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Distress is a critical problem in developed societies given its long-term negative effects on

physical and mental health. The interest in studying this emotion has notably increased

during last years, being electroencephalography (EEG) signals preferred over other

physiological variables in this research field. In addition, the non-stationary nature of brain

dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain

signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been

tested. Hence, in the present study two permutation entropies denominated Delayed

Permutation Entropy and Permutation Min-Entropy have been computed for the first

time at different time-lags to discern between emotional states of calmness and distress

from EEG signals. Moreover, a number of curve-related features were also calculated to

assess brain dynamics across different temporal intervals. Complementary information

among these variables was studied through sequential forward selection and 10-fold

cross-validation approaches. According to the results obtained, the multi-lag entropy

analysis has been able to reveal new significant insights so far undiscovered, thus notably

improving the process of distress recognition from EEG recordings.

Keywords: electroencephalography, distress, non-linear metrics, delayed permutation entropy, permutation

min-entropy

1. INTRODUCTION

Emotions are essential in human communication and interaction, and considerably influence
on daily tasks related to cognition, perception and rational decision-making processes (Coan
and Allen, 2007). Traditional techniques for emotion recognition are mainly focused on the
analysis of physical aspects like facial expressions and speech characteristics (Calvo and D’Mello,
2010). However, given that emotional responses are initiated in the brain and then spread to
other biological systems (Gao et al., 2015), interest in electroencephalogram (EEG) signals for
emotion recognition has notably increased during the last years (Martínez-Rodrigo et al., 2017;
Fernández-Sotos et al., 2018; Ramirez et al., 2018).
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Existing affect models include from a few basic
emotions (Ekman, 1992) to a wide variety of emotional
states derived from the combination of basic ones (Schröder and
Cowie, 2011). Russell’s circumplex affect model is one of the
approaches most widely used for emotion classification (Russell,
1980). In this bidimensional approach, emotions are distributed
according to their level of valence (ranging from negative to
positive) and arousal (from deactivated to activated). A relevant
emotion that is receiving growing attention is negative stress, also
called distress, because it presents a high prevalence in developed
countries (Bong et al., 2013; Alberdi et al., 2016). Although today
short-term distress is not considered a risk factor for health, a
chronic condition of this emotion often causes or aggravates
physical and mental disorders (Bender and Alloy, 2011; Mozos
et al., 2017). In this regard, automatic distress identification from
EEG signals would help prevent health problems and improve
people’s quality of life.

Since neural processes are non-linear and non-stationary,
both at cellular and global level (Cao et al., 2015), non-
linear metrics applied to EEG signal analysis should provide
more relevant findings than linear indices traditionally
used (Valenza et al., 2012). But, few studies have applied
non-linearity to automatic detection of negative stress through
EEG recordings (García-Martínez et al., 2019a). This is the
case of symbolic entropies, such as Permutation Entropy
(PE) (Bandt and Pompe, 2002) and Amplitude-Aware
Permutation Entropy (AAPE) (Azami and Escudero, 2016),
having demonstrated their efficiency in discriminating between
calmness and distress (Hosseini and Naghibi-Sistani, 2011;
García-Martínez et al., 2017; Martínez-Rodrigo et al., 2019).
Here, the quantification of similar patterns is typically obtained
through consecutive samples, or their averaging, within a
complete time series.

No lag or time delay between patterns is necessary in those
cases where the autocorrelation function of the signal presents
a steep decay. However, a time series with long-range linear
correlations shows a slow decay in its autocorrelation function.
Not applying a lag may hinder entropy metrics from properly
quantifying the complexity and non-linear dynamics of the
signal. Indeed, it has already been demonstrated that time-
delayed entropy tests are helpful to diminish the influence of
autocorrelation for better evaluation of the non-linearity of time
series (Kaffashi et al., 2008). Hence, a multi-lag approach has
been applied to localization of epileptogenic areas through EEG
recordings (Zhu et al., 2015).

Let us highlight that an improvement of PE called
Permutation Min-Entropy (PME) has been recently
introduced (Zunino et al., 2015). PME consists of an improved
time-delayed symbolic alternative for identifying the existence
of hidden temporal correlations in time series. This allows
a better discrimination of time series with similar temporal
correlations. Moreover, PME has been very recently applied to
emotion recognition by using heart rate variability (Xia et al.,
2018). The promising outcomes open a door to the hypothesis
that time-delayed analysis may uncover existing information in
physiological systems, not revealed before through non-delayed
or basic multiscale entropy (MSE) analyses. Furthermore, to

the best of our knowledge, no previous research has focused on
the study of multi-lag approaches for emotion recognition from
EEG signals.

For this reason, in the present manuscript a time-delayed
version of AAPE—called Delayed Permutation Entropy (DPE)—
and PME metrics are applied for the first time with several
time delays for the sake of checking the influence of the lag
on discrimination between calmness and distress from EEG
recordings. The remainder of this paper is structured as follows.
Section 2 details the analyzed database, the DPE and PMEmetrics
computed from the EEG recordings and the statistical analysis.
Section 3 summarizes the results, which are then discussed in
section 4. Finally, section 5 concludes the most remarkable
findings related to this study.

2. MATERIALS AND METHODS

2.1. Database
EEG signals were extracted from the publicly available
Database for Emotion Analysis using Physiological
Signals (DEAP) (Koelstra et al., 2012) to guarantee the
reproducibility of this study as well as its fair comparison with
previous or future works. This dataset contains a total of 1,280
EEG recordings and other peripheral variables from 32 healthy
participants with ages ranging 19–37 (mean age of 26.9; 50%
male) under different affective conditions. Forty one-minute
length video clips with emotional content were used as stimuli in
the experiment leading to the dataset. After each visualization,
the participants described their emotional state by means of self-
assessment manikins (SAM), two graphical scales representing
nine intensity levels of valence and arousal (Morris, 1995).

Although the trials contained within the dataset cover the
whole valence-arousal space, only two subsets corresponding to
distress and calmness emotional states were studied in the present
study, as shown in Figure 1. Indeed, calmness and distress groups
were selected according to previous works dealing with the same
problem (Bastos Filho et al., 2012; Pomer-Escher et al., 2014;
García-Martínez et al., 2016; García-Martínez et al., 2017). Hence,
distress trials were selected from arousal and valence levels higher
than 5 and lower than 3, respectively. On the other hand, the
calmness group contained trials with arousal and valence values
lower than 4 and between 4 and 6, respectively. Therefore, a
total number of 122 and 137 trials of distress and calmness,
respectively, were finally analyzed in this work. Moreover, it is
important to highlight that only the last 30 s of each trial were
selected for further analysis.

