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h i g h l i g h t s

• A quasi-exactly solvable anharmonic oscillator that depends on a parameter.
• The perturbation series for the lowest eigenvalue converges for positive values of the parameter.
• The perturbation series for the eigenfunction and expectation values are divergent.
• The perturbation series are Padé and Borel–Padé summable for positive values of the parameter.
• For negative values of the parameter there is an infinite number of avoided crossings.
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a b s t r a c t

We revisit the problem posed by an anharmonic oscillator with
a potential given by a polynomial function of the coordinate of
degree six that depends on a parameter λ. The ground state can
be obtained exactly and its energy E0 = 1 is independent of λ.
This solution is valid only for λ > 0 because the eigenfunction
is not square integrable otherwise. Here we show that the pertur-
bation series for the expectation values are Padé and Borel–Padé
summable for λ > 0.When λ < 0 the spectrum exhibits an infinite
number of avoided crossings at each of which the eigenfunctions
undergo dramatic changes in their spatial distribution that we
analyse by means of the expectation values ⟨x2⟩.
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1. Introduction

Some time ago Herbst and Simon [1] discussed some interesting and baffling features of two one-
dimensional Hamiltonians. In one of them, H (2)(g) = p2 + x2 − 1 + g4x6 + 2g2x4 − 3g2x2, the
exact ground-state energy is E(2)(g) = 0 and the coefficients of the perturbation series

∑
a(2)n g2n

vanish for all n > 0. However, the perturbation series for the eigenvector Ω (2)(g) is divergent
at least in the norm sense. The related oscillator H (3)(g) = H (2)(ig) is most interesting because
0 < E(3)(g) < D′ exp(−c/g2). Its potential has threewells and there is a kind of asymptotic degeneracy
of expected states.

Thosemodels are particular cases of the so-called quasi-exactly solvable Schrödinger equations [2]
(and references therein). In fact, Turbiner [2] chose the closely related potential V0(x; a, b) = a2x6 +

2abx4 +
(
b2 − 3a

)
x2 − b for the discussion of the most interesting problem of phase transition.

The purpose of this paper is the analysis of the spectra of H (2) and H (3) because they exhibit several
interesting features that may not emerge so clearly from the remarkable theoretical analysis carried
out by Herbst and Simon [1] and Turbiner [2]. Present results are shown in Section 2 and conclusions
in Section 3.

2. The model

For simplicity, here we rewrite the Hamiltonian proposed by Herbst and Simon [1] as

H(λ) = H (2)
(
2
√
λ

)
+ 1 = p2 + x2 − 12λx2 + 8λx4 + 16λ2x6. (1)

It exhibits an exact ground-state eigenfunction

ϕ(x) = exp
(
−x2/2 − λx4

)
, (2)

with eigenvalue E0 = 1. This solution is only valid for λ ≥ 0 because it is not square integrable for
negative values of λ.

In principle, one expects the eigenfunctions and eigenvalues of H(λ) to have perturbation expan-
sions about λ = 0 of the form

ψn(x) =

∞∑
p=0

ψ (p)
n (x)λp,

En =

∞∑
p=0

E(p)
n λ

p. (3)

For the normalized ground-state eigenfunction we have

ψ0(x) =
ϕ(x)

√
⟨ϕ|ϕ⟩

=
1

√
2π1/4

e−x2/2
[
1 +

1
4

(
3 − 4x4

)
λ+

1
32

(
16x8 − 24x4 − 183

)
λ2 + · · ·

]
, (4)

but all the perturbation corrections of the corresponding eigenvalue vanish (E(j)
0 = 0, j > 0) as

mentioned above. Therefore, perturbation theory fails to provide suitable values of E0(λ) when λ < 0.
The reason is that this eigenvalue behaves asymptotically as [1]

E0(λ) − 1 ≈ A|λ|Be−C/|λ|, λ < 0. (5)

Fig. 1 shows that E0(λ) − 1 already behaves in this way. A straightforward least-squares fitting for
sufficiently small values of |λ| suggests that A ≈ 0.891, B = 0 (as argued by Herbst and Simon [1])
and C = 1/8.

