
A Real Case of Multi-Period Water Distribution 
Network Design solved by a Hybrid Simulated 

Annealing

Carlos Bermudez1, Hugo Alfonso1, Gabriela Minetti1, and Carolina Salto1,2
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Abstract. In this work, we propose an optimization solver based on a
hybrid Simulated Annealing (HSA) to optimize the water distribution
network design. The problem formulation includes multi-period restric-
tions with time-varying demand patterns. The HSA search process is
affected by the Markov Chain Length (MCL), making modifications in
the network design. For that reason, we studied the HSA behaviour by
considering static and dynamic methods to compute the MCL. We test
the algorithms by using networks reported in the state-of-the-art and also
a real and new median size network that arises from a regional neces-
sity. The experimentation suggests the use of a dynamic method, which
exhibits the balance between efficacy and efficiency.

Keywords: Water Distribution Network Design, Optimization, Simu-
lated Annealing, Markov chain length

1 Introduction

The water distribution network design represents a major challenge because the
distribution system has many components to be considered (pipes of various sizes
for carrying water, valves for controlling the flow, service connections to the indi-
vidual homes, and distribution reservoirs for storing the water to be fed into the
distribution pipes). The solution concerning the layout, design, and operation of
the network of pipes should result from efficient planning and management pro-
cedures. This problem is known as Water Distribution Network Design (WDND)
and requires handling a big number of variables and constraints, in consequence,
it is classified as NP-hard [1]. The water distribution network optimization aims
to find the optimal pipe diameters in the network for a given layout and de-
mand requirements. The optimal pipe sizes are selected in the final network, by
satisfying the conservation of mass and energy and also the constraints.

Currently, the WDND formulations include the extension to a multi-period
setting, i.e., time-varying demand patterns, which are more realistic and com-
plex problem formulations. Some works expressed the design problem as a multi-
objective optimization problem and applied a multi-objective evolutionary algo-
rithm [2]. A genetic algorithm was developed to solve six small networks [3],
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which considered the velocity constraint on the water flowing through the pipes.
In [4] also regarded this constraint, but the authors used mathematical pro-
gramming on bigger, closer-to-reality networks. Other metaheuristics were used
to tackle more complex WDND formulations [5–7]. In this line, an Iterative
Local Search [8] (ILS) considered that every demand node has 24 hrs water de-
mand pattern and included a new constraint related to the limit on the maximal
velocity of water through the pipes.

The size of the cities is constantly growing, and our city, General Pico, is
not an exception. Consequently, our community needs to optimize an indepen-
dent WDND of a new neighborhood of 5 km2, subject to multi-period demands,
hydraulic restrictions, among others. CORPICO is the organization in charge
of distributing this essential element and presents a real requirement for an
optimization system to determine the best engineering solution in meeting es-
tablished design criteria while at the same time minimizing capital costs. The
objective of our research is to develop an optimal solution based on state-of-the-
art optimization techniques, which intends to support the decision making to
design, plan, and management of complex water systems.

In a previous work [9], we tackled the WDND considering time-varying de-
mand patterns and the maximum water velocity constraint as formulated in [8].
The optimizer adopted is a hybrid Simulated Annealing (HSA)[10], which op-
timizes the pipe diameters by using a local search technique based on GRASP.
In [9], we analyzed the HSA behavior by considering the variants for two con-
trol parameters: the cooling scheme and the initial temperature. Following this
research line, in this work we propose to study the third control parameter,
the Markov Chain Length (MCL), and its variants, applying the obtained al-
gorithmic approaches to a real case. The computation of its appropriate length
is a difficult task to apply in practice. Consequently, we consider three different
strategies to set the MCL to understand their effectiveness in terms of solution
quality and execution time. We test the performance of our HSA with the Hy-
droGen network instances [11]. Moreover, we describe and give the features of a
real medium size distribution network, which is used to test the capabilities of
the HSA model developed.