2.2. EEG Signal Preprocessing
EEG signals were recorded at a sampling rate of 512 Hz with
32 electrodes placed according to the 10–20 standard system of
electrode location (Klem et al., 1999). Before starting any kind
of analysis, the recordings were preprocessed to eliminate noise
and artifacts, thus preserving only the information related to
brain activity. To this respect, the signals were initially down-
sampled to 128 Hz and all EEG channels were re-referenced to
the average potential of all electrodes. Next, a forward/backward
high-pass filter at 3 Hz and a low-pass filter at 45 Hz cutoff
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FIGURE 1 | Trials distribution included in DEAP database in the

arousal–valence space. Selected groups of distress and calmness trials are

highlighted.

frequency were applied to remove baseline and power line
interferences, maintaining the frequency bands of interest in EEG
recordings (Koelstra et al., 2012). After that, artifacts derived
from physical activity (e.g., facial movements, eye blinks, heart
bumping, etc.) and technical sources, such as electrode-pops
were eliminated by means of independent component analysis
(ICA) (Goh et al., 2017).

A well-known method with ability to automatically identify
noisy independent components (ICs) was used (Nolan et al.,
2010). Briefly, the algorithm firstly computed correlation between
all ICs and electrooculography channels, as well as spatial
kurtosis, power spectrum slope, Hurst exponent and median
gradient for all ICs. Those components presenting at least an
index with a value three times higher than standard deviation
for all ICs were then removed. As a final step, the denoised EEG
signal was reconstructed from the remaining ICs. It is worth
noting that 1.05 ± 0.60 ICs were removed in average for each
trial. More precisely, any artifactual IC was identified in 38 trials
(14.67%), only one was removed in 168 trials (64.86%) and two
were rejected in the remaining 53 trials (20.47%).

The EEG channels presenting high-amplitude noise were
also detected and replaced by interpolation from adjacent
electrodes (Reis et al., 2014). Although these signals were
identified before ICA-based denoising of artifacts, their
interpolation was developed after that preprocessing. This
approach has been previously used by other authors (Forscher
et al., 2016; Pincham et al., 2016; Bennett et al., 2018) and its
main goal is to avoid mixing any non-linearity introduced by
interpolation into the ICA decomposition (Nolan et al., 2010).
Nonetheless, noisy EEG channels did not contribute to the
rejection of artifacts (Nolan et al., 2010). As a result, the number
of interpolated EEG channels was zero for 162 trials (62.55%),
one for 83 trials (32.05%), two for 13 trials (5.02%) and three for
the remaining trial (0.39%). Additionally, the most frequently
interpolated channels were CP1 (in 21 trials, 21.65%), T8 (in 11
trials, 11.34%), CP5 (in 9 trial, 9.28%), AF4 (in 8 trial, 8.25%), T7

(in 6 trials, 6.19%), and FC2 (in 5 trials, 5.15%). The remaining
channels were interpolated in <4% of trials.

2.3. Time-Delayed Version of
Amplitude-Aware Permutation Entropy
Amplitude-Aware Permutation Entropy (AAPE) is an
improvement of Permutation Entropy (PE) to consider
amplitude information from analyzed time series (Fadlallah
et al., 2013). Although this index has been mainly used
in single-lag analyses, it can be adapted to deal with
different time scales by changing the embedding delay
τ (Azami and Escudero, 2016). Thus, for delayed-time PE
computation, a time series x(n) = {x(1), x(2), . . . , x(N)} of
length N is converted into N − (m − 1) · τ vectors of m
samples, such that Xτ

i,m = {Xτ
i,m(1),X

τ
i,m(2), . . . ,X

τ
i,m(m)} =

{x(i), x(i+ τ ) . . . , x(i+ (m− 1) · τ )}, for 1 ≤ i ≤ N− (m− 1) · τ .
Each vector Xτ

i,m is associated with an ordinal pattern,
described as permutation κi = {r0, r1, . . . , rm−1} of
{0, 1, . . . ,m − 1}, such that its single components fulfill
Xτ
i,m(r0) ≤ Xτ

i,m(r1) ≤ . . . ≤ Xτ
i,m(rm−2) ≤ Xτ

i,m(rm−1). Hence,
a total number of m! ordinal sequences πk are obtained from
patterns Xτ

m. Then, the relative frequency of each sequence πk is
used to estimate its probability of appearance such that

pτ (πk) =

∑N−(m−1)·τ
i=1 δ(πk, κi)

N − (m− 1) · τ
, (1)

being δ(u, v) the Kronecker delta function modified specifically
to work with sequences, i.e.,

δ(u, v) =

{

1, if u(i) = v(i), for every i = 1, 2, . . . ,m;

0, for otherwise.
(2)

Then, delayed-time PE is finally obtained by computing the
Shannon entropy from the probability distribution of all symbols,
such that

PE(x,m, τ ) = −
1

ln(m!)

m!
∑

k=1

pτ (πk) · ln
(

pτ (πk)
)

. (3)

The index is normalized by term ln(m!) to obtain values ranging
between 0 and 1. In the case of a completely predictable signal,
only a pattern πk is found and PE reports a 0 value. On the
contrary, symbols πk in unpredictable time series present the
same probability of occurrence. Thus, PE provides the highest
value 1. Hence, predictability information reported by PE is easily
interpretable (Zanin et al., 2012). Nevertheless, only the ordinal
structure of patterns is considered by this index, thus discarding
the information related to the amplitude of each sample.

