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Abstract—In this work the performance of different statistical
filtering models used for estimating states of aerospace vehicles,
particularly LEO satellites, based on measurements of GNSS
systems are compared. This problem is non-linear in nature,
since both the state variables model and the output function are
non-linear. Thus we resort to the use of the extension of the
Kalman filter called EKF.

Different models based on several kinematic and dynamic
approaches are considered. For the performance assessment
we use representative simulation scenarios. Finally, as a real
application example, the case of GPS measurements taken on
board the Argentine SAC-D satellite is analyzed.

I. INTRODUCTION

The Global Navigation Satellite Systems (GNSS) provide

an alternative for the accurate determination (estimation) of

position and velocity of Low Earth Orbit (LEO) satellites.

Currently there are several fully operational GNSS systems

as GPS (USA) and GLONASS (Russia), or in stage of

development, as Galileo (European Union) and Beidou (China)

[1], [2].

The measurements obtained with GNSS are related to the

satellite-receiver range (pseudorange) and their rate of change

(deltarange). The former is based on the signal time-of-arrival,

while the latter is based on the carrier doppler frequency

shift. Since it requires synchronism of time references of both

the GNSS system and the user (receiver), which can’t be

ensured a-priori, two additional unknowns are incorporated to

the problem: bias and drift of the user’s clock. A mathematical

model of the measurements is presented in section II.

These measurements are affected by various factors that

induce both systematic and random errors. For the first type of

errors one generally resorts to the use of models to discount or

at least reduce them, while to mitigate the effect of the latter,

statistical filtering methods are often used. These filtering

methods usually take advantage of a model that describes

vehicle behavior in terms of a state variable system.

To obtain state variable models for LEO satellite vehicles

we use two approaches of classical physics: the kinematic

approach and the dynamic approach. Kinematics studies the

laws of motion of bodies without considering the causes that

originate them. Such description generally begins with the

knowledge of some of the involved variables, and the rest

are obtained based on derivation/integration as required. The

models obtained based on this approach are described in

section III.

On the other hand, dynamics studies the laws of motion

of bodies in relation to the causes that originated them,

the intervening forces. The formulation known as Newtonian

mechanics enables the description of the motion based on

ordinary differential equations in cartesian coordinates; this

will be sufficient for the vehicles we want to model. This

approach is described in section IV.

Since these models are of a non-linear nature, and that

measurements obtained with GNSS are also related non-

linearly with the states, the problem of state estimation is also

nonlinear. In numerous papers such as [3] and [4] filtering

schemes based on the Extended Kalman Filter (EKF) for

precise orbit determination based on GPS signals are used,

and in [5] and [6] the case of orbit determination using other

filtering schemes such as the Unscented Kalman Filter (UKF)

or Sigma-Point Kalman Filter are presented.

In a previous work [7] the performance of two different

filtering schemes (EKF and Positioning Kalman Filter (PKF))

is compared for the case of using the same vehicle model.

In this paper we will focus on analyzing the behavior of the

same filtering scheme, the EKF, with different versions of the

vehicle model. A brief summary of the EKF formulation is

described in section V, while section VI describes how the

formulation for each one of these analyzed models results.

In section VII, the performance of EKF with the different

proposed models is compared by simulation, while in section

VIII an application example with actual GPS data from

onboard argentine SAC-D satellite is presented. Finally, in

section IX the conclusions are set.

II. MEASUREMENTS MODEL

The pseudorange measurement at time k obtained by a user

at position rk based upon the signal of the j-th satellite at

position skj is given by

ρkj = skj − rk+ bk + εkj + νkj (1)

where bk is the receiver’s clock bias multiplied by the speed

of light to be interpreted as range, and εkj and νjk group the

sistematic and stochastic errors, respectively. We model the

latter as an i.i.d. gaussian process, with zero mean and variance
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σ2
ρ . We denote with ρk the column vector that groups all the

pseudorange measurements available at time k.

We also denote

ekj �
skj − rk

skj − rk
(2)

the line-of-sight vector that points from the user’s position to

the j-th GNSS satellite. If the user and satellite velocity vec-

tors are ṙk and ṡkj , respectively, the deltarange measurement

of that satellite results

ρ̇kj = ekj · (ṡkj − ṙk) + ḃk + ξkj + υkj (3)

where ḃk is the user’s clock drift converted to velocity, and ξkj
and υjk group the sistematic and stochastic errors, respectively.

We model the latter as an i.i.d. gaussian process, with zero

mean and variance σ2
ρ̇. We denote with ρ̇k the column vector

that groups all the deltarange measurements available at time

k.

