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In this paper, we investigate quantum uncertainties in a Tsallis’ nonadditive scenario.
To such an end we appeal to g-exponentials (qEs), that are the cornerstone of Tsallis’
theory. In this respect, it is found that some new mathematics is needed and we are
led to construct a set of novel special states that are the qE equivalents of the ordinary
coherent states (CS) of the harmonic oscillator (HO). We then characterize these new
Tsallis’ special states by obtaining the associated (i) probability distributions (PDs) for
a state of momentum k, (ii) mean values for some functions of space an momenta and
(iii) concomitant quantum uncertainties. The latter are then compared to the usual ones.
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1. Introduction

During more than 25 years, an important topic in statistical mechanics theory
revolved around the notion of generalized nonadditive statistics, pioneered by Tsal-
lis+ It has been amply demonstrated that, on many occasions, the celebrated
Boltzmann—Gibbs logarithmic entropy does not yield a correct description of the
system under scrutiny2 Other entropic forms, called nonadditive entropies S,
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(g € R), produce a much better performance2 The nonadditive law reads, for
two independent systems A and B, Sy(AB) = S(A) + S(B) + (1 — q)S(A)S(B).
One may cite a large number of such instances, for example, nonergodic systems
exhibiting a complex dynamics2

The nonextensive statistical mechanics of Tsallis’ has been employed to fruitfully
discuss phenomena in variegated fields. One may mention, for instance, high-energy
physics,: spm glasses,® cold atoms in optical lattices8 trapped ions;Z anomalous
diffusion,®? dusty plasmas 2 low- dlmensmnal d1551pat1ve and conservative maps in
dynamical systems 13 turbulent flows 4 Levy ﬂlghts the QCD-based Nambu,
Jona, Lasinio model of a many-body field theory” etc. Notions related to g-
statistical mechanics have been found useful not only in physics but also in chem-
istry, biology, mathematics, economics, informatics and quantum mechanics 1821
Given the importance of the Tsallis-materials, the associated mathematics acquires
particular relevance. We believe to be here making some interesting contributions
to such mathematics.

The probability distribution (PD) associated to the nonadditive, g-statistics is
the so-called g-exponential;? that becomes the customary exponential (CE) in the
limit ¢ — 1. Physical states described via qEs are the focus of our present concerns.
We obtain them by replacing CEs by (qEs) whenever physical states expressed
in CE-terms emerge. A reference to coherent states (CS) is then needed (see, for
instance, Ref. 15). Then, with regard to the line of inquiry just mentioned, we
construct the g-equivalents if CS which are special forms of qEs. We characterize
the ensuing g-equivalents by evaluation of its main properties, and then discuss
the associated quantum uncertainties. A note of warning is due here. Our new g¢-
equivalents have nothing to do with the so-called q-deformed CS of Quesne, Eremin—
Meldianov, and others. These are CS of a deformed harmonic oscillator (HO)22

2. Prerequisites

Let us briefly remind the reader of the CS of the HO |a), or Glauber states2325
A CS |a) is a specific kind of quantum state of minimum uncertainty, the one
that most resembles a classical state. It is applicable to the quantum HO, the
electromagnetic field, etc., and describes a maximal kind of coherence and a classical
kind of behavior. The states |a) are normalized, i.e., («|a) = 1, and they provide
us with a resolution of the identity operator

[ e =1 2.1)

™

which is a completeness relation for the CS.2% The standard CS |a) for the HO are
eigenstates of the annihilation operator a, with complex eigenvalues
_q+ip

\@ )

(2.2)
which satisfy a|a) = a|a) 22>
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The nth HO eigenfunction is

on(2) = (%) : H, (@x) (2.3)

where H,, is Hermite’s nth order generalized function

1
2

Halw) = (wi2vnt) =% H(x), (2.4)

while H,, is the concomitant Hermite polynomial. In the z-representation, the CS
reads

Yo (x) = 6_# nZ:O j—%qﬁn(m), (2.5)

Va(z) = (%)% o F g:o %Hn (\/?m) (2.6)

