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Casciotta JR, Almirón A, Tan M, Armbruster JW,
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Parallel adaptive radiations have arisen following the colonization of islands

by lizards and lakes by fishes. In these classic examples, parallel adaptive

radiation is a response to the ecological opportunities afforded by the colo-

nization of novel ecosystems and similar adaptive landscapes that favour the

evolution of similar suites of ecomorphs, despite independent evolutionary

histories. Here, we demonstrate that parallel adaptive radiations of cichlid

fishes arose in South American rivers. Speciation-assembled communities

of pike cichlids (Crenicichla) have independently diversified into similar

suites of novel ecomorphs in the Uruguay and Paraná Rivers, including cre-

vice feeders, periphyton grazers and molluscivores. There were bursts in

phenotypic evolution associated with the colonization of each river and

the subsequent expansion of morphospace following the evolution of the

ecomorphs. These riverine clades demonstrate that characteristics emble-

matic of textbook parallel adaptive radiations of island- and lake-dwelling

assemblages are feasible evolutionary outcomes even in labile ecosystems

such as rivers.
1. Introduction
Adaptive radiation is an evolutionary response to ecological opportunity such

that the rise of adaptations coincides with expansion of ecological diversity

within a lineage [1–3]. These ecological opportunities may include access to

novel resources, relaxed selection on ecologically important traits allowing

for the exploration of novel phenotypes, or relaxed competition that allows

for exploration of novel regions of the adaptive landscape [2]. Islands and

lakes have served as the foundation for parallel adaptive radiations after

their colonization by Anolis lizards and cichlid fishes, respectively [4,5].

Series of islands and lakes probably provide access to common resources, simi-

lar adaptive landscapes and thereby elicit the evolution of similar suites of

ecomorphs despite independent evolutionary histories. The discrete nature

of islands and lakes also constrains immigration and emigration such that

in situ speciation results in monophyletic groups that are endemic to that

ecosystem (i.e. species flocks).

Rapid speciation, phenotypic diversification and convergence are hallmarks

of adaptive radiation [3,5]. Islands and lakes have provided unique examples of

parallel adaptive radiation in which diversification on different islands/lakes

has independently produced similar outcomes. For example, Anolis lizards

have diversified into similar suites of habitat specialists on different islands

of the Greater Antilles [4]. These island-specific clades exhibit phenotypic con-

vergence upon inferred adaptive peaks and the onset of diversity dependence

as ecological opportunities wane as niches fill towards capacity [6–8]. Likewise,

lakes have provided similar opportunities for cichlid fishes, which have
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diversified in parallel in lakes throughout Africa and Middle

America [5,9]. These lake-specific clades exhibit phenotypic

convergence, diversification along common environmental

gradients such as the benthic-to-pelagic habitat and the

hard-shelled to soft-bodied prey axes, as well as diversity-

dependent evolution [10–13]. In addition to these prominent

examples, parallel adaptive radiations have also occurred in

postglacial whitefish and stickleback [14,15], Hawaiian

spiders and angiosperms [16–18], and island land snails

[19]. Such parallel adaptive radiations provide a unique

framework to study evolutionary determinism as well as

idiosyncrasy while adaptive radiation unfolds independently

among similar ecosystems.

Although a few riverine cichlid species flocks have been

described [20,21], these flocks lack the dramatic accumulation

of ecological roles and their associated adaptations that charac-

terize their lake-dwelling counterparts and have not evolved

in parallel (reviewed in [5,22]). These conflicting patterns of

diversification may be because the adaptive landscape is very

different in lakes and rivers. This disparity may be explained

by a combination of factors (summarized from Seehausen [5]):

(i) river communities are immigration-assembled such that

co-occurring ecomorphs are often from disparate lineages that

were united by unstable and shifting basin configurations (as

opposed to speciation-assembled communities that arise in

stable lakes); (ii) many ecomorphs observed in lakes may be

implausible evolutionary results in rivers owing to niches

that are uncommon or temporally unstable in rivers; and

(iii) niches are partitioned to minute ecological scales in lakes

where stable conditions favour the evolution of accommodating

processes such as resource partitioning.