As amplitude differences could play a key role to determine the
predictability of a time series, AAPE was introduced to overcome
this limitation (Azami and Escudero, 2016). AAPE computation
is based on calculating the probability of repetition of each
pattern πk by considering its relative frequency, and also the
average absolute (AA) and relative amplitudes (RA) of vectors
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Xτ
i,m. Amplitudes AA and RA are obtained, respectively, for a

specific vector Xτ
i,m as

AAτ
i =

1

m

m
∑

l=1

|Xτ
i,m(l)| (4)

and

RAτ
i =

1

m− 1

m
∑

l=2

|Xτ
i,m(l)− Xτ

i,m(l− 1)| (5)

Then, the relative frequency of πk is computed as

pτ∗(πk) =

∑N−(m−1)·τ
i=1 δ(πk, κi) ·

(

K · AAτ
i + (1− K) · RAτ

i

)

∑N−(m−1)·τ
i=1 K · AAτ

i + (1− K) · RAτ
i

,

(6)
being K an adjusting coefficient of terms AA and RA, ranging
from 0 to 1. As recommended by the authors, a value K = 0.5
was considered here. Finally, delayed-time AAPE, referred to as
Delayed Permutation Entropy (DPE), is computed by means of
Shannon entropy, such that

DPE(x,m, τ ) = −
1

ln(m!)

m!
∑

k=1

pτ∗(πk) · ln
(

pτ∗(πk)
)

. (7)

2.4. Permutation Min-Entropy
Recently, PE has also been generalized by replacing Shannon
entropy with Rényi one, reaching a better characterization of
some rare and frequent ordinal patterns (Zhao et al., 2013). More
precisely, Rényi Permutation Entropy (RPE) is defined as

RPE(x,m, τ , q) =
1

ln(m!)
·

1

1− q
· ln

(

m!
∑

k=1

pτ (πk)
q
)

, (8)

where order q (q ≥ 0 and q 6= 1) is a bias parameter. Indeed,
q < 1 benefits rare events and, contrarily, q > 1 privileges salient
ones. It is mandatory to note that Shannon entropy is an instance
of Rényi entropy for q = 1 and, hence, RPE is a more flexible
tool than PE. In this respect, RPE has reported a more complete
characterization of a variety of complex dynamics, including
physiological processes (Mammone et al., 2015). In addition, RPE
is featured to converge to a minimum entropy in the limit q →

∞, thus providing Permutation Min-Entropy (PME) (Zunino
et al., 2015). This new entropy-based metric is quickly and simply
computed as

PME(x,m, τ ) = −
1

ln(m!)
ln

(

max
k=1,2,...,m!

[

pτ (πk)
]

)

, (9)

still retaining the main advantages of PE, such as its simplicity,
low computational cost, noise robustness, and invariance with

respect to non-linear monotonous transformations. This index
has also proven a greater ability than PE to detect the existence of
subtle temporal structures in EEG channels (Zunino et al., 2015).

2.5. Feature Selection
Firstly, single DPE and PME values from lag τ = 1 to lag
τ = 10 were computed for each subject by using a pattern
length m = 6. Entropies computed for each time-lag are a
measure of predictability of the time series and assess the effect
of time dynamics from an inter-lag perspective. Indeed, larger
entropy values represent more unpredictable dynamics of the
EEG signals, showing an increase of autocorrelated patterns in
a long-term fashion.

On the other hand, multi-lag entropy curves were
parameterized by means of slopes, areas under curves and
arc lengths. Indeed, some studies have previously reported
that features extracted from parameterized curves may reveal
important information related to the dynamics of the signals
across different temporal intervals (Escudero et al., 2006). In
this regard, to estimate the trend evolution of each time-lag
curve, slopes between delay τ = 1 and τ = 2, 4, 6, 8, and
10 were calculated from all EEG channels of each trial and
denoted as Slp1 − τ . The slope is estimated as the straight line
connecting the multi-lag entropy values under study. Higher
slope values suggest larger entropy increases between the original
signal (τ = 1) and higher versions in consecutive multi-lag time
delays (τ = 2–10).

Furthermore, areas enclosed under the multi-lag curve
between lag τ = 1 and lags τ = 2, τ = 4, τ = 6, τ = 8, and τ = 10
were computed and denoted as Ar1 − τ . In this sense, a higher
area is achieved when DPE and PME entropy values are higher
for the majority of time delays, suggesting that time series are
less predictable. Finally, the arc length (AL) for each time-delayed
curve was computed between lags τ = 2 and τ = 10. An arc length
value shows the morphological alterations of the curve across
different lags, and may show significant differences among lags
from different groups of study. The arc length of each multi-lag
curve was computed as

AL =

τ=10
∑

τ=2

√

1+ (E[τ ]− E[τ − 1])2 (10)

referring E to the values of DPE and PME for the corresponding
time-lag τ in each case.

Hence, a total of 21 features were computed for symbolic-
based entropies DPE and PME on each EEG channel. More
precisely, 10 single entropy values (one for each of the 10 time-
lags computed), 5 tendency parameters related to time-lag curves
(slopes Slp1 − 2, Slp1 − 4, Slp1 − 6, Slp1 − 8, Slp1 − 10), and
6 shape-related features (areas under curves Ar1 − 2, Ar1 − 4,
Ar1− 6, Ar1− 8, Ar1− 10, and arc length AL) were obtained for
each EEG channel.

2.6. Statistical Analysis
Once the features were computed for each metric under study,
Shapiro-Wilks and Levene tests corroborated the normality and
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homoscedasticity of the data, such that the results are expressed
as mean and standard deviation. Then, statistical differences
between features obtained for emotional states of calmness and
distress were assessed for each time lag τ using a one-way analysis
of variance (ANOVA). A value of statistical significance ρ < 0.05
was considered as significant.

Furthermore, the discriminatory power of each feature to
distinguish between both groups of emotions was tested by using
a stratified 10-fold cross-validation scheme. This methodology
prevents over-fitting as well as other biases when performing
the training/test operation on classifiers (Jung and Hu, 2015).
Thus, the database selection containing 259 recordings was sliced

into ten equally-sized folds with a balanced number of trials
from both groups. Next, ten iterations were performed, such
that in each one 9 out of 10-folds were used as a training
subset, and 1 out of 10-folds was used as the test subset. To
perform the classification, a receiver operating characteristic
(ROC) approach was computed using the training trials to obtain
an optimal threshold, which was then used to classify the trials
in the test subset. It is worth noting that the threshold was
selected as the cut-off point that maximizes accuracy (Acc).
Values of sensitivity (Se), specificity (Sp), and Acc, obtained from
the 10 iterations, were finally averaged to provide global and
robust estimates.

FIGURE 2 | Mean and standard deviation values of DPE at different time-lags for calmness and distress at the most significant EEG channels.