For convenience, we choose |/“* = 1. Thus, for the HO, we have

Pn () = Hn(z) (2.7)

or

and for its CS

balz) = F Y j%%n(:@. (2.8)

We use at this point the interesting fact that the CS can be made to compactly
read (see Appendix A)

2 a2 _

Yo (T) =rie T 2 e T eV, (2.9)

2
2
To prove that (2.9) is equal to (2.8), we expand (2.9) & la Hermite

Valz) = f: anHn () (2.10)
n=0
and compute a,, as
ap, = /O:O Yo (z)Hp(z)d. (2.11)
Accordingly,
an = 7r7iefa7267a7‘2 /00 ef%eﬂo‘x’r'-[n(x)dx, (2.12)
that can be recast as
o2
an, = nte h e <I_%)2Hn(x)dw. (2.13)
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We apply now an Integral-Table result (see Ref. 27) to obtain

1 el
4 2 n
an, = LlW%Qfa”7 (2.14)
n'2”7r%> :
or
Lol
an = (n) 2ot (2.15)

Replacing now (2.15) into (2.10), we reach (2.8) and prove (2.9). Our results in this

paper are based on Eq. (2.9), translated into g-parlance.

3. Special States Associated to the Nonadditive, g-Statistics

We start here work in this respect, and wish to report some advances. An extremely
important and critical result is (2.9) for an ordinary CS, that we will g-generalize
via replacement CE — gE. The ensuing state, that one may call a Tsallis’ pseudo-
coherent one, is obtained, we reiterate, by replacing the exponential (2.9) by the

associated qE e, (x)* T
eq(x) = [1+(1—qa]"/"% qeRr, (3.1)

that becomes the ordinary exponential at ¢ = 1. Accordingly, we have

1
1—gq

-1
1 (2% — 2v2az + |al? + o?) , (3.2)

waq(l‘) = A(Q7 a) 1+

where A(g, @) is a normalization constant to be determined. Remember that these
states have mothing to do with the so-called q-CS of Quesne, Eremin—Meldianov
and others22

We proceed mow to determine the mathematical apparatus associated to these
states Yaq, 1., (1) normalization, (2) overlaps, (3) PDs (4) mean values and (5)
uncertainties, in order to describe the nature of our special states, which is the goal
of this paper.

We need to apply some cumbersome mathematics. In particular, Lauricella func-
tions Fp, described in Appendix B, become of essence. They are extensions to
several variables of the hypergeometric functions.

3.1. Normalization

For our present work on new ¢-states we need, first of all, an explicit expression for
the overlap involved in the normalization process

1

_1 1—q
[1 +1-= 5 (z® — 2v2az + |af? + az)]

oo

(Boqltag) = A%(g,0) /

— 00

1

1—

—1 q
® [1 +4 5 (x% — 2v2a%z + |af? + 04*2)] dx. (3.3)
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This necessitates applying the Lauricella functions Fp. We recast (3.3) in the form

Wanlton) = 0.0 (52) 7 [~ (0= vBa— flairrar - 2}

1
2 T—q
®(x \/§a+\/a|2+a2—>

_ -
7
®<x\/§a*\/a|2+a*2>
q—1
7\
@z —V2a* + \/oz|2 +a*? — 1) dx. (3.4)
q—

Utilizing Eq. (B.3) from Appendix B, we find
(thagq|taq)

2
-1 -1\« 5— 1 1 1 1 4
:AQ(qaa)q 1 ®FD q7 ) ) ) ) )
5—q 2 q—1'q—1'qg—1"qg—1"qg—1"q—1

2 2
1+\/§a+\/a2—|a|2—1,1+\/§0¢—\/042—|a2—
q—

q—1

2 2
1—|—\/§a*+\/a*2—oz|2—1,1+\/§a*—\/a*2—a|2—1>. (3.5)
q— q—

Now, because of the normalization requirement

<¢o¢q|¢aq> =1, (3~6)

we get for the constant A(g, ) the expression

—1/qg—1\T3 5—q 1 1 1 1 4
A(g,a) = [q (‘12) Fr ( q.

