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Abstract. We investigate first-order approximations to both (i) Tsallis’ entropy Sq and (ii) the Sq-MaxEnt
solution (called q-exponential functions eq). We use an approximation/expansion for q very close to unity. It
is shown that the functions arising from the procedure (ii) are the MaxEnt solutions to the entropy emerging
from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic
Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett.
104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone
layer.

1 Introduction

During the last quarter of century, an active subfield of
statistical mechanics is centered around the concept of
the so-called q-statistics, that Tsallis introduced in refer-
ences [1,2], that appears to yield better answers, in many
scenarios, than the orthodox Boltzmann-Gibbs entropic
functional [3–7]. These scenarios involve variegated disci-
plines (see, for instance, [8–20], etc.) Concepts involving
q-statistics are important not only in physics but in chem-
istry, biology, mathematics, economics, and informatics as
well [21,22].

In this work we revisit the Tsallis-subject by appeal-
ing to perturbation theory around q = 1. We investigate
first-order and second approximations to both A) Tsallis’
entropy Sq and B) the Sq-MaxEnt solution (called q-
exponential functions eq). Somewhat related analysis have
been performed in the context of stochastic processes, ob-
taining effective Ornstein-Uhlenbeck noises at the lowest
order [23–32].

2 Motivation

(1) It is shown that the functions arising from the pro-
cedure B) are the MaxEnt solutions to the entropy
emerging from A). The present treatment is free of the
poles that, for classic quadratic Hamiltonians, plague
Tsallis’ approach, as demonstrated in [33]. Addition-
ally, we show that our treatment is compatible with
extant date on the ozone layer [34–36].

a e-mail: mariocarlosrocca@gmail.com

(2) It was shown in [37] that data-detection following
a normalization step does not permit straightfor-
ward inference of data-distribution in exponential
or Gaussian fashion because of a systematic trans-
formation into q-exponentials or q-Gaussians. The
origin of the often encountered q-exponential or q-
Gaussian data needs careful analysis. For a very large
set of recorded-data (elliptical ones), this occurrence
is a simple consequence of a device-normalization
stage [37]. This entails that the q-neighborhood of
q = 1 is extremely important for q-statistics, deserv-
ing the special attention that it receives below.

(3) Note also that in the superstatistics approach of Beck
and Cohen [38], the parameter q − 1 is a measure of
temperature fluctuations in the driven nonequilibrium
system with a stationary state, so small q − 1 corre-
sponds to sharply peaked temperature distributions
around the mean.

3 Still another new entropy

After the pioneer Tsallis’ paper [2], many new entropies
have been proposed [39]. In this vein, we begin our consid-
erations with reference to a new q-entropy, that exhibits
over Tsallis’ one some important advantages to be dis-
cussed below. The new entropy will emerge as a result
of a the first order approximation (around q = 1) of the
q-exponential function [3]:

[1 + (1 − q)βU ]
1

q−1 �
[
1 +

(1 − q)
2

β2U2

]
e−βU . (1)
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The pertinent probability distribution becomes now, in-
stead of the q-exponential [3], the following one

P =

[
1 + (1−q)

2 β2U2
]
e−βU

Z , (2)

with

Z =
∫
M

[
1 +

(1 − q)
2

β2U2

]
e−βUdμ. (3)

We construct next the first order approximation to Tsallis’
entropy [3] and find

Sq =
1

1 − q

⎛
⎝1 −

∫
M

P qdμ

⎞
⎠

� −
∫
M

P ln P

[
1 +

(q − 1)
2

ln P

]
dμ. (4)

We show next (2) arises from extremizing (4). The ensuing
variational problem revolves around a Lagrangian

FSq(P ) = −
∫
M

P ln P

[
1 +

(q − 1)
2

ln P

]
dμ

+ λ1

⎛
⎝∫

M

PUdμ − 〈U〉
⎞
⎠

+ λ2

⎛
⎝∫

M

Pdμ − 1

⎞
⎠ , (5)

whose increment is

FSq(P + h) = −
∫
M

(P + h) ln(P + h)

×
[
1 +

(q − 1)
2

ln(P + h)
]

dμ

+ λ1

⎛
⎝∫

M

(P + h)Udμ − 〈U〉
⎞
⎠

+ λ2

⎛
⎝∫

M

(P + h)dμ − 1

⎞
⎠ , (6)

so that

FSq(P + h) −FSq(P ) = −
∫
M

(P + h) ln(P + h)

×
[
1 +

(q − 1)
2

ln(P + h)
]

dμ

+
∫
M

P ln P

[
1 +

(q − 1)
2

ln P

]
dμ

+ λ1

∫
M

Uhdμ + λ2

∫
M

hdμ, (7)