Despite the aforementioned paucity of in situ diversifica-

tion and lack of cases of parallel evolution within rivers

[5,22], one promising example has recently been proposed

in the Paraná and Uruguay rivers of South America where

the resident pike cichlid (Crenicichla) assemblages exhibit

similar ecomorphs [23]. These communities are endemic

and consist of species that co-occur throughout their drainage

and exhibit dramatic ecomorphological divergence [23–26].

More recently, this putative example of parallel evolution

was expanded following the discovery of additional species

in the Paraná River that also have ecomorphological counter-

parts in the Uruguay River [27]. Furthermore, these two

communities may each be monophyletic and distantly related

to one another [23,24].

In this study, we test the hypothesis that the similar eco-

morphs observed in the Paraná and Uruguay rivers arose via

parallel phenotypic and trophic diversification. To test this

hypothesis, we employed a series of statistical tests. Firstly,

we establish the evolutionary independence of the two

assemblages using a novel whole-genome single nucleotide

polymorphism (SNP) (ddRADseq) phylogeny. Secondly, we

evaluate if the similarities of these ecomorphs is because of

selection towards similar adaptive peaks rather than simi-

larity that may have arisen via a neutral model of

evolution. Thirdly, we evaluate if these ecomorphs arose

from similar ancestral states using ancestral state reconstruc-

tion of phenotypes and trophic guilds. Lastly, we test for

bursts in the rates of diversification and morphological evol-

ution throughout the evolutionary history of pike cichlids.

We then discuss these riverine clades in the context of other

prevalent examples of parallel adaptive radiations such as

those of lizards on islands and fishes in lakes [5,8].
2. Material and methods
(a) Phylogeny construction
We sampled 64 Crenicichla (includung Teleocichla) species

(approximately 63% of the valid species) that represent all

major lineages (i.e. there is replication within all the recognized

species groups [23]) and five additional South American cichlid

taxa that comprised the outgroup (i.e. Retroculus sp., Satanoperca
daemon, Apistogramma sp., Biotodoma wavrini and Geophagus sp.).

We sampled all eight members of the Uruguay River species

flock and all nine members of the Paraná River species flock.

All tissues were stored in 95% ethanol. The ddRADseq library

preparation and bioinformatic processing of the obtained tags

were performed as described in Řı́čan et al. [28]. Homologous

loci were aligned based on a reference mapping of reads onto

the genome of Oreochromis niloticus GCA_000188235.1 (http://

www.ensembl.org), and SNPs were called in STACKS v. 1.35

[29]. Only fixed (homozygotic) SNPs were extracted from loci

with a minimum depth of five and present in a minimum of

70% of the samples. The resulting matrix included 25 128 vari-

able sites. The tree was inferred from a concatenated SNP

matrix in RAXML v. 8.2.4 [30] under a GTR þ G model, which

was estimated with JMODELTEST [31]. To account for potential

ascertainment bias, we used the Stamatakis correction [32],

which corrected for 326 937 unrepresented constant sites. We

used 100 bootstrap replicates to evaluate branch support in

RAXML. To further test the robustness of the phylogeny, particu-

larly the monophyly of the putative species flocks which contain

the species that may constitute parallel adaptive radiations, we

constructed coalescent-based species trees with different

methods and data matrices. The general tree topology and mono-

phyly of both species flocks was supported by the RADseq

markers (see the electronic supplementary material, figure S1)

as well as ultraconserved elements [33]. The sequencing reads

and datasets are deposited on the NCBI Sequence Repository

Archive (SRA; BioProject ID: PRJNA420902) and Dryad Digital

Repository (doi:10.5061/dryad.678rp), respectively.

To estimate divergence times and establish relative node ages

within Crenicichla for diversification analyses, we used congruifica-

tion [34] to impose secondary calibrations on nodes that were

congruent with a time-calibrated phylogeny including cichlids

by Friedman et al. [35]. Friedman et al. [35] used 14 fossil calibra-

tions for the ages of 13 outgroup nodes distributed across

Percomorpha and the root node using a relaxed-clock analysis in

BEAST to infer their time-calibrated phylogeny, which included

156 percomoph species, including 91 cichlids. Specifically, three

nodes were time-calibrated based on the maximum clade credi-

bility age estimate from Friedman et al. [35] phylogeny: the most

recent common ancestor (MRCA) of Crenicichla and Retroculus
(29.2 Ma; 95% confidence interval (CI) 35.1–25.6 Ma), the MRCA

of Crenicichla and Satanoperca (18.0 Ma; 95% CI 22.3–15.0 Ma),

and the MRCA of Crenicichla and Geophagus (20.8 Ma; 95% CI

25.2–17.5 Ma). Divergence time estimation was then performed

in TREEPL [36] using the input file generated by congruification.

