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Introduction

Artificial pancreas (AP) systems usually consist of a subcu-
taneous insulin pump connected to a continuous glucose 
monitoring (CGM) sensor through a control algorithm that 
automatically calculates insulin doses according to CGM 
measurements.1 Unfortunately, the subcutaneous route intro-
duces considerable issues, including large delays in glucose 
measurements and insulin action.2

The vast majority of AP systems are based on model pre-
dictive control (MPC),3-7 proportional-integral-derivative,8,9 
and fuzzy logic10 (see Sánchez-Peña and Cherñavvsky11 for a 
thorough description of the current situation). Since high 
model uncertainty and large delays limit the autonomy of the 
glucose controller, most of these control strategies are hybrid, 
ie, a combination of manual meal boluses and automatic basal 
modulations. However, carbohydrate (CHO) counting implies 

an important burden and risk for people with diabetes.12 
Therefore, a purely feedback solution is necessary.
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Abstract
Background: Either under standard basal-bolus treatment or hybrid closed-loop control, subjects with type 1 diabetes 
are required to count carbohydrates (CHOs). However, CHO counting is not only burdensome but also prone to errors. 
Recently, an artificial pancreas algorithm that does not require premeal insulin boluses—the so-called automatic regulation of 
glucose (ARG)—was introduced. In its first pilot clinical study, although the exact CHO counting was not required, subjects 
still needed to announce the meal time and classify the meal size.

Method: An automatic switching signal generator (SSG) is proposed in this work to remove the manual mealtime 
announcement from the control strategy. The SSG is based on a Kalman filter and works with continuous glucose monitoring 
readings only.

Results: The ARG algorithm with unannounced meals (ARGum) was tested in silico under the effect of different types of 
mixed meals and intrapatient variability, and contrasted with the ARG algorithm with announced meals (ARGam). Simulations 
reveal that, for slow-absorbing meals, the time in the euglycemic range, [70-180] mg/dL, increases using the unannounced 
strategy (ARGam: 78.1 [68.6-80.2]% (median [IQR]) and ARGum: 87.8 [84.5-90.6]%), while similar results were found with fast-
absorbing meals (ARGam: 87.4 [86.0-88.9]% and ARGum: 87.6 [86.1-88.8]%). On the other hand, when intrapatient variability 
is considered, time in euglycemia is also comparable (ARGam: 81.4 [75.4-83.5]% and ARGum: 80.9 [77.0-85.1]%).

Conclusion: In silico results indicate that it is feasible to perform an in vivo evaluation of the ARG algorithm with unannounced 
meals.

Keywords
artificial pancreas, carbohydrate counting, sliding mode control, switched control

Received March 22, 2019; Accepted for publication June 14, 2019.

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/dst
mailto:emilia.fushimi@ing.unlp.edu.ar


1036	 Journal of Diabetes Science and Technology 13(6)

Figure 1.  Block diagram of the automatic regulation of glucose 
algorithm.

Recently, a control algorithm without premeal insulin 
boluses called automatic regulation of glucose (ARG) was pro-
posed and clinically evaluated in five subjects with type 1 dia-
betes (T1D) at the Hospital Italiano of Buenos Aires (HIBA).13,14 
This algorithm consists of an inner switched linear quadratic 
Gaussian (SLQG) controller and an outer sliding mode safety 
layer called safety auxiliary feedback element (SAFE).13,15 The 
inner controller switches between an aggressive LQG control-
ler to compensate for the effect of meals and other large pertur-
bations, and a conservative LQG controller to maintain 
normoglycemia at all other times (see also Colmegna et al16). 
During the clinical study at HIBA, participants were asked to 
announce the meals and classify them as small, medium, or 
large. When a meal was announced, a listening mode was trig-
gered and the aggressive controller was selected only if rising 
glucose values were detected during the following 90 minutes. 
Information about the meal size was used by the safety layer to 
adjust the maximum allowable insulin on board (IOB) value 
for that particular meal. This approach reduced patients’ burden 
associated with CHO counting. However, our goal here is to 
maximize patients’ freedom to avoid complications such as 
those derived from diabetic burnout by eliminating the need for 
meal announcement, as long as closed-loop performance and 
patient safety are not compromised.