5—q q—l’q—l’q—l’q—l’q—l’q—l;
2 2
1+V2a+ /a2 —|a]2 — —— 14+ V2a—/a? — |af2 - ——,
-1 -1
N 2
1+V2a" + /a2 — |af2 — ——,
q—1
1
2 2
1+\/§a*—\/a*2—a|2—1>] (3.7)
q—

3.2. Scalar product

Usual CS are not orthogonal. Again, we will apply the Lauricella functions Fp
(Appendix B). Thus, we compute now the scalar product (overlap) of two arbitrary
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states Yqq
<¢aq|¢ﬂq>
2
g—1(qg—1\"¢
—A A g4-—r (9=
@460t (157)
5-q 1 1 1 1 4
F . .
® D<q_17q_17q_17q_17q_1>q_1a
2 2
14+V2a+ (/a2 — o2 = ——,1+V2a — /a? — |a]2 — ——,
q—1 q—1
1+v28 +\/ﬁ*2—|5|2—ql,1+\/§5 —\/5*2—|5|2—ql>-
(3.8)
The nonnormalized Tsallis’ pseudo-CS
uqlr) = Seal®) (3.9

is a proper vector corresponding to the proper value « of the operator a, given by

ole)fa) = 5 fla) + DL, (3.10)

Note when ¢ = 1, a4 is the usual annihilation operator of the HO.

3.3. Associated probability distribution (PD)
We pass now to the PD associated to a Tsallis pseudo-CS. We start by noting that

1

lo, q) = A(q, a)/ [1 +2 5 (2% — 2v2az + |af? + az)} |x)dx.  (3.11)
Thus, the overlap between a plane wave of momentum k and |«, ¢) is
1
A(q@)/oo —ik [ g—1 , 2 2}1_q
kla, q) = ——* e 1+ 22— 2v2az + |o* + a dzr, (3.12
(Kl q) N 5 ( |af ) (3.12)

that can be rewritten as

® [x +v2a — \/a2 — |af? - qu h dz. (3.13)
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Using now the Integral-Table result3¢ we find

(kla ) = Sg“‘k>”§fEqu>a>””“‘le—””??ﬂ”<®(J<via+vﬁﬂ¢ﬂ2q21)¢
q—1

1 2 2
x < = Qi\/a2 — a2 - —=— |k|). (3.14)
qg—1 q—1 q—1

The PD we are looking for becomes

P KO L KR V. O Y e P e Py

()]
06 (g pi-anfar - ok - 25 1w

1 2 2
- 72 *2 2 _ - 1
®¢(q_rq_rz¢a o] q_lmo (3.15)

[{Kla, q)

and gives the probability of encountering momentum k if the system is described
by [a, q).

4. Towards Determining Uncertainties

We need to evaluate several mean values to this end.

4.1. Mean value of x>

We can calculate now (22),. It is given by

<x2>q = A2(q>a) (q_l) B / <x2 —2Varxr + |oz|2 +a*? + 2) B

2 —0o0 q_l

9 \ 1T
® (mz —2yaz + |af* + o* + q—l) dr. (4.16)

Let B, B2, B3, Ba be given by

2 2
A Z\/io/‘—i—\/04*2—|04|2—q_17 By = V2a* _\/a*z_ a2 — —

2 2
532\/§Oé+\/042—|04|2—q1> ﬂ4=\/§a—\/062—|04|2—ql-

(4.17)
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Then we can write (4.16) as

(@%)g = A%(q, ) (q;1>12q /Oo 72w = B1) T (3 — o) T

® (z — B3) T (v — )T da. (4.18)

Applying now to (B.3), and to Lauricella functions Fp, we obtain for (4.18)

(22), = 24%(g, a) [ =2 %QF(Z__?}‘])F 7-3 1 1 1 1
T)qg = q,« 2 I‘(qi%) D q_lvq_laq_laq_lvq_lv

4
q_1;1+5171+5271+5371+ﬂ4)~ (4.19)