– The main contributions of this work are the following:
– Analysis of how the MCL influences the HSA performance when solving the

WDND problem.
– Resolution of a real distribution network from our community.
– Comparison of the developed HSA solver with state-of-the-art techniques.

The remainder of this article is structured as follows. Section 2 introduces
the problem definition. Section 3 explains our algorithmic proposal, HSA, to
solve the WDND optimization problem and the HSA’s configurations. Section 4
describes the experimental analysis and the methodology used. Then, sections
5 and 6 present the result analysis of the variants and the comparison with
an ILS [8] from the literature, respectively. Finally, Section 7 summarizes our
conclusions and sketches out our future work.
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2 Multi-Period Water Distribution Network Design

The objective of the WDND problem is to minimize the Total Investment Cost
(TIC) in a water distribution network design. The problem can be characterized
as: simple-objective, multi-period, and gravity-fed. Two restrictions are consid-
ered: the limit of water speed in each pipe and the demand pattern that varies
in time. The network can be modeled by a connected graph, which is described
by a set of nodes N = {n1, n2, ...}, a set of pipes P = {p1, p2, ...}, a set of loops
L = {l1, l2, ...}, and a set of commercially available pipe types T = {t1, t2, ...}.
The TIC value is obtained by the formula shown in Equation 1, where ICt is
the cost of a pipe p of type t, Lp is the length of the tube, and xp,t is the binary
decision variable that determines whether the tube p is of type t or not. The
objective function is limited by: physical laws of mass and energy conservation,
minimum pressure demand in the nodes, and the maximum speed in the pipes,
for each time τ ∈ T .

minTIC =
X
p∈P

X
t∈T

LpICtxp,t (1)

2.1 A Real WDND problem

The principal motivation of this research is to get involved in solving commu-
nity problems, in particular the water distribution. To provide some context, the
water access problem in the province of La Pampa is a priority treatment for
being a scarce natural resource. CORPICO3, the supplier of this essential ser-
vice in General Pico, has to design an independent drinking water distribution
network for a new neighborhood of 5 km2, minimizing the network cost through
the proper selection of the pipe dimensions according to consumption and the
physical laws of this type of problem. The water distribution network should
cover an area called “Barrio Quintas Sur” identified as Zone 2 or Z2 (shaded
region of Fig 1). Initially, the network has an extension of 1.65 km2 foreseeing
for the next ten years an adjacent extension of 3.4 km2, identified as the zones
Z1, Z3, and Z4. The network designed for Z2 is independent but requires taking
into consideration the demand of the other zones to become an extra supply
network or to receive water from them (bypass).

3 HSA for the Multi-Period WDND Problem

In this work, we continue with the study of the HSA as WDND solver, ini-
tiated in [9]. In particular, HSA consists of adapting and hybridizing the SA
algorithm [12] to solve the Multi-Period WDND optimization problem. The first
design issue is fixed regarding the problem to be solved. For this reason, the

3 CORPICO is the Regional Cooperative for Electricity, Works and other Services in
the city of General Pico, province of La Pampa, Argentina.
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Fig. 1. Map laying water networks in General Pico.

Algorithm 1 HSA to solve the WDND Optimization Problem
1: k = 0;
2: initTemp(T )
3: initialize(S0);
4: TIC0 = evaluate(S0);
5: repeat
6: repeat
7: k = k + 1;
8: S1 = MP-GRASP LS(S0);
9: TIC1=evaluate(S1);
10: if TIC1 < TIC0 then
11: S0 = S1; TIC0 = TIC1

12: end if
13: S2 = perturbation operator(S0);
14: TIC2 = evaluate(S2);

15: if (TIC2 < TIC0) or (exp((TIC2−TIC0)/T ) > random(0, 1)) then
16: S0 = S2; TIC0 = TIC2

17: end if
18: until (k mod MCL == 0)
19: update(T );
20: until stop criterion is met
21: return S0;

search space, solution codification, cost (evaluation) function, perturbation op-
erator, and local search are directly related to the WDND problem. Meanwhile,
the second design issue contemplates the algorithmic search strategy and includes
the definition of the following control parameters: temperature, their annealing
schedule, and the Markov chain length [13]. In the previous work, we analyzed
different configurations of the two first HSA control parameters. In this work,
we investigate the third one and the way to calculate the Markov chain length.
The next sections describe the HSA algorithm and Algorithm 1 shows the HSA
pseudocode.