In recent years, several meal detection algorithms have 
been explored. In Dassau et al,17 a voting algorithm is pro-
posed based on different detection methods applied to the 
CGM signal, using a Kalman filter (KF) and estimations of 
the glucose rate of change. In Turksoy et al,18 the proposed 
detector uses a modified version of Bergman’s minimal 
model with an unscented KF for state estimation, and the 
estimated rate of appearance is used for meal detection. In 
Hughes et al,19 a method using a stochastic MPC strategy is 
employed to detect meals through behavioral profiles. In Lee 
et al,20 it is proposed to inject reasonable amounts of insulin 
boluses based on a series of meal impulses and not to esti-
mate the grams of carbohydrates (gCHO) accurately. The 
algorithm is based on continuous observations of the first 
and second derivatives of the glucose level to produce a 
series of meal impulses when a set of conditions is satisfied. 
Insulin boluses are then combined with an MPC algorithm. 
In Cameron et al,21 a probabilistic method for meal detection 
is developed. This algorithm compares the CGM signal to 
no-meal predictions made by a simple insulin-glucose model. 
Then, residuals are fit to potential meal shapes, and finally, 
these fits are compared and combined to detect any meal. In 
Mahmoudi et al,22 two CGMs and an adaptive unscented KF 
are employed to detect CGM faults and unannounced meals, 
distinguishing from one another. In Ramkissoon et al,23 an 
unscented KF is used to estimate a disturbance term, which 
alongside CGM readings is utilized to detect meals.

A few AP systems that do not require exact CHO counting 
have been developed.24,25 However, in these works, meal 
announcement is used to deliver a meal priming bolus based 
on a meal size classification. On the other hand, AP systems 

that do not require any kind of meal announcement involving 
both single-hormone26,27 and dual-hormone28 therapy have 
been proposed as well. Despite achieving good results, there 
is still an unavoidable compromise between prandial hyper-
glycemia and postprandial hypoglycemia, mainly due to the 
slow pharmacokinetics and pharmacodynamics of the cur-
rent insulin analogs. In Turksoy et al,26 this compromise was 
reduced since meals were compensated with an additional 
module that delivered insulin boluses when an intake was 
detected. Also, clinical studies involving closed-loop control 
in patients with noncritical care have been carried out.29

In this work, the ARG algorithm is combined with a 
switching signal generator (SSG) to eliminate the need for 
manual mealtime announcement by automatically com-
manding the switching between the conservative and aggres-
sive modes. The switching to the aggressive controller is 
based on the most recent CGM readings and an auxiliary 
signal generated by a KF. On the other hand, the switching to 
the conservative controller is made when a decreasing glu-
cose trend is inferred from the CGM signal. The main differ-
ence between this AP system and others without meal 
announcement is that this SSG module is not meant to deliver 
meal-priming boluses but only to command the activation of 
the aggressive mode. This mode is selected when a triggering 
event that can be associated with an increase in the glucose 
rate of appearance, like a meal ingestion, is detected.

The performance of the proposed algorithm is evaluated 
in silico using the UVA/Padova simulator30 with intraday 
variability and several mixed meals, comparing the perfor-
mance of the ARG with and without meal announcement 
(ARGam and ARGum, respectively).

Methods

The ARG Algorithm

The ARG algorithm regulates glycemia without delivering 
open-loop prandial boluses. Instead, it switches between an 
aggressive controller K2  that counteracts the effect of meals 
and other large perturbations and a conservative controller 
K1  that regulates insulin infusion at all other times.

Figure 1 shows a block diagram of the ARG algorithm. 
The SLQG controller calculates an insulin infusion rate uc  
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according to the CGM readings. Since the controller does not 
have integral action, the open-loop basal insulin is added to 
uc ,  yielding u. Signal u is then modulated by the SAFE layer 
through γ ∈[ ]0 1,  in order to avoid violating an imposed 
restriction on the IOB. Thus, the insulin pump is commanded 
by γ ⋅u.

