumins at λexc = 341 nm and 
λemi = 450 nm. No significant changes were observed in 
the lifetime of the complex neither in absorption nor emis-
sion spectra when the proteins were added (Table 2).

On the basis of no significant changes observed in the 
lifetime of the albumins, we can affirm that the mode of 
emission quenching is static (that only occurs at short dis-
tances). When a ligand quenches the fluorescence of HSA, 

Fig. 4  Plot of relative fluorescence intensity upon titration with increasing [RePtr]/[albumin] ratio (p) for HSA at λexc = 280 and 295 nm (a); 
BSA at λexc = 280 and 295 nm (b); and BSA and HSA at λexc = 295 nm (c). T = 310 K; Tris buffer pH 7.4

Table 1  Lifetimes and pre-
exponential factors (see Ec. 2) 
of HSA with RePtr

λexc = 295 nm, λemi = 344 nm, [HSA] = 1.5 μM

[RePtr], μM p (RePtr/HSA) B1 τ1, ns B2 τ2, ns <τ>, ns χ2

0.00 0.0 0.032 3.75 0.026 7.48 6.07 1.14

0.59 0.4 0.031 3.63 0.027 7.41 6.05 1.18

1.76 1.2 0.031 3.63 0.027 7.43 6.07 1.13

4.58 3.0 0.030 3.54 0.027 7.36 6.03 1.27

9.83 6.5 0.031 3.63 0.026 7.45 6.04 1.12

14.62 9.7 0.033 3.71 0.025 7.50 6.01 1.13

23.04 15.3 0.033 3.80 0.023 7.61 6.00 1.17

39.15 26.0 0.031 3.53 0.025 7.37 5.96 1.14
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the process is shown to be taking place in the IIA subdo-
main, since in this albumin, there is only one tryptophan 
which is located there [16]. As found in Fig. 4c, no differ-
ence can be seen between the extension of quenching for 
BSA and HSA at λexc = 295 nm. Thus, it could be stated 
that due to the Trp 214 is located in the subdomain IIA, it 
is the binding site of Re(I) complex. Since BSA contains 
two tryptophans in 135 (IB) and 214 (IIA) positions, the 
extension of quenching showed in Fig. 4c would suggest 
that Trp 135 is not the target in the quenching mechanism 
for BSA and that the contribution to the emission from Trp 
135 would be much lower than that from Trp 214 in this 
albumin. Therefore, under this considerations, the bind-
ing site in the IIA subdomain may be the major association 
site of Re(I) complex in both proteins. Similar results were 
reported previously in interactions studies between albu-
mins and other metal complexes [30].

Thermodynamic analysis and nature of the binding 
forces

The binding constants for the interaction of the complex 
with albumins were determined from the fluorescence 

quenching data according to Eq. 3. The binding constants 
at five temperatures are shown in Table 3, see below.

According to Eqs. (4)–(6), the thermodynamic param-
eters (ΔH0 and ΔS0) were evaluated from the slope and 
y-interception of Van’t Hoff’s equation by plotting the val-
ues of ln Kb vs 1/T (Fig. 5).

The values of ΔG0 were further calculated from the val-
ues of ΔH0 and ΔS0 (Table 3).

It was clear from the values of ΔG0, ΔS0, and ΔH0 that 
binding of the Re(I) complex to both HSA and BSA occurs 
through endothermic processes accompanied by positive 
value of ΔS0 (i.e., entropic dominance over the enthalpy 
factor). Thus, the binding process was in all cases spon-
taneous as evidenced by the negative sign of ΔG0 values. 
According to an endothermic association process, a tem-
perature increase promotes the interaction as reflected by 
higher Kb values. Positive values of both ΔH0 and ΔS0 
usually allow us to assume that interactions between Re(I) 
complex and albumins are dominated by hydrophobic inter-
actions [33, 34]. The positive entropy changes arise from 
the random rearrangement of water molecules which take 
place after the hydrophobic interaction between the albu-
min and RePtr. Therefore, hydrophobic interactions might 
play a major role in the binding process.

These results are in agreement with the results of asso-
ciation studies in which it was indicated IIA site (hydro-
phobic pocket) as the likely site of interaction.