Before proceeding any further with the more interesting properties of this fascinating model we
want to point out that it is by no means unique. In fact, there are many exactly solvable models that
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Fig. 1. E0(λ)−1 calculated bymeans of the Rayleigh–Ritz variational method (dashed red line) and its least-square fitting using
Eq. (5) (blue points).

exhibit a similar behaviour. For example, choose a quadratically-integrable function ϕ(x) and define
W (x) = ϕ(x)−1ϕ′(x). The function ϕ(x) is solution to the differential equation

[
−

d2

dx2
+ Q (x)

]
ϕ(x) = 0,

where Q = W ′
+ W 2. If W is a polynomial function of a parameter λ, W (x) = W0(x) + W1(x)λ +

· · · + Wk(x)λk, then Q (x) = Q0(x) + Q1(x)λ + · · · + Q2k(x)λ2k. Although these two polynomials
have finite degrees the eigenfunction exhibits an infinite λ-power series given by the expansion of
ϕ(x) = exp

[∫ x
x0
W (t) dt

]
. If we write Q (x) = V (x) − E, then the eigenvalue E will be a polynomial

function of λ of degree atmost 2k. Therefore, we see that there aremany quantummechanical models
that exhibit an eigenfunction with an infinite perturbation series and the corresponding eigenvalue
with just a finite number of perturbation corrections.

As additional examples consider ϕ(x) = x exp
(
−x2/2 − λx4

)
that is the first excited state of the

anharmonic oscillatorwith potential V (x) = x2+4λx2
(
2x2 − 5

)
+16λ2x6 with eigenvalue E1 = 3 and

ϕ(x) = exp
(
−x2/2 − λx2/2 − λx4

)
that is eigenfunction of the anharmonic oscillator with potential

V (x) = x2 + x2
(
λ2 − 10λ

)
+ 8λx4 (λ+ 1)+ 16λ2x6 and eigenvalue E0 = 1 + λ. In the latter case the

perturbation expansion for the eigenvalue has two terms. In this simple and straightforward way one
can build as many examples as desired.

Although the perturbation series for the lowest eigenvalue of the oscillator (1) converges for all λ
the perturbation series for its eigenfunction is divergent [1]. As an illustrative example consider the
expectation value⟨

x2
⟩
=

1
2

− 3 λ+ 48 λ2 − 1188 λ3 + 39168 λ4 − 1604448 λ5 + · · · . (6)

for the ground state. In what follows we resort to the notation Xn =
⟨
x2n

⟩
and X (j)

n for the perturbation
correction of order j. We can easily calculate the perturbation corrections of E(j)

n and X (j)
n analytically

to any desired order by means of the hypervirial perturbation method [3]. This approach is an
example of perturbation theory without wavefunction that is based on the hypervirial relations and
the Hellmann–Feynman theorem. Ifψ is an eigenfunction of the HamiltonianH with eigenvalue E and
O is a linear operator, then ⟨ψ | [H,O] |ψ⟩ = 0 is called an hypervirial equation. If H = −

d2

dx2
+ V (x),

where V (x) is a polynomial function of x2, the hypervirial relations for O = On = −
2n+1

2 x2n + x2n+1 d
dx ,

n = 0, 1, . . . yield a recurrence relation for the expectation values Xn. This recurrence relation that
contains the energy E as a coefficient of one of the terms is insufficient to solve the problem. The
Hellmann–Feynman theorem dE

dλ =
⟨
∂V
∂λ

⟩
provides an additional equation that enables us to obtain all

the perturbation corrections X (j)
n and E(j) in terms of E(0).
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Fig. 2. Numerical ⟨x2⟩ (blue, continuous line) and ℜSB(λ) (dashed, red line) for the ground state of the oscillator (1).

A least-squares fitting of the first 1000 perturbation coefficients enables us to estimate the
asymptotic expansion

X (j)
1 = (−1)j8jj!

[
f0 +

f1
j + 1

+
f2

(j + 1)2
+ · · ·

]
, j ≫ 1, (7)

where

f0 = 0.450158158079, f1 = −0.168809309279, f2 = −0.305966873069,
f3 = −0.869104178243, f4 = −3.78728795807, f5 = −22.6102214156.

On keeping just the leading term X (j)
1 ∼ f0(−1)j8jj! the Borel sum yields

S(λ) = f0
∞∑
j=0

(−1)j(8λ)jj! = f0

∫
∞

0
e−t

∞∑
j=0

(−1)j(8λt)j

SB(λ) = f0

∫
∞

0

e−t

1 + 8λt
dt = f0

e
1
8λ

8λ

[
Shi

(
1
8λ

)
− Chi

(
1
8λ

)]
, (8)

where

Shi(x) =

∫ x

0

sinh t
t

dt, Chi(x) =

∫ x

0

cosh t
t

dt. (9)

The Borel sum SB(λ) is complex for λ < 0 and

ℑSB(λ) ∼ 0.176715|λ|−1e−
1
8λ , λ → 0−. (10)

Fig. 2 shows that the real part of SB(λ) exhibits a maximum for λ < 0 like the actual value of
⟨
x2

⟩
.