The SAFE layer.  Figure 2 shows a block diagram of the SAFE 
layer. The first block estimates the IOB. The IOB model used 
here is a two-compartment dynamical system (although any 
other model or estimator could be used for this purpose) with 
the following set of equations:
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where C1  and C2  are the two compartments, u t( )  is the 
insulin infusion rate, and KDIA  is a rate constant that repre-
sents the duration of insulin action (DIA). The estimated IOB 
is compared to a pre-established constraint ( IOB ), yielding 
the sliding function σSM IOB IOB.t( ) = −  Then, the switch-
ing signal ω is determined as follows according to the sign of 
σSM :
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If the feedback controller tries to increase the IOB above 
IOB,  a high frequency switching in ω will occur, called the 
sliding mode. To avoid the chattering phenomenon in the 
control action γ ⋅u,  the modulation factor γ is defined as a 
low-pass filtered version of ω. In this way, the gain of the 
SLQG controller is smoothly attenuated when the given IOB 
limit is reached.

Hypo- and hyperglycemia protection.  The ARG algorithm, 
besides the SLQG controller and the safety layer described 
above, has two additional auxiliary modules to reduce risks 
of hypo- and hyperglycemia. Hypoglycemia is further pre-
vented by reducing the IOB constraint when low glycemia 
levels are detected. On the other hand, if the controller is not 
aggressive enough to compensate for sustained high glucose 
concentrations during relatively long periods of time, auto-
matic correction boluses (ACBs) will be delivered by the 

hyper-related module. For a more detailed explanation of the 
ARG algorithm and its auxiliary modules, refer to Colmegna 
et al.13

Meal announcement in the clinical trials at HIBA.  As mentioned, 
the ARG algorithm does not require neither exact CHO infor-
mation nor feedforward insulin boluses to cope with meal 
ingestions. However, a manual mealtime announcement was 
still used during the clinical trial at HIBA to command the 
switching between K1  and K2.  When a meal was announced, 
a listening mode was activated in which the algorithm waited 
to detect an increasing trend in CGM measurements to switch 
to the aggressive mode. The aggressive controller remained 
active for a full hour and then switched back to K1 automati-
cally. When a meal was announced, the participants were 
asked to classify the meal size in one of the following three 
categories: small, medium, or large. This information was 
used to tune the IOB  at meal times, allowing higher IOB  for 
larger meals. After 90 minutes, it was set to its default value 
that was defined as the IOB limit associated with a small-
sized meal ( IOBs ).

Switching Signal Generator

The signal σ commands the modes of the SLQG controller. 
Here, an automatic SSG algorithm to establish σ based on 
CGM readings is proposed to eliminate the need for meal 
announcement and take a step further toward a fully auto-
matic AP controller.

Figure 3 shows the block diagram of the proposed SSG. 
The first block is a noise spike filter that limits the maximum 
blood glucose rate of change to 3 mg dL−1 min−1.31 The fil-
tered signal gf  is the input to the second block, which is a 
KF. The KF is used to generate an auxiliary signal in order to 
establish the SSG switching law. This signal is the estimation 
of the amount of glucose in the first phase of the stomach 
Q sto1,  which is part of the gastrointestinal subsystem pre-
sented in the following equation32:
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Figure 2.  Block diagram of the safety auxiliary feedback element 
algorithm.