4.2. Mean value of x

Once again, we apply here Lauricella functions Fp (Appendix B). In the same way
as above, we have for (x), the expression

w5 T (%2

— 1\ 1« — 6—2 1 1 1 1

<x>q :AQ(q7a> (q > ! FD( q7 ) 3 ; 5
2 F(ﬁ) g—1'q—1"qg—1"¢q—-1"¢g—1

4
q_1;1+5171+52,1+53,1+[34)- (4.20)

4.3. Mean value of p>

The evaluation of (p?), is somewhat more involved. For it, we have

2 1
1\ T [ 9 \ T4
(p?)g = —A%(g, @) <q2> / (1‘2 —2Varz + o + o + q—l)

o2 2\
©53 <x2 —2yazr +|af* +a® + q_1> dx (4.21)
or
= @) (4-1) o B R -
Pla==a—g \ 2 o q—1

q
2\
® <x22\/ax+oz|2+oz2+1> dx
q-—
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1

[} 2 T-q

+ % <x2 —2Varx + |af* + o*? + 1) (22 — 2v/2a)?
—4qJ- q—

2
2\ 15
® (a:2 —2Vaxr + |a)* + a® + q—l) da:] . (4.22)

Applying again to (B.3), the result for (p?), is

P*)q = _Ag.0) <q_ 1)12(1 27F C’%) ® Fp <3+q'

(1-q \ 2 F<2qq_7+12) U

2
1 1 2q+ 2

) ) 1 ; 1 5 1 ;1+ﬁ171+ﬁ271+ﬂ371+ﬂ4
q—1'qg—1"qg—1qg—1 g—1

F(M> 3+ 1 1 2—1 2¢—1

71 — J—

-4 s N gp ( g - A A

1-¢q p(%) q—1'qg—1q—-1" qg—-1"q—-1
-

4
qql;1+5171+5271+5371+54>

q—1
—8/20—"""7
Vaa @ q—1'q-1¢-1" q—-1"¢-1"

()

4
q_q1;1+61,1+62,1+63,1+64>

F(Q(I+2)
P (2q+2. 1 1 2qg—1 2q71_
D

QF(fq_l)@)F 3¢+1 1 1 2¢-12—1
qg—1'q—1q¢-1" q-1"q—-1"

4
qql71+6131+6231+6371+ﬁ4) (423)

4.4. Mean value of p
Analogously, we have for (p),

1

-1 l%q oo 2 1—g
(p)g = —z’AQ(q, Q) ((]2> / (x2 — 2V o*x + |0¢|2 +a*? 4+ )

—00 q—l

2 \T@
®2 22— 2yax + |a]? + o + —— dx (4.24)
ox q—1
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Fig. 1. Our four relevant mean values are plotted versus q.

or
1

o Nt oo ~
e e R B Y )

1—¢ 2 —oo qg—1

9 \ T4
® (22 — 2v/2a) <x2 —2yaz + |af* + o* + 1) " da. (4.25)
q—

By recourse to (B.3) again, we obtain

2 4
< > Z.A2(q70[) (q_ 1)12‘1 QF(H)
Plqg = — oo\
1-— 2 2q+2
‘ r ()
1 1 q q 2q9+2
q—1q-1q-1q¢g—-1" qg-1

;1+6171+6271+B351+64>

1—\(3+q)
0ea— L g, (e L1 a4
D q_17q_17q_17q_17q_1a

2q+2
r(5)

2q + 2
(lﬂ+&ﬂ+&ﬂ+&J+&>

p— (4.26)

Figure 1 displays the g-dependence of our four relevant ¢g-mean values. With the
mean g-values obtained above, we can calculate (Az),(Ap)q. The uncertainties are
plotted, as a function of ¢, in Fig. 2.

4.5. YPaq states form an over-complete basis

It is easy to see that there is a one-to-one mapping |a) < |a, ¢) that immediately
arises from the well-known one-to-one mapping between gEs and ordinary ones.

1750151-10
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1 1.2 1.4 1.6 1.8 2
q

Fig. 2. Quantum uncertainties versus q.

This entails that one can write the unity operator as

oo

= [ lgawaadia=1 [ jaalta (4.27)

—0o0 —0o0

with A(g, ) still an unknown constant. Here, limg_,1 A(q, a) = +.