Following this procedure, the maximum likelihood phylogeny

was pruned to include only the 57 species for which we have

trait data (electronic supplementary material, figure S2).
(b) Morphological analyses
We quantified body and lower pharyngeal jaw (LPJ) shape of 220

formalin-fixed individuals representing 57 Crenicichla species

(approx. 56% of the valid species) using landmark-based

geometric morphometrics (electronic supplementary material,

table S1). We sampled six members of the Uruguay River species

flock and nine members of the Paraná River species flock. We

used 15 homologous and eight sliding landmarks to describe

the shape of the body in lateral view (electronic supplementary
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material, figure S3). We used three homologous and nine sliding

landmarks to describe the shape of the LPJ in dorsal view (elec-

tronic supplementary material, figure S3). Sliding landmarks

were evenly spaced between homologous landmarks. Only one

side of each LPJ was landmarked owing to structure symmetry.

All analyses were performed using the TPS program suite.

Images were consolidated and landmarked using TPSUTIL [37]

and TPSDIG2 [38], respectively. Procrustes fit and principal com-

ponent (PC) scores were generated using TPSRELW [39]. Variation

in scale, rotation and translation were removed from the analyses

during the Procrustes fit. Additionally, we measured two vari-

ables with intuitive associations with the benthic-to-pelagic

habitat axis and the soft-bodied to hard-shelled prey axis:

mouth angle and LPJ mass, respectively. Mouth angle, based on

the upper jaw (i.e. premaxilla), was measured directly from photo-

graphs in TPSDIG2 [38] using the measure function. Measurements

were adjusted such that a perfectly horizontal (i.e. forming a par-

allel plane with the body) mouth corresponded with 908 (i.e.

benthic-oriented mouths were less than 908 and superior-oriented

mouths were greater than 908). LPJ mass was measured on a digi-

tal scale to the nearest 0.00001 g. Magnitude was accounted for by

calculating residuals from the regression with standard length.

We calculated species means for PCs, angles and residuals for

all subsequent analyses.
(c) Testing for convergence
To assess some key features of the adaptive landscape and quantify

convergence, we used SURFACE analysis [40], which used

stepwise Akaike information criterion to locate the number of

regime shifts (k) on the phylogeny and then identify whether

these shifts are towards convergent regimes (i.e. trait optima).

This process involved iteratively adding regime shifts using a

Hansen model, then iteratively removing shifts to identify conver-

gent regimes (k0). The reduction in complexity (k 2 k0) corresponds

to the number of regimes that are evolving towards common sets

of traits (i.e. optima) and thus can be collapsed into a common

regime (i.e. convergence; Dk). These evolutionary regimes were

projected onto the phylogeny and morphospace to visualize the

adaptive landscape. Convergence can result from Brownian

motion (BM)-like processes [40,41]; therefore, we compared par-

ameters estimated from observed trait data to those generated

from data simulated from BM to assess if the observed degree of

convergence is more than expected by chance. We generated 100

simulated datasets using the surfaceSimulate function [40].

We then estimated the evolutionary history of trophic guild

diversification using maximum-likelihood (mk1 model) ancestral

state reconstruction in MESQUITE v. 3.02 [42] and stochastic char-

acter mapping with SIMMAP [43] implemented in PHYTOOLS

[44]. The mk1 model assumes the probability of all trait changes

are equal. Maximum-likelihood analyses find the ancestral states

(i.e. internal nodes) that maximize the probability that the

observed states (i.e. terminal nodes) would evolve under a sto-

chastic model [45,46]. Stochastic character mapping [47,48]