Figure 3.  Block diagram of the proposed automatic switching 
signal generator.
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where Q tsto2 ( )  (mg) is the amount of glucose in the second 
phase of the stomach, kgri  (min

−1 ) is the rate of grinding, 
D (mg) is the amount of ingested CHO, δ t( )  is the Dirac 
delta function, kempt  (min−1 ) is the rate constant of gastric 
emptying, Qgut  (mg) is the glucose mass in the intestine, 
kabs  (min−1 ) is the rate constant of intestinal absorption, 
Ra  (mg kg−1 min−1) is the appearance rate of glucose in 
plasma, f is the fraction of intestinal absorption which 
actually appears in plasma, and BW (kg) is the body 
weight. Note that the problem of estimating Qsto1  can be 
associated with an initial condition problem, and therefore, 
Qsto1  can be estimated purely with CGM feedback. In the 
UVA/Padova simulator, the meal input is represented by a 
pulse-wise signal in mg/min with a default duration of 15 
minutes, which in any case, is considerably less than the 
time constant of the meal-glucose system.

To design the KF, a linearized model from the meal input 
to the glucose output was obtained for every virtual adult of 
the distribution version of the UVA/Padova simulator at the 
basal state. In this first approach where no model personal-
ization is considered, the meal-glucose model associated 
with the most sensitive in silico subject, adult # ,007  was 
selected. Then, the selected single-input single-output model 
was discretized with a sampling time of five minutes:

	 x k A x k B u km m m m m+( ) = ( ) + ( )1 	 (4)

y k C x km m m( ) = ( )

where the input um ∈�R  is the meal signal, the output 
ym � �R∈  is the glucose deviation from the basal value, 
xm ∈

×18 1  represents the model’s states,33 and Qsto1  is the 
first element of xm . Therefore, the dimensions of the mod-
el’s matrices are A Bm m∈ ∈× × 18 18 18 1, , and Cm ∈

×1 18.  
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associated with Qsto1,  this mode belongs to the observable 
subspace according to the Popov-Belovich-Hautus test. In 
order to estimate Qsto1,  the following KF was designed:
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where Lm  was obtained using the expected variances of the 
process (W) and measurement (V) noises as tuning parame-
ters (W/V=1000).

The SSG determines if the controller should switch to its 
aggressive mode or not, using gf  and Q sto1.  In order to guar-
antee noise immunity, the following logic was defined. If 
Q sto1  is greater than Qsto1 mg=1425  and increasing, and if 
gf  is greater than gf mg/dL,=140  the controller switches 
to its aggressive mode. To make the system more robust to 

false positives at night and during postprandial periods (mul-
tiple detections of a single meal), time-dependent thresholds 
for gf  and Q sto1  can be defined. In this work, the threshold 
for gf  is raised to 250 mg/dL in the time range from 11:30 pm 
to 6:30 am, and the threshold for Q sto1  is increased to 3000 mg 
during the two hours after a hyperglycemic event is detected. 
It is worth remarking that in a real-life scenario, these thresh-
olds can be personalized according to the system perfor-
mance and subject’s behavior. For example, if frequent false 
positives unnecessarily triggered the aggressive mode and 
that generated controller-induced hypoglycemia, then thresh-
olds for Q sto1  and gf  could be raised to mitigate this situa-
tion. Also, the time range from 11:30 pm to 6:30 am can be 
adjusted according to behavioral patterns.

It is worth mentioning that the estimation of Qsto1  is rather 
slow and attenuated due to measurement noise. Therefore, a 
low threshold of Qsto1  is used in order to switch to the aggres-
sive controller. If the peak of Qsto1  could be perfectly fol-
lowed, then the exact amount of CHO ingested by the subject 
could be estimated. Nonetheless, our goal is not to perfectly 
track Qsto1,  but to use this signal along with gf  to establish 
a switching signal policy that addresses the tradeoff between 
fast detection of a hyperglycemia situation and false posi-
tives due to noisy CGM readings.

At this stage, IOB  switches from IOBs  (constraint defined 
when the conservative controller is active) to IOBm  (con-
straint defined for a medium-sized meal) during the time the 
aggressive controller is active plus 30 minutes afterward. It is 
worth noting that the IOB limit implies only a constraint and 
not the exact amount of insulin to be delivered. Even so, as 
with the thresholds for gf  and Q sto1,  the IOB  can be tuned to 
a particular subject based on the hyper- and/or hypoglycemia 
frequency. For example, if a subject is experiencing frequent 
postprandial hypoglycemia, then IOB  should be lowered in 
order to restrict the aggressive controller response. An in silico 
demonstration regarding the tuning of the IOB  can be found 
in Colmegna et  al.13 In addition, here, the aggressive mode 
remains active until a decreasing trend in the CGM measure-
ments is detected. Then, the conservative mode is automati-
cally selected. This allows the aggressive mode to be active as 
long as needed, instead of being deactivated automatically 
after one hour, as it was described in “Meal announcement in 
the clinical trials at HIBA” section.