Thus, for any g, the basis {|a, ¢)} constitute an over-complete basis.

5. Quantum Uncertainty in the Limit ¢ — 1

We will show now that limg_,1(Az)4(Ap)q = AzAp = %. This is to the essence in
order to ensure that our g-extension of CS makes sense. For this endeavor, we use
the approximation, for ¢ close to one, of the qE. It is easily seen that one has

[1+i(g—1)2]™7 = [1 - qglzﬂ e, (5.1)

As a consequence of (5.1), we obtain

1 =t
{1 + 4 5 (2% — 2V2ax + o® + |a|2)}

- {1 + et 2vaarva? 4 mﬂ o~ -2Bartat+al?)

¢—10 ) —5 (@ —2v2az+a’+|al?)
=1+ — e 2¥ arTanTia . (5.2)
( 2 0p? -
The normalized ¢-CS reads, in this approximation,
— Q*162 B2 az+a’+|al?
Yaq(z) = A Yg, ) <1 + 2652) e~ 7 (@ —2v2az+a’+|al?) (5.3)
B=1
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Of course, A(q, &) needs evaluation. For this purpose, we calculate

2 _ q—10 =10
A(q,a)(lJr 5 aﬂ2>(l+ 5 072

oo
® / 67%(a:272\/§a*x+a*2+|oc\2)67%(x272\/§aw+a2+\a|2)d1,

— 00

B=v=1
(5.4)

By recourse to the Integral-Table result given in Ref. 31, we then find
-1 02 -1 0?
e v (10512 (1451 2)

V2 e—g(a*z-&-la2)6—;(az+|a2)e(ﬁa;ir)2‘| . (5.5)
B=v=1

We can thus write

A% (g, 0) = VT + (¢ = D fi(a) + (g — 1)* fo(a), (5.6)
where f; and fy are nonsingular functions of a. As a consequence,
A(g,0) = V7 + (g = Vi) + (g — 12 fo(a) (5.7)
and
lim A(q,) = = (5.8)

We can now write for (z?),

2 _ g q—109" q—10%
(x%)g=A (q,a)(l—i— 5 352)<1+ 5 072

o0
® / efg(x272\/§a*w+a*2+\a|2)x2ef%(1272\/§az+a2+|a|2)dx‘ﬁ:7:1' (59)

— 00

Using once more the Integral-Table2L one has

<372>q
_ 42 q—10* q—10%
=) (1005 5 ) (1445 7

23 —B(a*24|al?) —2 (a2 +]al?) Battya)® i(fa* 4+ ya)
©d 20 =3 Hal) mF @) BFRE gy -2 gy, | WP FI L

(B+7)3 VB +y
(5.10)
AS a consequence,
a at 2
@)= a2 {vr | T - D) + - @), a1

1750151-12
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where g1 and go are nonsingular functions of «. Thus (see Appendix C),

*\2
lim (2%), = & + T _

lim =5 5 = (2?). (5.12)

Proceeding now in similar fashion for (z), we obtain

_ -1 02 -1 9
(2)g = A~%(q,0) (quaﬁ?) <1+‘12W)

oo
_ B2 * *2 2 (2 2 2
®/ e S (z°—2v2a* z+a*? +|a| ).136 1 (2 —2v2az+a’+|qf )dl'|,3:7:1.
—oo

(5.13)

According to the Integral-Table result, 3L

. —1 P —1
(2)g = A~%(g,0) (1+(12662> <1+‘12W)

2 By w2 2y (a2 2y (Ba*tya)? i(,é’a*—i—’ya)
. o4 (a4 |al?) - F(aPHlaf?) Loz o 1\/;1{1[ ,

{ﬂ+7 2 VBt
(5.14)

or
a+a*
V2

where hy and hs are again nonsingular functions of «. Accordingly (see
Appendix C),

@)= 2200 (V7| ] 4 - Do) + 0= DPhale) |, (55)

lim (@), = T2 ). (5.16)