simulates precise histories of character evolution such that they

depict the character states at nodes and along branches between

nodes. Character changes along branches are predicted by the

rates of character change [42]. We summarized the state frequen-

cies at internal nodes from 1000 SIMMAP stochastic character

histories. Species were pooled into general trophic guilds based

on existing descriptions of Crenicichla trophic ecology: piscivore,

invertivore, molluscivore, crevice-feeder and periphyton grazer

(electronic supplementary material, table S2). The piscivore cat-

egory includes only species that feed almost exclusively upon

fishes. By contrast, the invertivore category includes species

that feed primarily upon invertebrates but may also consume

secondary fractions of fishes (i.e. generalist predators). To simul-

taneously evaluate the direction and magnitude of shape change
and trophic guild evolution along branches of the phylogeny, we

overlaid the phylogeny and trophic guild ancestral state recon-

struction onto the PC scores (i.e. phylomorphospace; [49]) in

MESQUITE v. 3.02 [42]. In this procedure, internal (i.e. ancestral)

node values are estimated using weighted squared-change

parsimony [50,51].

(d) Testing for shifts in diversification rates
We estimated the distribution of discrete rate shifts in diversifica-

tion and morphological evolution (mouth angle and size-relative

LPJ mass) across the phylogeny and through time using BAMM

2.5.0 [52,53]. Priors for all BAMM runs were set using the set-

BAMMpriors command in BAMMtools [54], with the number of

expected shifts set to 1.0. BAMM includes an implementation

of an algorithm to account for non-random incomplete taxon

sampling in the estimation of diversification rates by allowing for

specification of clade-specific sampling fractions [53]. We specified

sampling fractions for each species-group as the proportion of

species in our phylogeny out of the total valid species in each

species-group. Diversification (speciation–extinction) analyses

were run for 25M generations, Markov chain Monte Carlo

(MCMC) output was written every 20 000 generations and event

data were written every 10 000 generations. Trait diversification

analyses were run for 5 million generations, MCMC output was

written every 2000 generations and event data were written every

5000 generations. BAMM output was further analysed in BAMM-

tools [54] to calculate and plot the 95% credible shift set. As

recommended in the BAMM documentation, coda in R [55] was

used to assess whether the MCMC chain included an adequate

number of samples of the posterior distribution by determining if

the effective sample size . 200 for the number of shifts and log like-

lihood. We assessed the number of rate shifts in the posterior

distribution (with 10% burn-in excluded) relative to the prior distri-

bution, which indicated that the posterior distribution was not

sensitive to the prior as can occur in some situations [56] such as

when there is a low probability of rate shifts [57,58].

To independently assess rates of morphological evolution

through time, we used node-height tests. We calculated the

absolute value of phylogenetically independent contrasts and

regressed those against the height (i.e. time since root) of the

node at which they were calculated. Contrasts are Brownian

rate parameters [59]; therefore, a significant positive relationship

between absolute rate contrasts and node height would indicate

that rates of morphological evolution have increased through

time [60].
3. Results
(a) Phenotypic convergence
The Uruguay and Paraná River species flocks exhibited

considerable overlap in body shape (figure 1a), LPJ shape

(figure 1b), LPJ mass and mouth angle (figure 1c). Both species

flocks also occupy a large volume of morphospace (figure 1).

SURFACE identified non-convergent and convergent evolution-

ary regimes (figure 2a). Three convergent regimes were largely

restricted to the Paraná and Uruguay River species flocks

(figure 2a). The degree of phenotypic convergence (Dk ¼ 5)

was not sampled using trait data simulated under BM (Dk ¼
0–3; figure 2b), indicating highly non-random evolutionary

processes generating similar ecomorphs in these species flocks.

These convergent regimes coincided, in part, with the

independent evolution of periphyton grazing, crevice feeding

and molluscivory within the Uruguay and Paraná radiations

(electronic supplementary material, figure S4). The first con-

vergent regime (green in figure 2) included C. tapii and
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variation, and (c) mouth angle and size-relative LPJ mass among 57 Crenici-
chla species. Wire frames depict shapes associated with the extremes of each
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and designated with codes that correspond to the first letters of the species
names shown in figure 2a.
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C. taikyra (Paraná) as well as C. hadrostigma and C. empheres
(Uruguay), which was characterized by an optimum defined

by curved snouts, small mouths, robust LPJ and mostly

benthic-oriented mouths (figure 2c). The second regime

(brown in figure 2) included C. tuca (Paraná) and C. tendyba-
guassu (Uruguay) and was characterized by tapered bodies,