3.1 HSA design issue based on problem definition

A solution for the WDND problem is a network, as shown in Figure 2 (a) and (b),
which is represented by a vector. Each vector element is the diameter selected for
the pipe it represents. Table 1 shows the vectors that correspond to the candidate
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(a) (b)

Pipe ID Length (m)

1 31
2 20
3 35
4 37
5 24
6 50
7 12
8 65

(c)

Diam. Roughness
Cost(mm) unitless

60 130 22
80 130 35
100 130 38
150 130 50
200 130 61

(d)

Fig. 2. Different solutions or network designs. (a) Solution 1; (b) Solution 2; (c) Pipe
lengths; (d) Available pipe types with their corresponding costs.

Table 1. Different solutions or network designs in vector representation.

Solution
Pipe ID 1 2 3 4 5 6 7 8 Feasibility

Length (m) 31 20 35 37 24 50 12 65 TIC

1
diam. (mm) 150 150 80 80 100 60 60 80 feasible

cost 1550 1000 1225 1295 912 1100 264 2275 9621

2
diam. (mm) 150 150 80 60 100 60 60 80 infeasible

cost 1550 1000 1225 814 912 1100 264 2275 9140

solutions in Figure 2(a) and (b). The TIC for each solution is calculated by the
Equation 1, using the input data from tables (c) and (d) of Figure 2. The first
solution is hydraulically feasible (satisfying all constraints mentioned in Section
2) and the second one is infeasible (violating the minimum pressure constraint in
node 7). HSA uses the EPANET 2.0 toolkit [14] to solve the hydraulic equations,
since this hydraulic solver is applied in most existing works.

Following with the HSA search components related to this problem, HSA
generates a feasible initial solution S0 (line 3) applying both HighCost and
Lowcost mechanisms proposed in [8]. Furthermore, the HSA is hybridized with
MP-GRASP local search [8], which intensifies the search into the current region
of the solution space (line 8). Then a greedy selection mechanism is performed
(lines 10-12). The last search component associated with the WDND problem
is the perturbation operator, used to obtain a feasible neighbor (line 13) and
explore other areas of the search space. It randomly changes some pipe diameters.

3.2 HSA design issues specific to the search

The algorithmic search strategy compares the solution S2 generated by the per-
turbation operator with the current one, S0. If S2 is worse than S0, S2 can be
accepted under the Boltzmann probability (line 15, second condition). In this
way, at high temperatures (T ) the exploration of the search space is strength-
ened. In contrast, at low temperatures the algorithm only exploits a promising
region of the solution space, intensifying the search. In order to update T , a
cooling schedule is used (line 19) and it is applied after a certain number of
iterations (k) given by the Markov chain length (line 18). Finally, HSA ends the
search when the total evaluation number is reached or T = 0.
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The choice of the right initial temperature has an important role in the HSA
performance to find good solutions. A classical and intuitive method is used in
this work that is introduced by Kirkpatrick et al. [12]. The scheme to control the
cooling process is also crucial, so that the system gradually cools from a higher
temperature, ultimately freezing to a global minimum state. Many attempts
have been made to derive or suggest good schedules [13], being the most known
cooling processes: the proportional [12], exponential [12], and logarithmic [15]
schemes. A fourth cooling processes, named Random scheme, was successfully
introduced and tested in order to solve this problem in [10].