For (p?),, we have instead

S =10 =10

oo 2
®/ efg(w272\/§a*w+a*2+\a|2) 9 67%(x272\/§aw+a2+\a|2)d1,

oo 0x? N
(5.17)
or
-1 02 q—1 0?
2y g2 1404729 144719
o /oo e_g(ﬁcz—Q\/éa*x+a*2+|Oé\2)
x [V (x — V2a)? - 7]67%(m272‘/§ax+0‘2+‘°‘|2)da€ (5.18)
p=y=1

1750151-13
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As in previous cases, according to Integral-Table result,;3: we have

O

[+ = D@ + - D@} 619
Here, k1 and ko are nonsingular functions as well. Therefore, (see Appendix C),
) 1 (a—a*)?
2 1 — 2
lim (p%)q = 5 5 (P7)- (5.20)

In analogy with the above case, we now also have

a2 —19 a-19
(p)g = —tA (q,a)<1+ 5 852) (1+ 5 072

oo
® / efg(w272\/§a*m+a*2+\a|2) 8267%(1272\/5az+a2+|a|2)dx
X

—0o0

B=y=1
(5.21)

and, after employing again the Integral-Table result,3L

by = —ia a0 { VA [ 4 - D) + (- 1P} 62)

a— o
V2

where [; and Iy are nonsingular functions of «. Thus, (see Appendix C),

lim (), = “—2 = (5. (5.23)

q—1

From (5.12), (5.16), (5.20) and (5.23), we obtain

. 1
;E(Ax)q(Ap)q =AzAp = 3 (5.24)
For the ¢-distribution, with ¢ close to 1, and using
2 oo
lg,0) = A7 (g, a) (1 + ‘1_182> / e—%(sﬁ—z\/ﬁa*xm*zﬂalz)|x>dx 7
2 0B oo s=1
(5.25)
we have
A Y(q, @) ¢—1
klg,a) = . 1+ —
) = S (14 2 )
o I L (5.26)
—00 5:1
Again, from the Integral-Table result;3L we can write
(Klg,0) = A7 (g, ) [em 3 2VRR=e®H0R) 4 (g _1)f(a k)], (5:27)
where f is nonsingular. Using the results given there, we have
ggq(’f\%a) — e B 2VEIak—0laf®) _ (10 (5.28)

1750151-14
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and as a consequence,

. _ 1l (f_n)2
lim [(klg, a)* = [{kla)[ = =27, (5.29)

a nice result indeed!

6. Conclusions

We have introduced and studied in this work special g-states that one might de-
nominate Tsallis’ pseudo-coherent ones (that have nothing to do with the so-called
q-CS of Quesne, Eremin-Meldianov and others22).

Also, we obtained some interesting preliminary results. In particular, we have
exhibited the g-dependence of the quantum uncertainty, that is minimal for ¢ = 1.
We emphasize that we have obtained the first over-complete basis of Tsallis litera-
ture. This should be an interesting addition to such body of work. Summing up:

e We determined the most important relationships governing the new Tsallis’
pseudo-CS.

e In particular, let us reiterate, we find that, in the limit ¢ — 1, minimal uncertainty
is attained (for ¢ = 1), which constitutes a fundamental result.

o We saw that the Tsallis’ pseudo-CS constitute an over-complete basis for any gq.

Appendix A. Proof of Eq. (2.9)
It is very well known that the annihilation operator for the one-dimensional HO is
given by
T+ip
V2
In the z-representation of Quantum Mechanics, this operator is expressed via
1 d
i(r) = — — . A2
o) =55 (a4 7. ) (A2)

Thus, a CS is defined as the eigenfunction

(A1)

d:

R 1 dva(@)\ _
)ba(w) = 5 (w00() + L) ), (A3)

or, equivalently,

Wal) _ (3o~ a)ul). (A1)
The solution of (A.4) is
Yo (x) = Ce % eV2or, (A.5)

The constant C' can be evaluated using the normalization condition
/ 1o (2)Pde = |C\2/ e eV2ataT gy — (A.6)
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Accordingly,

/ [ (2)2dz = |O]2e =5 / e (=25) g =1, (A7)

— 00

By recourse to the result given in the Table2l we now obtain

/00 e (a—23%" )de = /. (A.8)