terminal mouths and hypertrophied lips (figure 2c). The

third regime (red in figure 2) included only C. tesay (Paraná)
and C. minuano (Uruguay) and was characterized by an opti-

mum defined by intermediate mouth size, hypertrophied

LPJ and terminal mouths (figure 2c). The red and brown

regimes) included optima that fell outside the observed trait

space for body and/or LPJ shape. Outlier optima may

indeed represent evolution towards distant optima; however,

it may also represent rapid adaptation to a new optimum

that results in the optimum being interpreted by the model

as distant [61]. Given the rapid ecological diversification

within these clades, it is likely that it represents rapid evolution

to a new optimum. Several species within both species flocks

are united within an ancestral non-convergent regime (black

in figure 2). Outgroups generally fell into two non-convergent

regimes. The C. lugubris and C. saxatilis were united with a

non-convergent regime (grey in figure 2), as well as C. wallacii,
C. reticulata and the (non-Paraná and Uruguay) C. lacustris
group species were united within a non-convergent regime

(black in figure 2). Lastly, the members of the Teleocichla
group shared a regime with some members of the species

flocks (green in figure 2).

(b) Trophic convergence
The ancestral trophic state of both species flocks was well

resolved as invertivore based on our maximum-likelihood

ancestral state reconstruction and stochastic character mapping

(electronic supplementary material, figure S4). Within

the Paraná River, this ancestral trophic state is retained in

C. mandelburgeri, C. hu and C. ypo, whereas all other species

exhibit a novel trophic state (figure 2d; electronic supplemen-

tary material, figure S4). Piscivory evolved independently in

Crenicichla sp. Urugua-ı́ line and C. iguassuensis; molluscivory

evolved once, in C. tesay and C. taikyra; and periphyton grazing

and crevice feeding evolved in C. tapii and C. tuca, respectively

(figure 2d; electronic supplementary material, figure S4).

Within the Uruguay River, the ancestral trophic state is

retained only in C. empheres, whereas piscivory evolved once

in C. celidochilus and C. missioneira, crevice feeding evolved

in C. tendybaguassu, molluscivory evolved in C. minuano and

periphyton grazing evolved in C. hadrostigma (figure 2d; elec-

tronic supplementary material, figure S4). Piscivory evolved

in the Uruguay (C. celidochilus and C. missioneira) and Paraná

(C. sp. Urugua-ı́ line and C. iguassuensis) Rivers; however, pis-

civorous ecomorphs have not evolved in parallel because these

species retain the ancestral body and LPJ morphologies indi-

cating that ancestral morphologies may have been co-opted,

in parallel, for novel trophic functions (figure 2a,d; electronic

supplementary material, figure S4). A host of derived trophic

states evolved independently in both rivers from similar ances-

tral states and in association with the evolution of novel trait

combinations (figure 2d). Namely, these cases involved the

evolution of molluscivory, crevice feeding, and periphyton

grazing and the corresponding expansion of morphospace

associated with novel trophic role-specific craniofacial and

LPJ morphologies (figure 2d).

(c) Diversification rates
Rate shifts are not independent of one another such that there

are many possible shift configurations. The most probable

shift configuration for diversification rates includes no rate

shifts (electronic supplementary material, figures S5 and

S6). Less probable shift configurations include having one

rate shift near the base of the clade containing both species
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Figure 2. Morphological and trophic convergence between the Paraná (orange) and Uruguay River (blue) species flocks. (a) Non-convergent (greyscale branches)
and convergent (like-coloured branches) evolutionary regimes across 57 Crenicichla species from SURFACE analysis. (b) The observed degree of convergence relative to
an expected distribution under a Brownian motion model of evolution. (c) The distribution of inferred adaptive peaks (large circles) and species (small circles) across
morphospace. (d ) Phylomorphospace depicting the direction and magnitude of shape change (branches) and corresponding trophic guild evolution (nodes). The
trophic guild colour codes apply only to (d ). Arrows point towards optima that fell outside of the observed trait values.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20171762

5

flocks or having a shift associated with the origin of the

Uruguay River species flock (electronic supplementary

material, figures S5 and S6).