Results

In this section, the performance of the ARGum, ie, the ARG 
combined with the SSG module, is assessed through diverse 
in silico tests performed on the UVA/Padova simulator, con-
sidering the ten in silico adult cohort and a Dexcom CGM 
model as the sensor.

In Silico Evaluation Considering Mixed Meals

As mentioned in “Switching Signal Generator” section,  
the SSG was tuned using the regular meal model of the 



Fushimi et al	 1039

UVA/Padova simulator.32,33 Therefore, in order to test the 
robustness of the proposed ARGum, here, it is subject to a 
battery of tests that include mixed meals with different 
nutritional composition and absorption rates.34 Specifically, 
three sets of 16-hour simulations were designed, each one 
including a particular mixed meal from the library intro-
duced in León-Vargas.35 Figure 4 depicts the corresponding 
absorption rates and Table 1 summarizes their composition. 
Results are then compared to the ones obtained with 
announced meals, ie, using the ARGam as described in “Meal 
announcement in the clinical trials at HIBA” section.

Slow-absorbing meal.  Postprandial glucose excursions related 
to slow-absorbing meals are difficult to mitigate for closed-
loop algorithms like the ARG that does not use feedforward 
insulin boluses and lack integral action to avoid insulin 
stacking. In this case, the decay of glucose to normoglycemia 
may be slow, since the insulin signal is mainly sensitive to 
the glucose rate of change, which tends to be slow for this 
type of meals. Here, both the ARGam and the ARGum are sub-
ject to a high-fat low-CHO meal. Results are presented in the 
first row of Figure 5 and the first column of Table 2. As 

shown, the percentage of time within the target range of 70 to 
180 mg/dL is higher with the ARGum than with the ARGam. 
The reason is that the ARGum does not switch back to the 
conservative mode until the CGM readings start to decrease, 
while the ARGam switches back to the conservative mode 
automatically one hour after the aggressive mode is trig-
gered. In the latter case, it can be observed that although the 
ACBs play a key role in lowering the glucose values after the 
conservative mode is resumed, its action is not as effective as 
the one generated by the ARGum. While time in range is simi-
lar between the ARGam with and without ACBs, the first row 
of Figure 5 shows that the use of ACBs results in a faster 
return to the euglycemic range.

Fast-absorbing meal.  The second row of Figure 5 and the sec-
ond column of Table 2 summarize the results for a fast-
absorbing mixed meal. As expected, similar responses are 
achieved under ARGam and ARGum, due to the fact that the 
meal is rapidly absorbed. In addition, given that no ACBs are 
administrated, the results with and without activating the 
hyper-related module are almost identical (slight variations 
are related to measurement noise).

“Double-peak” meal.  The third row of Figure 5 shows the 
mean glucose and mean insulin ± one standard deviation 
(SD) obtained with both the ARGum and the ARGam for a 
mixed meal that presents “double peak,” which is difficult to 
control with an algorithm that depends on a meal announce-
ment. The third column of Table 2 summarizes the results for 
this meal. As expected, the first peak is better compensated 
by the ARGam, since a meal announcement was used and the 
switching to the aggressive controller was made earlier than 
with the ARGum. However, since the ARGum switches to the 
aggressive mode when a hyperglycemia episode might occur, 
it can compensate the second peak more efficiently than the 
ARGam, which highly depends on ACBs to reduce substan-
tial glucose excursions. The advantage of using the ARGum 
to compensate this type of meals is better illustrated when 
the hyper-related auxiliary module is not activated. Note that 
the ARGum mitigates faster the delayed glucose peak than the 
ARGam without ACBs (the right-hand side of Figure 5).