FIGURE 3 | Mean and standard deviation values of PME at different time-lags for calmness and distress at the most significant EEG channels.
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Keeping in mind the objective of assessing possible
relationships and complementary information among features,
several advanced classifiers were used. Thus, a decision tree
classifier (DTC), a support vector machine (SVM), a quadratic
discriminant analysis (QDA) and a k-nearest neighbor (KNN)
classifier were used. Regarding DTC, the nodes’ growth was
stopped when each node solely contained either fragments from
only one group or a number of trials <20% of the entire dataset.
Moreover, every node was split by using an impurity-based
Gini index. Furthermore, the SVM classifier was run with a
cubic kernel function and kernel scale of 1. Finally, the KNN

TABLE 1 | Results of ρ and Acc of the most relevant EEG channels for DPE and

PME at different time-lags.

DPE P3 PO3 O1 Oz CP2 O2

τ = 1
ρ 0.00261 8.85×10−5 0.0044 0.0235 0.132 0.0696

Acc (%) 62.20 62.90 58.00 58.70 54.00 56.40

τ = 2
ρ 1.88×10−4 0.0049 0.0012 0.0139 0.0455 0.0436

Acc (%) 63.70 60.89 60.62 61.78 61.00 61.39

τ = 3
ρ 3.23×10−5 0.913 0.0440 0.3023 0.3045 0.0436

Acc (%) 62.50 56.00 58.80 57.10 54.40 53.30

τ = 4
ρ 6.08×10−5 0.4390 0.2140 0.6010 0.4710 0.6320

Acc (%) 61.80 55.60 55.60 52.50 57.10 53.70

τ = 5
ρ 6.99×10−6 0.7310 0.0866 0.5114 0.2740 0.7310

Acc (%) 61.40 59.85 61.00 64.09 61.00 62.16

τ = 6
ρ 2.69×10−5 0.1210 0.0312 0.341 0.697 0.45

Acc (%) 62.20 59.80 57.60 56.80 55.40 53.30

τ = 7
ρ 3.76×10−5 0.0136 0.0278 0.28 0.185 0.4514

Acc (%) 62.90 60.60 61.00 53.70 57.50 54.40

τ = 8
ρ 6.55×10−5 0.3520 0.0197 0.1130 0.1630 0.205

Acc (%) 62.90 58.70 56.40 56.00 55.20 53.70

τ = 9
ρ 1.14×10−4 0.0932 0.0543 0.3210 0.0148 0.5670

Acc (%) 61.00 57.10 55.00 55.60 60.20 54.80

PME P3 PO3 O1 Oz CP2 O2

τ = 1
ρ 3.33×10−4 8.85×10−4 0.017 0.128 0.0824 0.109

Acc (%) 61.00 59.10 59.10 56.80 54.80 55.60

τ = 2
ρ 4.34×10−4 0.0049 0.0044 0.0637 0.0089 0.1610

Acc (%) 61.40 59.10 61.00 56.80 56.50 56.40

τ = 3
ρ 0.0905 0.913 0.0532 0.362 0.342 0.633

Acc (%) 59.80 60.50 59.80 58.30 57.10 53.70

τ = 4
ρ 0.034 0.439 0.865 0.169 0.476 0.764

Acc (%) 59.20 56.00 56.80 57.80 59.80 61.70

τ = 5
ρ 0.379 0.731 0.181 0.166 0.346 0.749

Acc (%) 57.50 58.70 64.50 61.00 62.50 60.20

τ = 6
ρ 0.216 0.121 0.0334 0.472 0.674 0.593

Acc (%) 56.80 62.20 62.20 62.50 56.40 61.40

τ = 7
ρ 6.85×10−4 0.0136 0.194 0.974 0.0173 0.941

Acc (%) 61.00 64.10 62.20 60.20 62.60 58.2

τ = 8
ρ 1.44 ×10−4 0.352 0.0786 0.0857 0.145 0.734

Acc (%) 65.60 62.50 66.40 65.10 60.20 55.20

τ = 9
ρ 5.38×10−5 0.0932 0.0621 0.675 0.0026 0.798

Acc (%) 68.30 62.90 60.20 59.10 68.70 58.70

classifier used an Euclidean distance metric with 10 neighbors,
where the weight of the distance was computed to perform
the classification by means of squared inverse. Nonetheless,
given the high amount of analyzed features (21 features × 2
metrics × 32 channels), the subset providing most information
was selected in first place for each classifier. Thus, a sequential
forward selection (SFS) approach was used to select the subset of
features minimizing misclassification rate for each classifier. A
stratified 10-fold cross-validation scheme was also used to reduce
overfitting in this analysis.

3. RESULTS

3.1. Results for Delayed Permutation
Entropy and Permutation Min-Entropy
Mean and standard deviation of DPE and PME values for the
most relevant EEG channels at different time-lags (1 ≤ τ ≤ 10)
are shown in Figures 2, 3, respectively. As can be observed,
both metrics obtained a similar trend throughout the increasing
time-lags. DPE and PME values for calmness are higher than
for distress trials, especially at lower lags. However, as time-lag
increases the average differences between groups become smaller,
such that at higher time-lags the mean entropy differences
between groups become imperceptible. Furthermore, a certain
degree of stabilization at time-lags > 3 for both metrics can
also be noticed, where the standard deviation decreases as the
analyzed time-lag increases.

TABLE 2 | Results of ρ and Acc of the DPE curve-related parameters.