Fig. 1. AER (see text) for 1 − q = 0.5.

or

FSq(P + h) −FSq(P )

= −
∫
M

[
1+lnP +

(
q − 1

2

) (
2 lnP +ln2 P

)−λ1−λ2

]
hdμ

−
∫
M

[
1

2P
+

(
q − 1

2

) (
1 + ln P

P

)]
h2dμ. (8)

The last relation yields the extremizing distribution P

1 + ln P +
(

q − 1
2

) (
2 ln P + ln2 P

) − λ1 − λ2 = 0 (9)

−
∫
M

[
1
P

+ (q − 1)
(

1 + ln P

P

)]
h2dμ ≤ C||h||2, (10)

with C < 0 is a constant. See [40,41]. Replacing (2) into (9)
one verifies that P is a solution to (9), with λ1 and λ2 given
by

λ1 = −β[q − (q − 1) lnZ] (11)

λ2 = 1 − q lnZ +
(

q − 1
2

)
ln2 Z. (12)

Of course, (10) must be verified for a maximum.
We realize that the entropy (4) is not just an approxi-

mation but a legitimate new thermodynamic one, since it
complies with the MaxEnt strictures.

3.1 Comparison between the exact and approximate
solutions

Figures 1–4 correspond to the modulus of the ratio be-
tween the approximate and the exact solutions (AER),
equation (1). Horizontal coordinates are in meters. For
simplicity we have taken U = x2 and β = 1. The agree-
ment is excellent. More to the point, it is excellent over
extremely long distances, for atomic phenomena.
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Fig. 2. AER (see text) for 1 − q = 0.1.

Fig. 3. AER (see text) for 1 − q = 0.01.

Fig. 4. AER (see text) for 1 − q = 0.001.

4 Quadratic Hamiltonians

4.1 Review of Tsallis’ treatment

In reference [33] one finds the associated partition function
and mean energy for Tsallis’ q-MaxEnt approach, i.e.,

Z =
πν

Γ (ν)

∞∫
0

uν−1

[1 + β(q − 1)u]
1

q−1
du, (13)

where the integral is evaluated using [42]:

Z =
πν

[β(q − 1)]ν
Γ

(
1

q−1 − ν
)

Γ
(

1
q−1

) . (14)

This result is valid for q �= 1 and we have selected
1 ≤ q < 2. Of course, q = 1 is the orthodox result, for

which the q-exponential transforms itself into the ordinary
exponential function (and the integral (13) is convergent).
The singularities (divergences) of (13) are, of course, given
by the poles of the Γ function, that is, for

1
q − 1

− ν = −p for p = 0, 1, 2, 3, . . . ,

i.e., q- values given by

q =
3
2
,
4
3
,
5
4
,
6
5
, . . . ,

ν

ν − 1
,
ν + 1

ν
.

For the mean enrgy, instead, (13) gives

〈U〉 =
πν

Γ (ν)Z

∞∫
0

uν

[1 + β(q − 1)u]
1

q−1
du, (15)

so that, using [42] one finds

〈U〉 =
νπν

Z[β(q − 1)]ν+1

Γ
(

1
q−1 − ν − 1

)

Γ
(

1
q−1

) . (16)

Here, the poles are given by

1
q − 1

− ν − 1 = −p for p = 0, 1, 2, 3, . . . ,

or,

q =
3
2
,
4
3
,
5
4
,
6
5
, . . . ,

ν + 1
ν

,
ν + 2
ν + 1

.

As customary [43], using q-logarithms [2] lnq(x) = x1−q−1
1−q ,

Tsallis’ entropy becomes

Sq = lnq Z + Z1−qβ〈U〉, (17)

that is finite if Z and 〈U〉 are also finite.

4.2 The new entropy alternative

The new partition function is easily seen to be

Z =
πν

Γ (ν)

∞∫
0

uν−1

[
1 +

(q − 1)
2

β2u2

]
e−βudu, (18)

and, evaluating the integral,

Z =
πν

βν

[
1 +

(q − 1)ν(ν + 1)
2

]
. (19)

No poles are detected! For q = 1 this yields the
Boltzmann-Gibbs’ (BG) partition function. For the mean
energy one has

〈U〉 =
πν

Γ (ν)Z

∞∫
0

uν

[
1 +

(q − 1)
2

β2u2

]
e−βudu, (20)
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and after integration

〈U〉 =
νπν

βν+1Z
[
1 +

(q − 1)
2

(ν + 1)(ν + 2)
]

, (21)

with, again, no poles. Using now (19) we obtain

〈U〉 =
ν

β
[1 + (q − 1)(ν + 1)] , (22)

that coincides with the BG result for q = 1. As for the
entropy, one must develop up to first order Z1−q and we
get

Z1−q = 1 + (q − 1)ν ln
(

β

π

)

+
(q − 1)2

2

[
ν2 ln2

(
β

π

)
− ν(ν + 1)

]
, (23)

that together with (17) leads to

Sq = ν

[
1 + ln

(
β

π

)]
+ (q − 1)

[
ν + 1 − ν(ν + 1)

2

+ν ln
(

β

π

)
− ν2

2
ln2

(
β

π

)]
, (24)

that for q = 1 is the BG result.