Study of conformational changes of albumins induced 
by the RePtr binding

Circular dichroism (CD) spectra of BSA and HSA in the 
presence and absence of RePtr are shown in Fig. 6.

These spectra exhibit two negative bands in the UV 
region at 208 and 222 nm, a typical characteristic of the 
α-helix structure of these proteins [35].

Upon further addition of RePtr, the CD spectra do not 
show any significant variation indicating that there is no 
measurable change in the proteins conformation.

Table 2  Lifetimes and pre-exponential factors of RePtr with HSA

λexc = 341 nm. λemi = 450 nm. [RePtr] = 0.8 μM

[HSA], μM r (HSA/RePtr) τ, ns χ2

0.00 0.0 8.19 1.09

1.61 0.2 8.41 1.06

3.42 0.4 8.34 0.99

4.76 0.5 8.29 1.01

5.80 0.6 8.25 1.11

6.85 0.8 8.20 1.05

7.83 0.9 8.11 1.00

8.43 0.9 8.10 0.97

14.62 1.2 8.05 0.97

15.32 2.4 8.03 1.04

Table 3  Binding constants and 
thermodynamic parameters for 
the interaction of albumins and 
RePtr

Albumin T [K] Kb × 10−5 [M−1] ΔG0 [KJ/mol] ΔH0 [KJ/mol] ΔS0 [J/mol K]

HSA 297.96 2.97 −31.3 51.7 278

301.05 4.01 −32.1

303.95 4.09 −32.9

306.98 6.18 −33.8

309.95 6.54 −34.6

BSA 297.96 3.0 −31.3 39.5 238

301.05 3.8 −32.1

303.95 4.3 −32.8

306.98 5.0 −33.5

309.95 5.6 −34.2
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Summary and conclusions

We have developed a new synthetic route for obtaining the 
fac-ReI(CO)3(pterin)(H2O) complex in aqueous solution 
via the fac-[ReI(CO)3(H2O)3]Cl precursor complex.

The interactions between the Re(I) complex and albu-
mins have been investigated by steady-state and time-
resolved fluorescence, and UV–vis and CD spectroscopy. 
The results show that RePtr binds to both BSA and HSA 
with high association constants (Kb ≈ 6 × 105 M−1) at 
physiological temperature. These association constants 
are of the same order of magnitude as those obtained for 
a large number of drugs transported through blood plasma 
by albumin [18, 36, 37]. There is a remarkable difference 
between the values of association constants found for 

the complex and that obtained for the free pterin ligand 
(Kb = 1.3 × 103 M−1) [38]. The difference may be due to 
the experimental conditions in which these constants were 
measured, since, at quite high quencher concentration, the 
measured constant refers to both specific and unspecific 
interaction. However, the neutral condition of the complex 
(zero net charge) could be the main cause of the stronger 
interaction.

The calculated thermodynamic parameters indicate that 
the acting forces are mainly hydrophobic. Again, these 
results can be rationalized in relation with the neutral state 
of the RePtr complex at the experimental pH conditions.

The observed saturation in emission quenching plots 
along the absence of changes in the lifetime is consistent 
with a mainly static quenching mode.

We have determined that the process is taking place in 
the IIA subdomain based on: the comparative analysis of 
the relative fluorescence quenching of BSA and HSA; the 
static quenching mode of the emission of Trp 214 located 
into IIA site; the similar values of binding constant found 
for both albumins; and the predominance of hydrophobic 
forces in the association process.

Unlike other Re(I) tricarbonyl complexes reported previ-
ously, RePtr complex does not modify the conformational 
structure of both HSA and BSA proteins after the interac-
tion as shown by the results of CD. This suggests that these 
proteins can be considered as good carriers for transporta-
tion of RePtr complex.

These properties along with an excellent solubility in 
water may be important features in relation to its potential 
applications in several biomedical fields, such as photody-
namic therapy and radiopharmacy [39].

Fig. 5  Van’t Hoff plot (ln Kb vs 1/T) for HSA and BSA with RePtr 
complex

Fig. 6  CD spectra of HSA-RePtr (a) and BSA-RePtr (b). [albumins] = 5 × 10−6 M; [RePtr] from 0 M, p = 0–1 × 10−5M, p = 2; T = 298 K; 
phosphate buffer pH 7.4
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