III. KINEMATIC APPROACH

If we consider as state variables the three position states and

the three velocity states (contained in xk), and as a disturbance

input the three acceleration states (contained in ak); and

neglect higher order terms, a kinematic model discretized in

time every T seconds is

xk =



I3×3 T I3×3

03×3 I3×3



xk−1 +



T 2

2
I3×3

T I3×3



ak−1. (4)

If we also consider that the state vector includes the three

acceleration states, and considering as a disturbance input the

three jerk states (contained in jk); neglecting the higher order

terms, the model is

xk =





I3×3 T I3×3
T 2

2
I3×3

03×3 I3×3 T I3×3

03×3 03×3 I3×3



xk−1+

+





T 3

6
I3×3

T 2

2
I3×3

T I3×3



 jk−1. (5)

Equations 4 and 5 represent linear time-invariant discrete

systems, in whose formulation no assumption was made about

the causes of the acceleration (or higher order terms), in line

with a kinematic approach. Therefore, these models can be

used in a wide variety of vehicles when no other, more accurate

model is available. Moreover, being very simple and time-

invariant models, they often result in a low computational load

implementation.

IV. DYNAMIC APPROACH

To describe the orbital motion from a dynamic approach,

we start from the equation describing the acceleration of a

satellite in the ECI frame (Earth-Centered Inertial) [8]

r̈ = −
µ

r3
r+ ap (6)

where µ is the Earth’s gravitational constant and r = |r|.
The first term corresponds to the effect of Earth’s gravitational

attraction, if it is modeled as a point mass, and ap corresponds

to the acceleration due to other factors. In the case of LEO

satellites, the four effects that contribute the most to ap are:

non-uniform distribution of Earth’s mass, ane; gravitational

attraction of other celestial bodies, a3b; atmospheric drag, ad
and thrust of the engines used for orbital maneuvers, at [8]

ap = ane + a3b + ad + at. (7)

To formulate Eq. 6 in an ECEF frame we need to add the

terms due to the rotation between the ECEF and ECI frames

[9]

r̈ = −
µ

r3
r+ aep + 2S(ωe

ei) ṙ+ S(ωe
ei)

2 r (8)

where aep denotes the acceleration due to disturbances ex-

pressed in the ECEF frame, S(·) denotes the cross product

matrix, S(x)y = x× y, and ω
e
ei denotes the angular velocity

vector of the ECI frame relative to the ECEF frame, measured

in ECEF. In Eq. 8 the three vectors r̈, ṙ and r are expressed

in ECEF coordinates.

V. KALMAN FILTER (KF)

The KF is an estimator for what is known as linear

quadratic problem of estimating the state of a linear dynamic

system disturbed by white noise, using measurements linearly

related to the state and affected linearly by white noise. The

resulting estimator is statistically optimal with respect to any

quadratic function of the estimation error [10].

We will focus on analyzing the variant of the KF used for

discrete systems, whose mathematical description is

xk = Fk−1xk−1 +Gk−1wk−1 (9)

yk = Hkxk + vk (10)

where xk denotes the system’s state, and yk denotes the

measurements vector, both at time k. Matrices Fk−1, Gk−1

and Hk are commonly referred to as System Matrix, Input

Matrix and Output Matrix, respectively. The vectors wk and

vk are modeled as uncorrelated white stochastic processes

with zero mean and covariance matrices denoted Qk and Rk,

respectively.

In the formulation of the KF, two estimates of the state

vector are defined: x̂−

k , or a-priori estimate, and x̂+

k , or a-

posteriori estimate, with covariance matrix of the estimation

error P−

k and P+

k , respectively. The relationships between

them and the measurements are given by [10], [11]

x̂−

k = Fk−1x̂
+

k−1
(11)

P−

k = Fk−1P
+

k−1
F′

k−1 +Gk−1Qk−1G
′

k−1 (12)

x̂+

k = x̂−

k +Kk(yk −Hkx̂
−

k ) (13)

P+

k = (I−KkHk)P
−

k (14)

Kk = P−

k H
′

k(HkP
−

k H
′

k +Rk)
−1 (15)

where Eqs. (11) and (12) are called temporal updates of

the estimate and the covariance matrix of the estimation

error, respectively; Eqs. (13) and (14) are called observational

updates of the estimate and the covariance matrix of the
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estimation error, respectively; and Eq. (15) is called Kalman

gain matrix [11]. A′ denotes the transpose of A.

At every moment in which the state must be estimated,

the steps of temporary update (Eqs. (11) and (12)) and

observational update (Ecs. (13) and (14)) have to be carried

out. The latter also requires the computation of the Kalman

gain matrix (Eq. (15)).