— 00

As a consequence,

C =t (A.9)
Thus, we have for ¥, (x) the expression
Yo (z) = 777%67%67%6‘/50“, (A.10)
or, equivalently,
Yo (z) = emme_ie_aTze_aT‘Qe_%eﬂm, (A.11)

where a = ag + ja7. As e’*R°I is an imaginary phase, it can be eliminated from
(A.11) to finally obtain

2 a2

o 12
e~ Te T e T V20, (A.12)

Bl

Yo(r) =7"

Appendix B. Lauricella Functions

Lauricella functions F' can be regarded as generalizations to several variables of the
Gauss hypergeometric functions. They were investigated at the end of the 19th cen-
tury by Giuseppe Lauricella (18671913), an Italian mathematician mostly known by
his contribution to elasticity theory. The fourth Lauricella function of four variables
is given by32

Fp(a;by, by, b3, by;c; 1, 2,23, 24)

= i i i i (a)m1+m2+m3+m4(b1)m1(b2)m2(b3)m3(b4)m4

m1=0 m2=0msz=0 ms=0 (C)m1+m2+m3+m4

mi,.ma,m3 My
XL Tog "Xz "Ly (B 1)
mq !mg 'm3'm4'

This function satisfies32
1
/ w1 —w) (1 — ) 7O (1 — wa) T2 (1 — was) T (1 — uay) "M du
0

I'(a)'(c —
_ D@l(c—a) a)FD(a;bl,bz,bg,b4;0;x1,x27m3,$4)- (B.2)

I'(c)
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After two variable changes, we can deduce, from (B.2), the relation

/ w1 — u)b1+b2+b3+b4_c(u1 + zl)_bl (ug + 22)_b2 (usz + 2:3)_b3 (ug + 24)_b4du
0

I'(a)'(c —
- WFD(a;b17b2,b3,b4;C; 1- 21, 1- 22, 1- 235 1 - 24)' (B?))
C

Appendix C. Reviewing Uncertainty Relations for CS

For the sake of completeness, we give here some well-known results that are needed
in determining uncertainties. For an ordinary CS |a), we have

(a*) =773 /Oo e 3@t 2VaTata a2, (P -2VRartatHal gy (L)

— 00

With the use of the Integral-Table result;3- we find

2N o —2 i(a” + a)
(r2) = (20)2H, [ﬁ } (2)
and then
(x?) = % + M (C.3)

For (x) the situation is quite similar

xre 2

-1 /OO 67%(1272\/§a*z+a*2+\o¢|2) 1(x272\/§owc+o¢2+\04|2)dx' (04)

— 00

Using the Integral-Table result3: again, we obtain

(z) = (20)"'Hy {Z(O‘\go‘)} (C.5)
and thus
(@) = 2T (©6)
For (p), the integral is somewhat more complicated
(p?) = % /°° e—%(m2—2\/§a*w+a*2+\al2)%67%(I272\/ﬁw+a2+\a|2)dx (C.7)
or -
(p?) = Tz /OO e_%(f”z_Qﬁa*z+°‘*2+‘°‘|2)[1 —(x— \/504)2]6_%(IQ_Q‘EM+°‘2+‘°‘|2)dx.
o (C.8)

Now, by recourse to the Integral-Table result,2L we obtain

() = 1 - 202 — iv3aH, {Z(a\go‘)] + 3H, {Z(a\go‘)] (C.9)
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or
1 (a—a*)?
2

= — —. C.10
=1 - O (©10)

For dealing with (p), one starts with
(p) = _in—3 > e—%($2—2\/§a*z+a*2+\al2)ge—%($2—2ﬁ0x+@2+lal2)dw (C.11)

x
—0o0

or

(p) = in~% / e*%(w2*2\/§a*w+a*2+\alz)(x — ﬂa)e*%(I272\/§aa:+a2+\a|2)dx

(C.12)
and, finally,
a—at

= : C.13
=" (€13)

Accordingly, the well-known uncertainty relation for a CS becomes

1

AzAp = 3 (C.14)

i.e., minimal uncertainty, the main feature of CS.
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