In Silico Evaluation Considering Intrapatient 
Variability

A second set of simulations was performed in order to evalu-
ate the performance of the ARGum under intrapatient vari-
ability. To this end, intraday variability of insulin sensitivity 
(SI) was considered, following the work of Visentin et al.36 
There, SI was characterized by two parameters: Vmx that gov-
erns the insulin-dependent glucose utilization and kp3 that 
governs the insulin action on the liver. Seven SI daily patterns 
were defined based on the level of SI at breakfast (Vmx

b, kp3
b), 

lunch (Vmx
l, kp3

l), and dinner (Vmx
d, kp3

d), and each in silico 
subject was randomly associated with one of them. Thus, to 

Figure 4.  Rate of appearance of the mixed meals used in “In 
silico Evaluation Considering Mixed Meals” section. The solid blue 
line corresponds to a fast-absorbing meal, the dotted red line to a 
slow-absorbing meal, and the dashed yellow line to a double-peak 
meal.

Table 1.  Mixed Meals Used in the First Set of Simulations.

Mixed meal Absorption CHO (g)

Milk, white rice, pear, bran-cookies, 
low-fat cheese, and oil

Double peak 110

High fat meal Slow 27
Oatmeal, meal, bread, and 
margarine

Rapid 62

Abbreviation: CHO, carbohydrate.
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Figure 5.  Mean glucose and insulin ± one standard deviation for the mixed meal simulations. The first column displays the results with 
the hyperglycemia protection layer and the second column shows the results without the use of automatic correction boluses. The 
first row corresponds to the slow-absorbing meal, the second row to the fast-absorbing meal, and the third row to the double-peak 
meal. The purple lines correspond to the automatic regulation of glucose algorithm with announced meals and the orange lines to the 
automatic regulation of glucose algorithm with unannounced meals. The dashed green lines show the desired range, and the dashed 
yellow line shows the acceptable range.
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represent intraday variability, Vmx and kp3 were transformed 
to time-varying parameters. To this end, they were defined as 
step-wise signals that vary three times a day and then 
smoothed using a low pass filter. Deviations from the nomi-
nal values were allowed by modulating the nominal pattern 
with a multiplicative noise normally distributed with mean 1 
and SD 0.2. The simulation scenario was designed to repli-
cate the clinical trial at HIBA, which had a duration of 36 
hours (start time 6 PM) and five meals: two dinners (55 
gCHO each), one breakfast (28 gCHO), one lunch (55 
gCHO), and an afternoon snack (28 gCHO).

The time responses to this protocol are depicted in 
Figure 6. Time spent in the euglycemic range was similar 
under both controllers (ARGam: 81.4 [75.4, 83.5]% and 

ARGum: 80.9 [77.0, 85.1]%). Although the ARGum may 
remain in the aggressive mode longer and the default IOB  
is set to IOBm  even with small meals, time in hypoglyce-
mia was negligible in both cases (ARGam: 0.0 [0.0, 0.0]% 
and ARGum: 0.0 [0.0, 0.0]%). This confirms the fact that 
IOB  represents only a limit and not the exact amount of 
insulin to be infused.

Discussion

Although promising results were obtained with the ARG 
algorithm with meal announcement in the clinical trial at 
HIBA, the end goal is to eliminate the need for meal 
announcement and design an appropriate method to switch 

Table 2.  Results (Median [0.25-0.75 Quantile]) for Three Kinds of Mixed Meals Using the Automatic Regulation of Glucose Algorithm 
With Unannounced Meals and the Automatic Regulation of Glucose Algorithm With Announced Meals With and Without the 
Hyperglycemia Protection Layer.