The Markov chain length is the number of required transitions (moves) to
reach the equilibrium state at each temperature, Tk . This number can be either
static or adaptive. In the first case, the number of movements is calculated
before the search starts. The static approach, named as MCLs, assumes that each
temperature Tk is held constant for a sufficient and fixed number of iterations.
In this work, each Tk is held constant for 30 iterations, a common number used
in the scientific community.

For the adaptive cases, the Markov chain length depends on the characteris-
tics of the search. For instance, Cardoso et al. [16] consider that the equilibrium
state is not necessarily attained at each level of the temperature. Consequently,
the cooling schedule is applied as soon as an improved candidate (neighbor)
solution is generated. In this way, the computational effort can be drastically
reduced without compromising the solution quality. This approach is referred
as MCLa1. Another adaptive approach is proposed by Ali et al. [17], named as
MCLa2, which uses both the worst and the best solutions found in the Markov
chain (inner loop) to compute the next MCL. This strategy allows to increase
the number of function evaluations at a given temperature if the difference be-
tween the worst and the best solutions increases, but if an improved solution is
found the MCL remains unchanged.

4 Experiments with HSA’s Variants

In our experiments, we use the best HSA’s variant found in [9] to solve the
multi-period WDND problem, named HSARand100, which uses the random cool-
ing scheme and 100 as initial temperature. This variant, renamed HSA in what
follows, is executed under the three approaches to compute the MCL, as a con-
sequence, three new HSA configurations arise. The stop condition of these algo-
rithmic approaches is to reach 1,500,000 evaluations of the objective function.
We performed 30 independent runs of each instance because of the stochastic
nature of the algorithms, in order to gather meaningful experimental data and
apply statistical confidence metrics to validate our results and conclusions. Be-
fore performing the statistical tests, we first checked whether the data followed
a normal distribution by applying the Shapiro-Wilks test. Where the data was
distributed normally, we later applied an ANOVA test. Otherwise, we used the
Kruskal–Wallis (KW) test. This statistical study allows us to assess whether or
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Table 2. Pipe types and their corresponding costs for the GP-Z2-2020 network.

Number Diam. (mm) Roughness Cost Number Diam. (mm) Roughness Cost
1 63 110 2.85 5 315 110 69.10
2 90 110 5.90 6 400 110 110.89
3 110 110 8.79 7 450 110 140.15
4 125 110 11.00 8 630 110 273.28

not there were meaningful differences between the compared algorithms with
α = 0.01.

HydroGen Networks. The HydroGen networks [11] arise from 10 different
distribution networks, named as HG-MP-i with i ∈ {1, 10}. The demand nodes
are divided into five categories (domestic, industrial, energy, public services,
and commercial demand nodes), each one with a corresponding base load and
demand pattern4. In this way, each HG-MP-i network consists of five different
instances, totaling 50 instances. The combinations of 16 pipe types and the
number of pipes of each instance determines the network complexity. In this
way, four different categories are obtained, to know HG-MP1-3, HG-MP4-6,
HG-MP7-9, and HG-MP10, regarding the number of pipes of each instance.

GP-Z2-2020: a Real Network. The GP-Z2-2020 network, which arises
from CORPICO’s requirements, is composed of 222 domestic demand nodes
and only one water reservoir. Moreover, this zone is connected with three other
ones by means of some peripherical nodes which have different demand patterns,
as explained in Section 2.1. Table 2 summarizes available pipe diameters, their
corresponding roughness, and their unit costs (expressed in US dollars). The
area is residential with a demand according to the current distribution of the
customers in 584 plots, but considering a development pattern over a timespan
of 30 year. The daily pattern demand corresponds to the summer period (based
on the model demand of historical records) having a maximum resolution of
one hour. The total number of possible combinations of design for a set of 8
commercial pipe types and 282 pipes is 8282 which is difficult to test them; this
shows the importance of optimization.