DPE P3 PO3 O1 Oz CP2 O2

Slp1− 2
ρ 0.0152 3.30×10−4 0.049 0.0970 0.5606 0.2044

Acc (%) 57.92 61.78 57.14 57.92 54.05 58.69

Slp1− 4
ρ 2.94×10−4 4.71×10−5 0.0048 0.0160 0.1783 0.0504

Acc (%) 58.69 61.39 57.53 60.23 54.44 59.46

Slp1− 6
ρ 4.60×10−4 6.92×10−5 0.0056 0.0189 0.1475 0.0576

Acc (%) 58.30 60.62 59.46 61.12 53.28 58.30

Slp1− 8
ρ 0.0011 1.78×10−4 0.0087 0.0350 0.3408 0.0909

Acc (%) 58.69 62.16 58.30 58.69 53.67 58.42

Slp1− 10
ρ 5.65×10−4 1.22×10−4 0.0089 0.0456 0.3002 0.0933

Acc (%) 59.85 62.23 59.07 57.14 53.67 57.53

Ar1− 2
ρ 4.30×10−5 5.48×10−5 0.0024 0.0174 0.0713 0.0542

Acc (%) 61.67 62.16 59.07 57.45 55.09 56.76

Ar1− 4
ρ 1.33×10−4 2.84×10−4 0.0025 0.0279 0.0717 0.0976

Acc (%) 61.00 59.07 57.92 57.53 55.73 54.05

Ar1− 6
ρ 1.14×10−5 0.0010 0.0031 0.0457 0.1075 0.1443

Acc (%) 60.62 59.46 58.87 56.51 56.76 54.44

Ar1− 8
ρ 0.0016 0.0015 0.0034 0.0543 0.0929 0.1609

Acc (%) 60.23 60.62 58.30 58.69 55.98 53.28

Ar1− 10
ρ 6.42×10−4 9.30×10−4 0.0027 0.0488 0.0516 0.1559

Acc (%) 60.87 59.85 55.20 54.83 57.14 53.02

AL
ρ 0.0021 1.04×10−4 0.0136 0.0351 0.1672 0.0808

Acc (%) 56.37 63.47 57.53 57.92 55.21 54.95
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Table 1 shows the statistical significance and global
classification performance, that is accuracy (Acc), for time-
lags (1 ≤ τ ≤ 10) in DPE and PME metrics, respectively.
Although there are similarities among mean entropy curves,
the performance achieved for each metric differs considerably
throughout the time-lags. In general terms, DPE shows a
poorer performance discriminating between emotional states
of calmness and distress than PME. As can be observed in
Table 1, only lower time-lag entropies show a relevant statistical
significance. Moreover, the overall discriminatory power for
all cases is around 60%, decreasing even more when higher
time-lags are analyzed. This effect is clearly seen at parieto-
occipital and occipital channels PO3, O1, O2, and Oz. For
instance, PO3 channel achieved a global performance of 62.9%
at time-lag τ = 1, while accuracy decreased down to 57.10%
at time-lag τ = 9. Only parietal channel P3 showed a regular
statistical significance throughout every single time-lag, reaching
a maximum global classification performance at time-lag τ = 2
with 63.7% of subjects classified correctly.

On the contrary, PME showed better global classification
performance for certain channels, especially at higher time-lags.
For instance, parietal channel P3, classified correctly 68.3% of
trials between calmness and distress at time-lag τ = 9. Similarly,
centro-parietal channel CP2 showed a poor performance when
no lag was applied (τ = 1), but it raised at higher time-lags,
achieving the best single global performance at time-lag τ = 9,
classifying correctly the 68.7% of the subjects. This improvement
supposes an increase of more than 13% regarding PME at no
lag τ = 1 and more than 8% compared with DPE metric at
time-lag τ = 9. Moreover, there seems to be a certain degree of
complementarity between DPE and PME at different time-lags,
because the same EEG channels measured with each metric show
relevant information at different time-lags. This contrast is well-
noticed at parietal channel P3. No relevant differences between
several time-lags were found when DPE was computed for P3,
i.e., all time-lags presented a similar discriminatory power. On
the contrary, the same channel showed an important increasing
performance when it was analyzed by means of PME metric at
higher time-lags; hence relevant information was noticed when
time-delay was performed.

3.2. Results From Curve-Related
Parameters
Table 2 summarizes diagnostic accuracy of every curve-based
parameter derived from DPE analysis for the most relevant
channels. As can be seen, almost all features achieved statistically
significant differences between groups (ρ < 0.05). Features
obtained from parietal channel P3 achieved a notable statistical
significance, especially in the area under the time-lag curve
(Ar1 − 2 to Ar1 − 6), thus stating the differences between
curves at lower and their convergence at higher time-lags. It
is also remarkable that parieto-occipital channel PO3 achieved
a good performance for all features. With respect to slope-
based parameters, global accuracy ranged from 60.62 to 62.23%,
Slp1 − 10 being the feature with maximum performance for this
channel. Similarly, accuracy of area-based lag parameters ranged

TABLE 3 | Results of ρ and Acc of the PME curve-related parameters.

PME P3 PO3 O1 Oz CP2 O2

Slp1− 2
ρ 0.0324 0.0012 0.2999 0.5982 0.7753 0.2025

Acc (%) 57.92 59.70 54.83 54.83 52.90 54.05

Slp1− 4
ρ 0.0057 2.94×10−4 0.0148 0.05 0.1168 0.1127

Acc (%) 58.38 59.07 58.69 59.07 56.37 55.98

Slp1− 6
ρ 0.0013 4.28×10−4 0.0447 0.1396 0.0939 0.1025

Acc (%) 60.62 58.69 58.42 54.83 55.21 55.60

Slp1− 8
ρ 0.0116 1.89×10−4 0.0344 0.2420 0.1974 0.0688

Acc (%) 58.69 57.92 53.53 54.05 52.51 55.64

Slp1− 10
ρ 0.0063 2.85×10−4 0.0516 0.1980 0.1914 0.1682

Acc (%) 60.68 61.39 58.30 56.37 55.21 54.83

Ar1− 2
ρ 2.06×10−4 2.55×10−4 0.0081 0.0878 0.0292 0.1169

Acc (%) 58.69 59.61 59.07 54.05 51.74 52.90

Ar1− 4
ρ 8.10×10−4 0.009 0.0085 0.1381 0.0447 0.2704

Acc (%) 58.87 59.46 59.85 54.33 52.90 55.41

Ar1− 6
ρ 0.0060 0.0276 0.0089 0.1538 0.0930 0.3011

Acc (%) 59.07 57.63 58.78 55.60 54.44 54.44

Ar1− 8
ρ 0.0051 0.0204 0.0094 0.1734 0.0748 0.3732

Acc (%) 57.92 58.30 59.85 55.21 55.48 53.00

Ar1− 10
ρ 0.0016 0.0193 0.0072 0.1666 0.0440 0.4302

Acc (%) 60.05 57.92 59.15 55.73 55.21 54.44

AL
ρ 0.0097 5.00×10−4 0.0950 0.1582 0.5373 0.0987

Acc (%) 59.82 58.69 56.16 53.67 54.44 58.69

from 59.07 to 62.16%, where Ar1 − 2 reported the maximal
performance. It is also worth noting that arc-length reached the
maximum global accuracy, classifying correctly 63.47% of trials,
and thus overcoming the best performance obtained by single
DPE entropy at the same channel at lag τ = 1. Finally, the rest
of the parameters computed from occipital channels O1, O2,
and Oz and centro-parietal channel CP2 obtained a more limited
performance, their global accuracy ranging from 53.28 to 61.12%.