For the evolution of mouth angle, the most probable shift

configuration includes two shifts near the base of each species

flocks (figure 3a,b). Less probable shift configurations vary in

the placement of the shift along the branch leading to the

Uruguay River species flock and the placement of the shift

near the base of the Paraná species flock, sometimes excluding

some of the piscivores and invertivores (electronic supplemen-

tary material, figure S7). Rate through time plots revealed that

evolutionary rates have accelerated through time (figure 3c).

There was a significant positive relationship between absolute

contrasts and the height of the nodes at which they were

calculated (R2 ¼ 0.161; F ¼ 10.37; p ¼ 0.002), indicating that

rates of evolution have increased over time. Furthermore,

node-height tests indicate that the rapid rate increase near pre-

sent day is driven by the Parana and Uruguay species flocks

(figure 3c).

For the evolution of size-relative LPJ mass, the most prob-

able shift configuration included three shifts (figure 3d ),

including an early shift at the base of the clade containing

both species flocks, and more recent shifts at the base of the

Uruguay River species flock and within the Paraná River

species flock (figure 3e; electronic supplementary material,

figure S8). Less probable shift configurations varied in their

inclusion of a shift near the base of the clade containing

both species flocks, but generally had shifts at the base of
or within both species flocks (electronic supplementary

material, figure S8). Rate through time plots revealed that

evolutionary rates have accelerated through time (figure 3f ).
There was a significant positive relationship between absol-

ute contrasts and the height of the nodes at which they

were calculated (R2 ¼ 0.134; F ¼ 8.35; p ¼ 0.006), indicating

that rates of evolution have increased over time. Furthermore,

node-height tests indicate that the rapid rate increase near

present day is driven by the Parana and Uruguay species

flocks (figure 3f ).
4. Discussion
Parallel diversification into similar suites of ecomorphs is a

central theme of adaptive radiation within discrete ecosystems

such as islands and lakes. Textbook examples of parallel

adaptive radiations such as those of anole lizards and cichlid

fishes provide predictable evolutionary outcomes such as

non-random phenotypic evolution towards inferred adaptive

peaks, the evolution of specializations and the onset of diver-

sity dependence as niches fill towards capacity [5,7,10,62].

We found that pike cichlids exhibit parallel adaptive radiation

in the Paraná and Uruguay Rivers (figure 4) that is consis-

tent with those of island- and lake-dwelling clades and is

uncharacteristic for river-dwelling fish assemblages.

Similar suites of ecomorphs have independently evolved

within the Paraná and Uruguay Rivers from similar ancestral
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states (figure 2; electronic supplementary material, figure S4).

The evolution of specialized trophic roles were strictly asso-

ciated with the evolution of novel phenotypes and therefore

contributed to a dramatic expansion of phenotypic diversity

during these clades’ exploration of the adaptive landscape

(figure 2d ). Non-random phenotypic diversification towards

inferred adaptive peaks associated with unique mor-

phologies such as hypertrophied and atrophied pharyngeal

jaws (i.e. molluscivores and piscivores, respectively), hyper-

trophied oral lips (i.e. crevice feeders) and benthic-oriented

snouts (i.e. periphyton grazers) led to high degrees of conver-

gence between these two clades. These trophic roles and their

associated adaptations are rare among river-dwelling cichlids

[22,63]; however, they are conspicuously associated with

adaptive radiations of lake-dwelling clades. For example,

African cichlids have diversified extensively within primary

production-associated trophic roles (e.g. algae scrapers) in

lakes Tanganyika and Malawi [22]. Rapid transitions to

herbivory are otherwise rare among freshwater fishes [64].

Likewise, hypertrophied pharyngeal jaws associated with dur-

ophagy (i.e. eating hard-shelled prey) and hypertrophied lips

associated with feeding from rocky crevices are also rare

among Neotropical cichlids, but have often arose during adap-

tive radiation in African and Middle American lakes and are

common sources of polymorphism between incipient species

pairs in lakes and within some extremely polymorphic species

(reviewed in [22]). These results indicate that while the eco-

morphs are novel in terms of the recent evolutionary history

of these river-dwelling clades, the specific ecological roles

and associated phenotypic adaptations that arose are predict-

able when compared with lake-dwelling counterparts in

Africa and Middle America.
The hallmark phylogenetic signature of adaptive radi-

ation includes an initial burst in diversification rates

following the colonization of a novel environment, followed

by slowing after the onset of diversity dependence [65].