4.3 Specific heat

We need the derivative of (22) with respect to the tem-
perature T to reach

C = νK [1 + (q − 1)(ν + 1)] , (25)

with K Boltzmann’s constant. For q = 1 we reobtain the
BG result. The corrections in equation (25) to the BG
could easily be checked out empirically.

5 The ozone layer

Tsallis’ q-triplet [35] is possibly the most spectacular em-
pirical quantifier of non-extensivity, i.e., q �= 1. The quan-
tifier was studied in [36] with reference to an experimental
time-series related to the daily depth-values of the strato-
spheric ozone layer. Pertinent data were there expressed
in Dobson units and ranged from 1978 till 2005. After
evaluation of the three associated Tsallis’ q-indexes one
concluded that nonextensivity is clearly a characteristic
of the ozone layer.

Stratospheric ozone is encountered mainly within a
∼15 km-layer at a height of about 15 km. There is a low
density of a few O3-molecules per million of air-molecules.
The associated mechanism of interactions responsible for
depletion is given in reference [34]. A stationary regime
prevails, modulated by various types of oscillations, that
is 1) a yearly one due to the orientation of the incoming ra-
diation, 2) other of a period of around 2 years originated in

stratospheric air-currents, and 3) a secular variation [34].
In reference [36] the authors concentrated efforts on two
time-series: A) {Zn} of depth-values for the ozone layer
and B) its daily variability {ΔZn}.

Tsallis’ theory displays three important q-features
(three different q-values) [35]:

(i) A q-value linked to meta-stable states, the one of the
pertinent q-exponential, that we call q ≡ qstat.

(ii) The above states display a q-exponential sensibility
to initial conditions (the so-called weak chaos). We
speak of a q-value that we call qsens.

(iii) Meta-stable macroscopic quantities relax to their q =
1-values in a q-exponential fashion with q = qrel.

Thus, a meta-stable state is characterized by a triplet of
q-values: (q − stat, q − sens, q − rel) �= (1, 1, 1), where
q − stat > 1, q − sen < 1, and q − rel > 1 [35].

Since in the case of the BG statistics the three dif-
ferent q-values above coalesce to q = 1, with the present
treatment we expect a convergence of the three triplet’s
q-values to just one value close to unity. Our numerical re-
sults, computed here following the methodology described
in [36], do not falsify this convergence. This is a rather im-
portant numerical result. We evaluated q−stat and q−rel
for our comparison (q− sen implies a much more involved
calculation). Note that the q-values are determined by the
ozone-data. We use satellite-data corresponding to Buenos
Aires city. These are daily values zn obtained from Novem-
ber ’78 till May ’93 and from July ’96 till Dec. ’05.

To calculate qstat we adjust the histogram with a q-
Gaussian. The one that fits best data is a q-Gaussian q =
1.32. In the case of our first order treatment, we use a “fist
order q-Gaussian”

p(z) =
[
1 +

(1 − q)
2

a2z4

]
e−az2

, (26)

properly normalized, of course.
The correlation curve has been adjusted with a q-

Gaussian with q = 1.888 and in the first order case we
use

p(z) =
[
1 +

(1 − q)
2

β2z2

]
e−βz, (27)

again properly normalized.
The suitable q-value for the stationary state is ob-

tained from the probability distribution function (PDF)
(here either Gaussian-eq or the MaxEnt PDF (2)), as-
sociated to daily variations of the ozone layer’s depth
ΔZn = Zn+1−Zn. This ΔZ-range is subdivided into little
cells of width (in Dobson units (UD)) δz, centered at zi,
so that one can assess with which frequency ΔZ-values
fall within each cell. We chose a cell-size δz = 5 UD.
The resultant histogram, properly normalized, gives our
stationary-PDF {p (zi)}N

i=1. Of course, pi is the probabil-
ity for a ΔZ-value to fall within the ith cell, centered at
zi, with N the cell-number [36]. We have

1. Tsallis’ difference: |q − rel − q − stat| = 0.57;
2. our difference: |q− rel− q−stat| = 0.08, much smaller

than the preceding one.
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Fig. 5. Red circles correspond to histogram data p(z) vs. z;
solid black line: the q-Gaussian function that fits p(zi); Blue
curve: the best adjustment with the first order q-Gaussian
properly normalized.
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1

Fig. 6. lnq of the self correlation coefficient C(τ ) vs. time
delay τ (in days). The linear CC is 0.999. Black curve is for a
q-Gaussian. Red curve, same for our PDF (1.22).