Similarly, Table 3 summarizes discriminant ability of all
curve-based parameters derived from PME analysis for the most
relevant channels. In this case, both statistical significance and
global accuracy are more limited than for DPE curve-related
parameters. All features computed on parietal channel P3 and
parieto-occipital channel PO3 resulted to be statistical significant.
The global accuracy obtained for these channels ranged from
57 to 61%, thus achieving a worse performance than before.
Moreover, only a few curve-related parameters from occipital
channels O1, O2, and Oz showed statistical significance, and the
global accuracy was below 60% for all the parameters. Finally,
CP2 achieved the worst performance, where global accuracy was
around 55%.

3.3. Multi-Parametric Analysis and
Advanced Classification
For each classifier, the optimal number of features minimizing
its misclassification rate through an SFS scheme ranged from
5 to 8 in each iteration of a 10-fold cross-validation approach.
The occurrence of the most relevant variables are displayed in
Figure 4. As can be seen, entropy-based metrics were mainly
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FIGURE 4 | Occurrence of the most selected features through an SFS scheme within a 10-fold cross-validation approach for each classifier.

TABLE 4 | Values of sensitivity, specificity, and accuracy obtained for each

classifier once the feature selection process had finished.

DTC SVM QDA KNN

Sensitivity (%) 75.41 91.97 82.21 93.72

Specificity (%) 83.94 90.16 61.56 90.66

Accuracy (%) 79.92 91.12 75.66 92.32

chosen for time-lags longer than 1 and curve-related variables
both from DPE and PME. Moreover, it should be noted
that most of these features were selected in nearly all folds,
thus only changing the less relevant ones for the resulting
classification models. More precisely, for all classifiers, most
DPE-based parameters were chosen from EEG channels P3 and
PO3 and most PME-based features from channels P3, Pz, FC5,
C4, and CP5.

Once the feature selection process finished for each classifier,
the obtained classification results are displayed in Table 4 in
terms of sensitivity, specificity and accuracy. Note that global
discriminant ability for all approaches ranged from 75.66% (for

QDA) to 92.32% (for KNN). Furthermore, the SVM classifier
achieved a comparable performance to KNN, classifying correctly
91.12% trials. Finally, it should also be highlighted that both SVM
and KNN classifiers reported the largest diagnostic accuracies
with well-balanced values of sensitivity and specificity.

4. DISCUSSION

During the last years automatic emotion recognition has
received special attention due to its importance in areas,
such as medicine and education. Among the different types
of emotions, continued distress is one of the most studied
because it is often harmful for health. Considering its
relevance, distress has been assessed in a wide variety of
scenarios, including driving tasks (Healey and Picard, 2005),
military exercises (Skinner and Simpson, 2002), surgical
procedures (Marrelli et al., 2014), and on-line exams (Gomes
et al., 2014), among others. An interesting study recently
published shows amethodology to redirect stress episodes toward
positive moods (Fernández-Caballero et al., 2016).

Taking into consideration this preamble, several works have
been published in the literature. Their research is focused on
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FIGURE 5 | Topological EEG representation of average calmness and distress values for time-lags from τ = 1 to τ = 9 using PME metric.

automatic distress recognition using EEG recordings (Hosseini
et al., 2010; Khosrowabadi et al., 2011; Peng et al., 2013;
Minguillon et al., 2016; Al-Nafjan et al., 2017; Al-Shargie
et al., 2018; Jebelli et al., 2018; García-Martínez et al., 2019b).
However, only a few of them have analyzed this phenomena
from a non-linear point of view (García-Martínez et al., 2016).
Recently, another approach reported that symbolic analysis of
brain dynamics was able to detect distress (García-Martínez
et al., 2017). In that study, PE and its extension called AAPE
were used to assess brain dynamics for each EEG channel.
However, the analysis was carried out without considering the
possibility of exploring hidden non-linear information at time-
lags higher than one. This was the starting point that motivated
the present study.

To the best of our knowledge, this is the first work
addressing the effects of multi-lag for distress recognition
from EEG recordings. For this purpose, a modified version of
AAPE was used to analyze EEG signals with distinct time-
lags. Additionally, PME was also considered in this study,
since it is an improved symbolic alternative for identifying the
existence of hidden temporal dynamics in time series and it
allows a better discrimination of signals with similar temporal
correlations (Zunino et al., 2015). Indeed, it has been recently
applied in the study of emotion recognition using heart rate
variability with promising results (Xia et al., 2018).

As expected, both DPE and PME metrics reported the same
trends when calculating the mean entropy values across the
different time-lags, as was observed in Figures 2, 3. Calmness
emotional state reported higher entropy values than distress
for all EEG channels, especially at lower time-lags. However,
this difference became smaller as the time-lag increased.
Furthermore, the time-lag analysis revealed additional entropy
information not observed at time-lag τ = 1, especially at centro-
parietal and occipital channels. This effect can also be well-
noticed in Figure 5, which shows a topological representation
of mean entropy values for each channel at the first nine time-
lags using PME. Although the general trend is maintained
across time-lags, the imprint patterns change, thus revealing
information at certain channels not seen before.

These results enhance the presence of a larger diversity of
ordinal patterns in some local time series in calmness trials in
comparison to distressed ones, thus suggesting the existence of
more complex brain dynamics in calmness state. Such loss of
complexity under distress might be associated to a lower brain’s
ability of adaptation to external stimuli and environmental
changes. Indeed, decomplexification of physiological systems
has been traditionally identified with a lower ability to manage
information, and therefore with a higher probability of suffering
a pathological condition (Goldberger et al., 2002; Lipsitz, 2004).
Interestingly, these findings are in agreement with other studies
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FIGURE 6 | Topological EEG representation of average calm and distressed patients for time-lag τ = 1 vs. τ = 9 using PME metric.

published during the past years. In this sense, increased values
of correlation dimension in calm participants with respect to
distressed subjects have been reported so far (Hosseini et al.,
2015). In another work, a decrease of relative power in subjects
facing a series of distressful stimuli was also described (Bastos
Filho et al., 2012). Finally, the fact that this trend is maintained
throughout the different time-lags reinforces a previous study
where no lag was applied (García-Martínez et al., 2017).