A. Extended Kalman Filter (EKF)

The EKF is an extension of the KF for the case where

the state model and/or the relationship between the state and

the measurements is non-linear [11]. Eqs. (11) and (13) are

reformulated as

x̂−

k = fk−1(x̂
+

k−1
) (16)

x̂+

k = x̂−

k +Kk(yk − hk(x̂
−

k )). (17)

All other equations remain the same, but replacing the

matrices Fk−1 and Hk by a linearization of the equations

around the latest estimate of the state.

VI. MODELS TO BE COMPARED

For the formulation of the EKF we consider the following

models

• Kinematic I: We consider as states the three position

states and the three velocity states; the perturbation is

given by the acceleration. It corresponds to the model

described in Eq. (4).

• Kinematic II: We consider as states the three position

states, the three velocity states and the three acceleration

states; the perturbation is given by the jerk. It corresponds

to the model described in Eq. (5).

• Dynamic I: We consider as states the three position states

and the three velocity states related as in Eq. (8). The

perturbation is given by the acceleration ap.

• Dynamic II: Similar to Dynamic I, but incorporating the

effect of the J2 coefficient (Jeffery’s second constant in

the description of the Earth’s gravitational potential [9])

in ap. The perturbation is given by the remaining terms

in ap.

• Dynamic III: Similar to Dynamic I, but adding three

aditional states to estimate the non-modeled acceleration.

The perturbation is given by the jerk.

• Dynamic IV: Similar to Dynamic II, but adding three

aditional states to estimate the non-modeled acceleration.

The perturbation is given by the jerk.

In all cases we extend the model by incorporating two

additional states to contemplate bias, bk, and drift, ḃk, accord-

ing to the measurements model as described in II. We also

incorporate an element to the disturbances to model the clock

“acceleration”, b̈k. We assume that the relation between these

states corresponds to a linear system



bk
ḃk



=



1 T
0 1



bk−1

ḃk−1



+



T 2

2

T



b̈k−1. (18)

Thus, in all cases the linearization of the system function

is given by

Fk =







1 T
0 1



02×M

0M×2 F⋆
k



 (19)

where F⋆
k denotes the system matrix state without expanding,

and M depends on the dimensions of F⋆
k. E.g., for Kinematic

models I and II this matrix is obtained by inspection of Eqs.

(4) and (5) (i.e. the leftmost matrix of the right-hand side of

each equation); and for the Dynamic I model it’s

F⋆
k =





1− T 2

2

µ

r3
k



I3×3 T I3×3

−T µ

r3
k

I3×3 I3×3



+

+



T 2

2
S(ωe

ei)
2 T 2

2
2S(ωe

ei)
TS(ωe

ei)
2 T 2S(ωe

ei)



. (20)

The input matrix is given by

Gk =







T 2

2

T



02×1

0M×1 G⋆
k



 (21)

where G⋆
k denotes the input array for the state without

expanding, and M depends on the dimensions of G⋆
k. For

Kinematic I and II G⋆
k is obtained by inspection from Eqs.

(4) and (5) (i.e. the rightmost matrix of the right-hand side of

each equation); for Dynamic I and II, it is equal to those of

Kinematic I, while for Dynamic III and IV is equal to those

of Kinematic II.

Meanwhile, assembling the vector of measurements as the

concatenation of measurements of pseudorange and deltarange

yk =


ρ
′

k ρ̇
′

k



′

(22)

the matrix Hk results

Hk �
∂h(xk)

∂xk









x̂
−

k

= (23)

=



1Nk×1 0Nk×1 H⋆
k 0Nk×3 0Nk×L

0Nk×1 1Nk×1 0Nk×3 H⋆
k 0Nk×L



(24)

where H⋆
k is a matrix containing in its rows the line-of-

sight vectors, Eq. (2), corresponding to the satellites whose

measurements were grouped into yk , Nk is the number of

measurements available at time k, and L is equal to 3 if the

state includes acceleration and zero otherwise.

VII. SIMULATION RESULTS

To define a significant simulation scenario, we generate

the true states of position and velocity that would have our

vehicle in a given time interval (actually we are interested

in a sampled interval, tk = kT , k ∈ K ⊂ Z). Based on

these states and a description of the GNSS constellation we

synthesize the measurements that the vehicle would have at

each time k. By entering these synthesized measurements to

the filtering algorithm (in each of its variants) the estimation

of the corresponding states is obtained. In this way, it is

possible to compare the solutions obtained in each case with
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the true solution and analyze the performance attained using

the different proposed models.