Figure 5 illustrates the statistical q-situation. Red circles
yield the histogram data. The black curve displays the
best fit to the data for a q-Gaussian and the blue one our
MaxEnt PDF (2).

The q-rel-value is determined via the temporal self-
correlation coefficient

C(τ) =
∑

n Zn+τ .Zn∑
n Z2

n

. (28)

For a classical BG-process such correlation should decay
in exponential fashion, which is not the case for our data.
Figure 6 refers to q-rel. Black circles correspond to the
correlation for distinct τ . Black curve: best q-Gaussian-fit
to the data and red curve, same for our PDF (1.22).

Fig. 7. AER (see text) for 1 − q = 0.5.

6 The second order approximation

We can, of course, take our approximation up to second
order in (q − 1). For the q-exponential one has

[1 + (1 − q)βU ]
1

q−1 �
[
1 +

(1 − q)
2

β2U2 − (1 − q)2

×
(

β3U3

3
− β4U4

4

)]
e−βU , (29)

while for the probability distribution the result is

P =

[
1 + (1−q)

2 β2U2 − (1 − q)2
(

β3U3

3 − β4U4

4

)]
e−βU

Z ,

(30)
with

Z =
∫
M

[
1 +

(1 − q)
2

β2U2 − (1 − q)2

×
(

β3U3

3
− β4U4

4

)]
e−βUdμ. (31)

Finally, the entropy reads

Sq =
1

1 − q

⎛
⎝1 −

∫
M

P qdμ

⎞
⎠

� −
∫
M

P ln P

[
1 +

(q − 1)
2

ln P +
(q − 1)2

6
ln2 P

]
dμ.

(32)

Appealing to MaxEnt for (32) one easily ascertains that
this entropy-expression works fine. Of course, the concomi-
tant calculations are more involved.

6.1 Comparison between the exact and approximate
solutions

Figures 7–10 correspond to the modulus of the ratio be-
tween the approximate (up to second order in (q−1)) and
the exact solutions (AER). Horizontal coordinates are in
meters. For simplicity we have taken U = x2 and β = 1.
The agreement is excellent for 1 − q ≤ 0.1. More to the
point, it is excellent over extremely long distances, for
atomic phenomena.
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Fig. 8. AER (see text) for 1 − q = 0.1.

Fig. 9. AER (see text) for 1 − q = 0.01.

Fig. 10. AER (see text) for 1 − q = 0.001.

7 Conclusions

In this effort we have investigated first-order approxima-
tions to both 1) Tsallis’ entropy Sq and 2) the Sq-MaxEnt
solution (called q-exponential functions eq). We were able
to show that the functions arising from the MaxEnt treat-
ment 2) are precisely the MaxEnt solutions to the ap-
proximate entropy arising from 1). This entails that the
approximate entropy is a legitimate new entropic func-
tional. The same happens if one goes up to a second order
approximation.

The present treatment, with the new entropy is free
of the poles that, for classic quadratic Hamiltonians, has
been reported to emerge in Tsallis’ approach. This was
demonstrated in [33]), for both the partition function and
the mean energy. The poles vanish up to any perturbative
order, a rather surprising result.

We showed also that our treatment is compatible
with extant date on the ozone layer. The associated q-
triplet [35] Tsallis’ q-triplet [35] is perhaps the most spec-
tacular empirical quantifier of non-extensivity, i.e., q �= 1.
The quantifier was studied in [36] for Tsallis’ entropy, and
we see that the present new q-entropy can accommodate
the triplet phenomenon.

Finally, we emphasize that the main idea of the cur-
rent paper is based on the approximation of equation (1).
There is in leading order a quadratic correction term in the
variable U if the vicinity of the ordinary Boltzmann factor
is considered in the q-statistics approach. This quadradic
correction term has been discussed also in [38], where it
was also found that the results for small q−1 are universal,
i.e. applicable to many physical situations in the same way.
What is actually new in the current effort is to promote
these small q − 1 effects to yield a new MaxEnt formal-
ism. The approximation of equation (1) can be improved
up to any perturbative order without affecting these last
conclusions.

We thank support from Conicet’s PIP 029/12.
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