The perturbation series originated in the expansion of a potential about one of its minima can
be shown to be non-Borel summable when the potential has degenerate minima [4]. It has been
argued that in such a case the imaginary part of the Borel sum is cancelled by the imaginary part of a
logarithmic term [4]. In the present case the perturbation series are Padé and Borel–Padé summable
for λ > 0 as shown in Fig. 3 for

⟨
x2

⟩
(ground state). This figure shows that the Borel summation

improves the accuracy of the Padé approximant [6/6](λ). However, both summation methods fail for
λ < 0.



P. Amore, F.M. Fernández / Annals of Physics 385 (2017) 1–9 5

Fig. 3. Exact ⟨x2⟩ (solid line) for the ground state of the oscillator (1) and the [6/6] Padé (circles) and Borel–Padé (squares)
sums of the perturbation series.

The perturbation series for the excited states

E1(λ) = 3 + 12 λ− 144 λ2 + 4176 λ3 − 172800 λ4 + 8892288 λ5 + · · ·

E2(λ) = 5 + 48 λ− 864 λ2 + 36864 λ3 − 2194560 λ4 + 158810112 λ5 + · · · , (11)

are divergent; for example

E(j)
1 ∼ (−1)j+1

√
j8jj!, (12)

was also obtained by numerical least-squares fitting of the analytical perturbation corrections calcu-
lated by means of the hypervirial perturbation method [3].

The divergence of the perturbation series for the eigenvalues and eigenfunctions of anharmonic
oscillators iswell understood. The reason is the existence of sequences of branch points in the complex
λ plane that approach the origin and lead to a zero radius of convergence [5,6].

Fig. 4 shows the energy spectrum for small negative values of λ. In order to understand its structure
we should pay attention to the form of the potential-energy function. When 0 < λ < 1/12 the
potential is a single well and becomes a double well when λ > 1/12, but these cases are not relevant
for present discussion and we just mention them for completeness. When λ < −1/36 the potential
is a single well; when −1/36 < λ < 0 it exhibits three wells, one of them at the origin and the other
two at ±xm, where

x2m = −

√
36λ+ 1 + 2

12λ
= −

1
4λ

−
3
2

+
27λ
2

− 243λ2 + · · · . (13)

These side wells are separated from the central one by two barriers located at ±xM where

x2M =

√
36λ+ 1 − 2

12λ
= −

1
12λ

+
3
2

−
27λ
2

+ 243λ2 + · · · . (14)

Clearly the side wells move away from the origin as λ → 0−. The values of the potential at these
stationary points are V (0) = 0,

V (xm) =

(√
36λ+ 1 + 2

) (√
36λ+ 1 + 36λ− 1

)
54λ

= 3 + 9λ− 54λ2 + · · · ,

V (xM ) =

(√
36λ+ 1 − 2

) (√
36λ+ 1 − 36λ+ 1

)
54λ

= −
1

27λ
+ 1 − 9λ+ · · · . (15)
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Fig. 4. Part of the spectrum of the anharmonic oscillator (1). Even and odd states are denoted by continuous (blue) and dashed
(red) lines, respectively.

Note that the minima are bounded from below while the maxima increase unboundedly. In the limit
λ → 0− we are left with a harmonic oscillator. The curvatures of the minima and maxima tend to
constant values as λ → 0−

V ′′(0) = 2 (1 − 12λ)

V ′′(xm) =
8
(
36λ+ 1 + 2

√
36λ+ 1

)
3

= 8 + 192λ− 864λ2 + 15552λ3 + · · ·

V ′′(xM ) =
8
(
36λ+ 1 − 2

√
36λ+ 1

)
3

= −
8
3

+ 864λ2 − 15552λ3 + · · · . (16)