We consider a LEO satellite with orbital parameters i = 98,

e = 0, a = 7.028 × 103 m, similar to the nominal orbital

parameters of the argentine SAC-D satellite, a simulation

interval equal to the orbital period and a sampling step of

1 second. To generate the states of position and velocity we

use the model with disturbances described in section IV in

which all disturbances are modeled in detail accordingly to

e.g. [8], without considering trust forces.

We also obtain the status of GNSS satellites in the simula-

tion interval as described e.g. in [1], using a set of arbitrarily

chosen broadcast ephemeris, and determine which of them are

visible by the vehicle at each point of its trajectory.

We next synthesize the pseudorange and deltarange mea-

surements for each one of the satellites in view at every

moment. For that, we include a model of the user’s clock

bias and drift (Eqs. 1 and 3), and the noise affecting each

measurement.

We adjust the covariance matrix Rk (used in Eq. (15)) with

the same value used to generate the measurements’ noise,

and compare the performance of each filtering scheme (with

the diverse proposed models) for different values of the noise

model covariance matrix Qk (used in Eq. (12)), given by

Qk =



σ2

b̈
01×3

01×3 σ2
αI3×3



(25)

where σα = σẍ for those models in which it is considered

that the disturbance is given by the acceleration, and σα = σj

for those models where it is considered that the perturbation

is given by the jerk. To analyze the performance of each of

the models we used as a metric the mean square error in bias-

position and drift-velocity solutions



ǫ2p =









1

K

K−1


k=0

x̂p,k − xp,k2

4
(26)



ǫ2v =









1

K

K−1


k=0

x̂v,k − xv,k2

4
(27)

where xp,k and x̂p,k respectively denote the sub-vectors of xk

and x̂k , that contain the three position coordinates and bias

(in meters) elements; and xv,k and x̂v,k respectively denote

the sub-vectors of xk and x̂k that contain the three velocity

coordinates and drift (in m/s) elements.

In Figs. 1 and 2 the results of evaluation of these metrics as

a function of the parameter σẍ (or σj ), for the different models

proposed, are presented. The optimal values are summarized in

Table I. In this case GPS measurements are used. The results

obtained with the GLONASS system are similar.

It can be seen that, when tuning the filter with small values

of “sigmas”, the estimation error is large. This tuning can be

interpreted as putting more confidence in the model than in

the measurements; however, if the model is not quite accurate,

putting too much confidence in it leads to bigger estimation

σẍ, σj

10−6 10−4 10−2 100

�

ǫ
2 p

10−1

100

101

102

103

104

105

106

Kin. I

Kin. II

Dyn. I

Dyn. II

Dyn. III

Dyn. IV

Fig. 1. Mean square error in bias-position solutions as a function of σẍ (or
σj ) for the six models considered using GPS system. In all cases σ

b̈
= 0.01

is taken.

TABLE I
RESULTS OF COMPARISON OF DIFFERENT MODELS.

Mod. pt. σẍ ( σj )
�

E{ǫ2p}
�

E{ǫ2v}

Kin. I
Pos 5.75 7.71× 10

−1
1.56× 10

−1

Vel 6.00 7.71× 10
−1

1.56× 10
−1

Kin. II
Pos 2.00× 10−2 7.68× 10−1 9.69× 10−2

Vel 2.00× 10−2 7.68× 10−1 9.69× 10−2

Dyn. I
Pos 1.00× 10−1 7.65× 10−1 8.64× 10−2

Vel 4.00× 10−2 7.98× 10−1 6.85× 10−2

Dyn. II
Pos 7.50× 10

−4
3.87× 10

−1
1.69× 10

−2

Vel 7.50× 10−4 3.87× 10−1 1.69× 10−2

Dyn. III
Pos 2.50× 10

−4
7.12× 10

−1
3.20× 10

−2

Vel 2.50× 10
−4

7.12× 10
−1

3.20× 10
−2

Dyn. IV
Pos 2.50× 10−6 4.06× 10−1 1.57× 10−2

Vel 2.50× 10−6 4.06× 10−1 1.57× 10−2

errors. In other words, the estimator cannot follow the user’s

variations, resulting in estimation errors.

On the other hand, tuning the filter to large values of

“sigmas” also leads to large estimation errors. This tuning can

be interpreted as relying more in the measurements than in

the model; however, since the measurements are contaminated

with noise, too much reliance on them leads to the noise not

being filtered. In other words, the estimator follows the noise-

produced variations of the measurements, resulting again in

estimation errors.