Another relevant finding is that single discriminatory power
in multi-lag analysis has notably improved with respect to
other previous studies dealing with singe-lag (García-Martínez
et al., 2017) and MSE (Martínez-Rodrigo et al., 2019) analysis,
especially in some specific channels. Thus, left parietal channel
P3 is still a very relevant channel for distress detection using
symbolic analysis. This finding was already reported in our recent
previous work where AAPE was applied to the data (García-
Martínez et al., 2017). Nevertheless, other studies have already
corroborated this association with the left parietal area. Thus,
a higher activation has been observed during normal non-
depressed and reasonably positive moods in the left parietal
area than in the right one (Davidson, 1988). In the same
line, meditation has also been characterized by an increasing
activity of the left parietal region (Manna et al., 2010). In the
present study, P3 showed robustness and consistency across
different time-lags when discriminating between emotional states
of calmness and distress. Nevertheless, the global classification
performance was improved notably for time-lags higher than

one, especially when data was analyzed by means of PME metric,
increasing from 61% when no lag was applied up to 68.30% when
time-lag τ = 9 was computed.

These findings may indicate the existence of long-range
correlations in the data, which have only been sufficiently
highlighted by considering a multi-lag entropy-based analysis.
Indeed, these observations can be visually corroborated in the
topological representation of brain areas depicted in Figure 6. It
represents average PME values computed from emotional states
of calmness and distress for time-lags τ = 1 (a) and τ = 9 (b). As
can be seen, entropy values obtained at time-lag τ = 9 are quite
different compared to the analysis with no lag, showing a more
balanced pattern between left and right hemispheres throughout
frontal, parietal and occipital areas. In addition, the entropy
differences between calmness and distress are also shown in this
figure (on the right column). Thus, the higher differences are
found in left central region for τ = 1, whereas a higher activation
of left parietal region is obtained for τ = 9.

The right frontal channel F4 also presents a considerable
difference of activation between calmness and distress states both
in τ = 1 and τ = 9 cases. Interestingly, the relevance of the
mentioned areas and the possible relation between frontal and
parietal areas of opposite hemispheres has already been depicted
in our previous studies. In fact, 30 years ago it was verified that
a relative left parietal brain activation is balanced by a relative
right parietal brain activation and vice-versa (Davidson, 1988).
A similar outcome has also been observed in another study

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2019 | Volume 13 | Article 40

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Martínez-Rodrigo et al. Multi-Time-Lag Analysis on EEG Recordings

where patients with different mental disorders were conducted
to practice meditation (Rubia, 2009).

Moreover, the right brain hemisphere deserves especial
attention in this work. Considering our previous findings, the
right centro-parietal channel CP2 showed no relevance when
analyzing emotional states with symbolic entropies (García-
Martínez et al., 2017). This outcome has been corroborated again
in this work, where neither DPE nor PME showed statistical
significance at τ = 1 (no lag), and the global classification was
below 55% in both cases (see Table 1). However, when analyzing
the same brain area at higher time-lags, a notable increase of
statistical significance and discriminatory power was observed.
It is especially the case for CP2 with PME at time-lag τ = 9
(ρ = 0.0026 and Acc = 68.70%), thus achieving the highest global
classification in this study. The relevance of the channel CP2 can
also be observed in Figure 6, where the difference is not notable
for τ = 1, but it is for τ = 9.

These findings, together with the relevance of the results
reported by the left parietal channel P3, reveal the possible
existence of complementary information among the parietal
lobes of both brain hemispheres. Indeed, a number of previous
works reported a certain degree of complementarity between
right and left posterior areas under stimulation of distress
and calmness. For instance, interesting information about
parietal and occipital asymmetry at different frequency bands

during distressful tasks has been described (Park et al., 2011).
Furthermore, an intensive parietal lobe activation under anxiety
and distress conditions has also been reported (Nitschke, 1998).

Recently, occipital electrodes O1 and O2 have also been
explored to evaluate variations in complexity provoked by
visual elicitation (Tonoyan et al., 2016). In a similar line,
the posterior brain area has been related to the arousal
component of emotions, thus being their processing essential
for the recognition of emotions (Dolcos and Cabeza, 2002).
Interestingly, in our previous study the combination of the left
parietal channel P3 and the right parietal channel P4 achieved a
notable performance discriminating between emotional states of
calmness and distress, thus demonstrating the inter-correlation
of these brain regions (García-Martínez et al., 2017). However, in
that study, brain dynamics were assessed by means of different
computation approaches, where each methodology highlighted
one of the hemispheres in isolation. In the present work,
both areas have resulted to be significant when analyzed with
PME metric at higher time-lags, obtaining results comparable
to those reported individually by other metrics used in our
previous works.

The obtained multi-lag curves were also parameterized and
studied to compare the relative complexity of normalized time
series. The use of curve profiles for characterization of biological
signals has been already proposed by other authors (Costa et al.,

TABLE 5 | Comparison of the most relevant works dealing with automatic identification of negative stress from the recordings.

Work Experiment Features
Statistics/

Results
Classifier

Hosseini et al., 2010 15 subjects FDb, CDc, and WEnd LDAe and SVM LDA: 80.1% SVM: 84.9%

5 EEG channels

IAPSa

Bastos Filho et al., 2012 32 subjects Statistical features, PSDf, and HOCg KNN Stat.: 66.25%

4 EEG channels PSD: 70.1%

Videoclips HOC: 69.6%

Peng et al., 2013 13 subjects CD, LZCh, LLEi, PSD ANOVA Higher complexity in stress

3 EEG channels

Eyes closed, no stimuli

García-Martínez et al., 2016 32 subjects SEj, QSEk, and DEl Decision tree 75.29%

32 EEG channels

Videoclips

García-Martínez et al., 2017 32 subjects QSE, PE, and AAPE SVM 81.31%

32 EEG channels

Videoclips

García-Martínez et al.,

2019b

32 subjects QSE, CEm, and CCEn SVM 80.31%

32 EEG channels

Videoclips

This work 32 subjects DPE and MPE KNN 92.32%

32 EEG channels

Videoclips

a IAPS, International Affective Picture System. b FD, Fractal dimension. c CD, Correlation dimension. d WEn, Wavelet entropy. e LDA, Linear discriminant analysis. f PSD, Power spectral
density. g HOC, High-order crossings. h LZC, Lempel-Ziv complexity. i LLE, Largest Lyapunov exponent. j SE, Sample entropy. k QSE, Quadratic sample entropy. l DE, Distribution
entropy. m CE, Conditional entropy. n CCE, Corrected conditional entropy.
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2005). Accordingly, Slp1−4 and Slp1−6 reflect that the degree of
change in the complexity of some EEG channels is more relevant
in smaller time-lags. These outcomes were observed in Figures 2,
3, where changes in the slopes could be seen until the curves
stabilized around time-lag τ = 5. In this regard, parietal and
occipital channels showed statistical relevance at these slopes for
DPE metric, but only parietal channels resulted relevant when
curved-related parameters were calculated for PME metric. It is
worth noting that the same outcomes were also obtained for the
area under curve parameters.