Control 
method

Slow absorption Rapid absorption Double peak

  ACB No ACB ACB No ACB ACB No ACB

% Time <70 mg/dL ARGam 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0]
ARGum 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0]

% Time [70-180] mg/dL ARGam 77.5 [71.6-79.5] 78.1 [68.6-80.2] 84.8 [77.6-96.7] 84. 6 [74.0-93.9] 87.6 [86.0-89.0] 87.4 [86.0-88.9]
ARGum 87.5 [84.7-89.8] 87.8 [84.5-90.6] 80.2 [72.2-87.8] 79.8 [74.8-87.6] 87.4 [86.0-88.3] 87.6 [86.1-88.8]

% Time [70-250] mg/dL ARGam 100.0 [100.0-100.0] 100.0 [100.0-100.0] 100.0 [100.0-100.0] 100.0 [100.0-100.0] 100.0 [96.3-100.0] 100.0 [96.5-100.0]
ARGum 100.0 [100.0-100.0] 100.0 [100.0-100.0] 100.0 [100.0-100.0] 100.0 [100.0-100.0] 99.6 [94.3-100.0] 100.0 [94.4-100.0]

% Time >180 mg/dL ARGam 22.5 [20.5-28.4] 21.9 [19.8-31.4] 15.2[3.3-22.4] 15.4 [6.1-26.0] 12.4 [11.0 -14.0] 12.6 [11.1-14.0]
ARGum 12.5 [10.2-15.3] 12.2 [9.4-15.5] 19.8 [12.2-26.4] 20.2 [12.4-25.2] 12.3 [11.7-13.7] 12.1 [11.2-13.3]

% Time >250 mg/dL ARGam 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-3.7] 0.0 [0.0-3.5]
ARGum 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.0 [0.0-0.0] 0.4 [0.0-3.0] 0.0 [0.0-3.9]

Abbreviations: ACB, automatic correction bolus; ARGam, automatic regulation of glucose algorithm with announced meals; ARGum, automatic regulation of glucose algorithm 
with unannounced meals.

Figure 6.  Mean glucose and insulin ± one standard deviation for the simulations with intrapatient variability. The purple lines 
correspond to the automatic regulation of glucose algorithm with announced meals and the orange lines to the automatic regulation 
of glucose algorithm with unannounced meals. The dashed green lines show the desired range and the dashed yellow line shows the 
acceptable range.
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between the two LQG controllers ( K1  and K2 ). In this 
work, an automatic SSG is proposed to command both tran-
sitions: from K1  to K2 ,  by using a KF and flexible glucose 
thresholds, and from K2  to K1,  by detecting a decreasing 
trend in CGM measurements. Results from in silico tests 
under several challenging conditions indicate that the ARG 
combined with the SSG shows similar or, in some cases, 
even better performance than the ARGam, while reducing 
patient intervention.

Despite this, the ARGum presents also some disadvantages 
due to the lack of meal announcement. The first one is a poten-
tially higher glucose peak after meals, as a result of the 
increased delay in the switching from K1  to K2.  The other 
one is the current inability to establish an appropriate IOB  for 
every meal size or type. It should be noted that the long-term 
objective of our team is to minimize as much as possible the 
patient’s burden. It is clear that with extra information, as in a 
hybrid procedure, a better performance can be achieved, but at 
the cost of a greater and persistent involvement of the patient.

It is worth highlighting that the mealtime announcement 
does not directly trigger the ARGam into the aggressive mode. 
Instead, the ARGam has a simple “meal detection” algorithm 
to confirm that a meal is present. Therefore, it must be kept 
in mind that, in this work, the ARGum was contrasted with a 
strategy that already has a delay in meal compensation and 
not with a perfect meal-bolus therapy. Finally, note that faster 
insulin analogs could mitigate the impact of this inherent 
delay on glucose control by helping to align the insulin and 
meal rates of appearance.

Conclusion

In this work, an algorithm to automatically command the 
switching between the conservative and the aggressive mode 
of the clinically tested ARG AP controller was designed and 
evaluated in silico. Promising preliminary results were 
obtained, indicating that the proposed strategy is robust with 
respect to different meals and intraday variability in SI. 
Therefore, it can be concluded that a clinical trial with the 
ARGum is feasible.
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