It can be seen that the Kinematic I model is the one with the

worst performance, which is expected based on its simplicity:

it does not attempt to model or estimate the acceleration. It

may also be seen that Kinematic II and Dynamic I models
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σẍ, σj
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Dyn. II

Dyn. III

Dyn. IV

Fig. 2. Mean square error in drift-velocity solutions as a function of σẍ (or
σj ) for the six models considered using GPS system. In all cases σ

b̈
= 0.01

is taken.

have a similar performance, i.e. using a simple acceleration

model achieves a similar performance to trying to estimate it

on the filter.

It may also be noted that the Dynamic III model has a

better performance, since that, besides using a simple model

of acceleration, it estimates the non-modeled acceleration.

Finally, Dynamic II and IV models are the ones that get the

best performance, which is expected because they use a more

accurate model of acceleration including the effect of J2. The

fact that both obtain a similar performance is because the effect

of non-modeled acceleration is small in this case and therefore,

estimating it doesn’t produce any advantage over leaving it as

part of the unmodelled perturbations.

Figures 1 and 2 are also useful for analyzing how the

performance of each model gets worse in case of choosing

another tuning value, e.g. when trying to obtain a better

performance against non-ideal effects, which have not been

taken into account.

In comparing the Kinematic II and Dynamic III and IV

models with others it should be noted that the horizontal

axis corresponds to jerk, while in the others it corresponds

to acceleration.

Searching the optimal considering the σb̈ dimension as well

(not presented due to space limitations), shows that the optimal

value is obtained for σb̈ = 0.01 or very close values. In the

latter case, the optimum value doesn’t differ significantly from

that obtained taking σb̈ = 0.01. For this reason this value was

used in the comparison of all models.

VIII. APPLICATION EXAMPLE

As a real-data application example, we analyzed GPS mea-

surements taken on board the argentine SAC-D satellite. In

this case we applied corrections to systematic errors in the

pseudorange and deltarange measurements, and we model the

standard deviation for each measurement according to the

C/N0 estimated by the receiver itself. Since there are not real

positions and velocities of reference, we chose to compare the

results obtained with different models among themselves.

In Figs. 3 and 4 errors observed in the three coordinates

of position and velocity using the Dynamic II model, with

reference to the solution of the Dynamic IV model are pre-

sented. In order to make a comparison, the errors against the

same reference obtained in the punctual solution (an algebraic

solution based on the measurements sampled simultaneusly

on a single time instant) are also presented. To this end, we

consider the same noise covariance matrix of measurements

used in the filtering process. The ±3σ error intervals, based

on the corresponding element on P+

k , are also plotted in each

coordinate. It can be seen that virtually at all times the error

is kept within these limits.

When comparing the results obtained with other models, a

good correspondence with simulation results was observed.

This allows a real data validation of the operation of the

proposed filtering schemes.

Fig. 3. Error in solving point position (blue) and by EKF (red) using the
Dynamic II model, with respect to the solution taken as a reference. The
interval ±3σ of error estimated by the same filter (black) is also displayed.
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Fig. 4. Error in solving point velocity (blue) and by EKF (red) using the
Dynamic II model, with respect to the solution taken as a reference. The
interval ±3σ of error estimated by the same filter (black) is also displayed.

IX. CONCLUSIONS

In this work we proposed different statistical filtering mo-

dels that can be employed in the formulation of an EKF

filtering scheme for LEO satellite navigation based on GNSS

measurements. The simplest ones are based on a kinematic

approach and could be extended to a variety of vehicles. The

other ones are based on a dynamic approach that takes into

account the most significant forces acting in the motion of

this kind of vehicle. It should be noted that in all cases we

prioritize obtaining simple models, feasible for implementing

real-time algorithms, i.e. without a high computational burden

associated.

Based on a representative simulation scenario, we compared

the performance of these different models obtaining in each

case the optimum tuning value of the filter and analyzing the

relative improvements of each one. Based on actual measure-

ments took by the argentine satellite SAC-D, the applicability

of filtering schemes proposed for this kind of vehicle was also

verified.

From a purely qualitative analysis, we can conclude that,

in general the better performance is attained with the most

complex implementation in terms on computational burden.

However, the additional complexity seems not to be prohibitive

for a real-time implementation. A quantitative analysis of the

computational burden depends on the particular architecture

in which the algorithms will be implemented and it’s beyond

the scope of this work.

As future work, an analysis of the performance against

unmodeled disturbances, such as the effect of thrust, will

be addressed. Also, some modifications needed in order to

use measurements from more than one GNSS system, i.e.

GLONASS or Galileo, will also be considered.
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