On the other hand, the developed multivariate analysis has
shown that putting all the data together led to a notably
overall performance increase, which demonstrated that multi-lag
analysis is able to provide additional, as well as complementary
information, to single-lag one. To this respect, an SFS scheme was
applied under a 10-fold cross-validation approach to choose the
optimal subset of features maximizing the classification rate for
each classifier. Interestingly, the most relevant features selected
for each classifier were mainly computed from EEG channels
showing the largest differences between emotional states of
calmness and distress. Indeed, DPE computed from channels
PO3 and P3 reported high statistically significant differences
between the two groups of trials, as shown in Tables 1, 2.
Similarly, PME obtained from channels P3, Pz, FC5, C4, and
CP5 provided high visual differences, as shown in Figures 5,
6. Moreover, let us highlight that all selected features were
computed from time-lag longer than 1 or from τ -based curves,
as shown in Figure 4.

Another relevant aspect is that the results obtained in the
present study outperformed notably other similar works that
have analyzed non-linear metrics from the same database with no
lag, such as summarized in Table 5. Indeed, a global accuracy of
69.6% has only been reported by applying a high-order crossing
approach to four EEG channels (Bastos Filho et al., 2012). In
addition, different non-linearmetrics have reported a higher level
of complexity in stressed subjects (Peng et al., 2013). In other
work, combining quadratic sample entropy values from several
EEG channels through a DTC classifier, a discriminant ability
around 75% has been provided (García-Martínez et al., 2016). On
the other hand, a discriminant model based on SVM and using
irregularity and symbolic metrics reached a diagnostic accuracy
>80% (García-Martínez et al., 2019b). Similarly, variants of
PE have already been applied to distress recognition, with a
classification performance of 81.31% (García-Martínez et al.,
2017). However, in the present study an improvement of about
10% has been reported by making use of the same kind of
SVM classifier.

Likewise, the classification results obtained in the present
study also significantly improved the sole recent work
conducting a MSE analysis on EEG signals for distress
identification (Martínez-Rodrigo et al., 2019). In fact, making
use of the same SVM-based approach, here a classification
rate between distress and calmness emotional states has been
obtained about 6% higher than for MSE. It should be noted that
bothMSE andmulti-lag entropy analyses pursue the same goal of
quantifying complexity at different time scales. For this purpose,
MSE uses a rescaling procedure based on filtering out the shorter
oscillations and keeping the longer ones (Humeau-Heurtier,

2015). This approach unavoidably removes some frequency
content, specially from rescaled time series presenting very fast
oscillations (Humeau-Heurtier, 2015). Such loss of frequency
information could explain the aforementioned poorer outcome
reached by MSE, because entropy computation from time-lagged
samples does not alter time and frequency information from
original data (Govindan et al., 2007; Kaffashi et al., 2008).
Moreover, this finding could also justify the fact that, whereas no
changes were noticed across all time scales in MSE analysis in
brain areas activating and supporting distress (Martínez-Rodrigo
et al., 2019), large differences have been observed for different
time-lags, as extensively described in previous paragraphs.

Finally, there are some limitations in this study that
deserve our attention. Firstly, the studied DEAP database
is not exclusively designed for recognition of calmness and
distress emotions. In fact, many other emotional states
were also recorded during the experiment (Koelstra et al.,
2012). Moreover, the number of trials eliciting calmness and
distress is notably unbalanced for each healthy volunteer, thus
making the use of a subject-based classification impossible.
Secondly, further analyses on other similar databases like
ASCERTAIN (Subramanian et al., 2018), AMIGOS (Miranda
Correa et al., 2018), and DREAMER (Katsigiannis and Ramzan,
2018) are required to corroborate and generalize the obtained
results. However, the impact of some potential confounding
aspects on the results provided by several databases will have
to be carefully analyzed for this purpose. Thus, it should
be thoughtfully scrutinized how different experimental setups,
population distributions in terms of age and gender, and technical
aspects related to the acquisition of EEG signals mask changes
in brain dynamics under distress. Thirdly, the video clips used
as stimuli have a duration of 1 min, which may be too much
time to just elicit a single emotional state. Thus, participants
may present different emotions for the same stimulus, making
it difficult to properly rate their level of valence and arousal.
Finally, only EEG signals were assessed in this work, thus
discarding the information reported by other physiological
variables. However, peripheral recordings also contained in
DEAP and other databases, in combination with brain dynamics,
will be explored in further studies for the sake of detecting
distress episodes.

5. CONCLUSIONS

In this study, two permutation entropies, adapted to work in
a multi-lag context, have been analyzed for the first time to
automatically identify negative stress. This multi-lag analysis has
revealed new insights never seen before, thus notably improving
the performance of distress identification. Considering the
relevant results that permutation entropy has previously reported
in non-lag and multiscale contexts for human emotion detection,
it becomes highly interesting to analyze brain dynamics from a
time delay viewpoint. For this reason, we hypothesized that there
might exist relevant and complementary information at higher
time-lags among different brain areas. The results obtained
after performing the analyses have confirmed our initial ideas,
reporting an improved classification between emotional states of
calmness and distress.
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Moreover, left parietal and right centro-parietal channels
showed remarkable activation at higher time lags, suggesting
that removing long-range linear correlations may help to better
evaluate the non-linear information of the data. Finally, several
discriminant models obtained from advanced classifiers were
used to study the complementarity of the features computed
at different time-lags for each EEG channel. The resulting
functions have combined single entropy values from different
channels calculated at lags higher than one with curve-related
parameters, thus corroborating that there are more relevant
information when time-lags are applied to the time series than
when data are analyzed without any time delay or averaging
consecutive samples.
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