This period of slowing occurs in response to ecological con-

straints as niches fill towards capacity [60]. Pike cichlids

probably colonized subtropical South America via stream

capture between southern tributaries of the Amazon and

the headwaters of the La Plata River basin [66–68]. We

found some evidence of a burst in diversification rates at

the base of the subtropical clade, but the most likely shift con-

figuration contained zero shifts (electronic supplementary

material, figures S5 and S6). The paucity of cichlid (and

non-cichlid) lineages that occur in subtropical South America

[69] may have resulted in competitive release from the com-

paratively diverse Amazonian lineages and communities,

but such processes have not elicited dramatic bursts in

species diversification as similar colonization events in the

East African Great Lakes [70], perhaps owing to ecological

constraints specific to riverine ecosystems. By contrast,

bursts in morphological evolution were more closely associ-

ated with the Paraná and Uruguay River clades and the

rise of the parallel ecomorphs (figure 3). Rates of phenotypic

evolution increased through time, including dramatic

increases near present day and are thus inconsistent with

diversity dependence associated with niche filling [60].

These clades may be too young to exhibit such patterns of

morphological evolution.

Diversification along the benthic-to-pelagic habitat axis

has been prodigious among adaptive radiations of lake-

dwelling cichlids [22,64], including within Lake Malawi

[71], Lake Tanganyika [72], Cameroonian crater lakes [11],
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Ugandan crater lakes [13] and Nicaraguan crater lakes [9,73].

Most of the parallel ecomorphs that arose in the Paraná and

Uruguay Rivers are strictly benthic such that they consume

substrate-associated primary producers or invertebrates (i.e.

periphyton grazers, crevice feeders and molluscivores); how-

ever, some species have specialized to exploit schooling fishes

from the water column [26]. Vast depths and steep shoreline

reefs that characterize many lakes provide dramatic ecologi-

cal gradients that may have permitted the evolution of a

variety of pelagic trophic roles including open-water pisci-

vores as well as filter feeders [22]. Diversification along the

benthic-to-pelagic habitat axis may be constrained within

the Paraná and Uruguay River clades because the axis is

more physically constrained in rivers and permits fewer evol-

utionary outcomes and less potential for niche packing [5].

Such environmental constraints may provide conditions that

favour rapid morphological evolution but not in combination

with rapid species diversification.

The Paraná and Uruguay River species flocks exhibit many

characteristics generally attributed to the textbook examples

of parallel adaptive radiation in island- and lake-dwelling

organisms including that similar suites of ecomorphs evolved

independently and in situ in the Uruguay and Paraná Rivers

and that colonization-associated ecological opportunity eli-

cited rapid phenotypic diversification. Normally, the

adaptive landscape may be very different in lakes and rivers

such that river assemblages are immigration-assembled

rather than speciation-assembled and some regions of the

adaptive landscape may be implausible evolutionary results

in rivers owing to niches that are uncommon or temporally

unstable in such environments [5]. Nevertheless, the Paraná

and Uruguay Rivers have provided suitable circumstances

for the rise of lake-like adaptive radiations. Namely, these

rivers are mostly shallow, clear and have rocky substrate,
which probably provided the opportunity for the exploitation

of primary production-associated trophic roles (i.e. algae gra-

zers) as is provided along the littoral zone of lakes. Second,

these basins are home to few cichlid and non-cichlid lineages.

Thus, after colonization of subtropical South American

streams, pike cichlids may have experienced relaxed compe-

tition for mostly vacant niches. Lastly, pike cichlids

colonized a novel adaptive zone among Neotropical cichlids

associated with elongate bodies adapted for ram feeding

[74], which may have predisposed the lineage to further

trophic-based exploration of the adaptive landscape. This

specific set of circumstances may have provided the opportu-

nity for these clades to diversify in a pattern reminiscent of

island-dwelling anoles [7] and lake-dwelling cichlids [5],

such that similar suites of ecomorphs arose rapidly in parallel.

Furthermore, the suites of parallel ecomorphs appear idiosyn-

cratic within the immediate evolutionary histories of these

clades, but are quite predictable evolutionary outcomes

when viewed in the broader context of parallel adaptive

radiations in other ecosystems such as lakes.
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