Fig. 5 shows the potential-energy function of the oscillator (1) in the four regions just mentioned.
Fig. 4 shows that E0 and E1 remain isolated and become eigenvalues of the harmonic oscillator

when λ → 0−. The reason is that they are below the minima of the side potentials. The eigenvalues
E2, E3 and E4 approach each other and become quasi degenerate for intermediate values of λ. As
λ → 0− E2 tends to a harmonic-oscillator eigenvaluewhile the pair (E3, E4) remains quasi degenerate
and moves upwards. When E3 meets E5 there is an avoided crossing after which E3 approaches a
harmonic oscillator eigenvalue while E5 deviates upwards. The same situation takes place between
E4 and E6, the former becomes a harmonic oscillator eigenvalue and the latter moves upwards. All
the higher eigenvalues follow the same pattern; for example, E4k+1, k = 1, 2, . . . , remain isolated
till they are pushed upwards by a lower odd-parity eigenvalue. The eigenvalues (E4k+2, E4k+3, E4k+4),
k = 0, 1, . . . , become quasi degenerate at intermediate values of λ before the pair (E4k+3, E4k+4)
separates and moves upwards. It seems that every eigenvalue En with n > 1 undergoes an avoided
crossing with a higher eigenvalue of the same symmetry before becoming a harmonic-oscillator
eigenvalue. If n > 3 the eigenvalue En undergoes avoided crossingswith En−2 and En+2 as illustrated in
themore detailed Fig. 6. The eigenvalues approach so closely that the avoided crossings appear actual
crossings.We think that this chain of avoided crossings inwhich an eigenvalue changes slightlywith λ
till it is pushed upwards by a lower eigenvalue of the same symmetry is perhaps the most interesting
contribution of this paper since some of the other relevant features of the model have been discussed
earlier.

In order to understand what happens at the avoided crossings we calculated∆x =

√⟨
x2

⟩
for some

states. This root-mean-square deviation is expected to be larger when the state is localized on the
side wells. Fig. 7 show ∆x for the states with quantum numbers n = 0, 2, 4, 6. The states n = 0, 2
do not participate in avoided crossings and the corresponding ∆x does not change considerably as
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Fig. 5. Potential-energy function of the oscillator (1) in the four main regions of λ-values.

λ → 0−. The state n = 4 undergoes an avoided crossing and ∆x exhibits a jump that suggests that
it changes from being localized mainly on the central well to being localized mainly on the side ones.
On the other hand, the state n = 6 appears to bemainly localized on the side wells before the avoided
crossing and mainly on the central one after it. In this case the jump is considerably larger indicating
that the form of the eigenfunction changes more dramatically.

In closing this section we point out that the chain of avoided crossings just described may not be
uncommon in the spectra of parameter-dependent Hamiltonians. In fact, one can easily construct a
simple toy model with such properties. For example, the lowest eigenvalue of the matrix

H =

⎛⎜⎜⎜⎝
λ 0.1 0 0 0
0.1 1 0.4 0 0
0 0.4 2 0.9 0
0 0 0.9 3 1.6
0 0 0 1.6 4

⎞⎟⎟⎟⎠ (17)

pushes the first excited state upwards that in turn pushes the next one upwards and so forth. The
spectrum is shown in Fig. 8.

3. Conclusions

We revisited an old but interesting problem in quantum mechanics and mathematical physics.
It has been our purpose to outline some remarkable features of its eigenvalues and eigenfunctions
that have not been pointed out before. In particular, the spectrum for λ < 0 exhibits a rich structure
of avoided crossings. This chain of avoided crossings may be found in other quantum-mechanical
problems as shown by the toy model (17). It occurs when one eigenvalue exhibits a positive slope
larger than the ones of the excited states. It will then push the next excited state upwards provided
that both belong to the same symmetry (otherwise an actual crossing takes place) and the process
continues as long as there are excited states with smaller slope. At an avoided crossing the states
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Fig. 6. Part of the spectrum of even (left) and odd (right) states of the anharmonic oscillator (1).

Fig. 7.
√

⟨x2⟩ for the states of the anharmonic oscillator (1) with quantum numbers n = 0, 2, 4 (left) and n = 6 (right).

Fig. 8. Spectrum of the toy model (17).

that take part undergo dramatic changes in their form that are clearly revealed by the behaviour of
the expectation value

⟨
x2

⟩
(λ). We also estimated the asymptotic behaviour of the coefficients of the

perturbation series and showed that they can be summed bymeans of Padé approximants and Borel–
Padé transformations forλ > 0. This calculationwas greatly facilitated by the hypervirial perturbation
method that leads to straightforward recurrence relations for the perturbation corrections to the
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eigenvalues and expectation values
⟨
x2n

⟩
[3]. At present we do not know if there is any suitable

approximation for λ < 0. In this region we simply resorted to the Rayleigh–Ritz variational method
with a basis set of 1000 eigenfunctions of the harmonic oscillator. The reason for such a large basis set
is that the three widely separated wells pose a quite difficult problem for accurate calculation of the
eigenfunctions and eigenvalues. We expect that present investigation may be a suitable complement
to previous ones about this problem [1,2].
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