5 Analysis of the HydroGen Instance Results

In this section, we summarize and analyze the results of using the three new
HSA’s configurations to solve the 50 Hydrogen instances grouped by their cor-
responding distribution network. First, we analyze the behavior of these config-
urations by considering the results shown in the Table 3, taking the different
MCL approaches into account. The columns 2-4 show the average of the best
TIC values found by the three HSA’s configurations for the 50 instances grouped
by their corresponding distribution network. The minimal average TIC values
found by each group are boldfaced. Last column summarizes the p-values ob-
tained by the KW test. We follow with the best known TIC values found by

4 The base loads can be found in the EPANET input files of the instances

27ISBN 978-987-4417-90-9

CACIC 2020 
DIIT UNLaM / Red UNCI



8 Carlos Bermudez, Hugo Alfonso, Gabriela Minetti, and Carolina Salto

Table 3. Averages of the best TIC values
found by each HSA’s configurations.

Network MCLs MCLa1 MCLa2 KW
HG-MP-1 335723 336984 337809 0,87
HG-MP-2 298430 298652 297823 0,85
HG-MP-3 384210 384665 384687 0,92
HG-MP-4 683780 682361 685424 0,80
HG-MP-5 719569 717268 711906 0,40
HG-MP-6 739923 735738 738108 0,93
HG-MP-7 807367 792435 801907 0,27
HG-MP-8 843657 841653 841240 0,13
HG-MP-9 823783 817325 816485 0,00
HG-MP-10 787399 771461 784385 0,08

Table 4. The best known TIC values
found by our proposals and ILS.

Network MCLs MLCa1 MLCa2 ILS
HG-MP-1 298000 298000 298000 298000
HG-MP-2 245330 245330 245330 245000
HG-MP-3 310899 310706 310493 318000
HG-MP-4 592048 590837 592036 598000
HG-MP-5 631000 631000 631000 631000
HG-MP-6 617821 609752 614917 618000
HG-MP-7 648372 644568 639932 653000
HG-MP-8 795996 792436 790037 807000
HG-MP-9 716944 715863 712450 725000
HG-MP-10 730916 712847 727818 724000

Fig. 3. Minimum execution times con-
sumed by each HSA’s configuration.

Fig. 4. Total execution times consumed
by each HSA’s configuration.

our proposals shown in Table 4 (the minimal values are boldfaced). The perfor-
mance of the HSA’s configurations are compared with the ILS proposed in [8].
This metaheuristic is chosen from literature since its authors also used the Hy-
droGen instances to test it. To ensure a fair comparison, both algorithms use
the same stop criterion that is set in 1,500,000 Epanet calls. Finally, we analyze
the computational effort for each HSA proposed, considering the time to find
the best solution (see Figure 3) and the total execution time (see Figure 4) of
the search measured in seconds, grouped by distribution network

Analyzing the results from the quality point of view for 90% of the instances,
the three approaches behave statistically similar (p-value > α). The HSA with
the adaptive options find the best TIC value in 80% of the cases. For the HG-
MP-9 network, the HSA’s behavior is significantly different, being MCLa2 the
configuration for HSA that allows to find the lowest TICs values.

Focusing on computational effort analysis, for all configurations the HSA run
times grow as the instance complexity increases. HSA with MCLa2 is the slowest
configuration, whereas HSA with MCLs reduce significantly the total execution
time (approximately 30-50%). However when the best time values to reach the
best solution are analyzed, these differences are noticeably narrowed, minimizing
the gap between these three approaches.

These results clearly state that the MCLa1 configuration exhibits a good
tradeoff between the solution quality and the required execution time. This
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Table 5. Results of the GP-Z2-2020 Network.

Metrics MCLs MCLa1 MCLa2 ILS
Minimal TIC 366684.00 358717.00 347596.00 355756.00
Average TIC 420949.53 408075.93 401570.20 429948.97
Average Best Time 171.78 564.26 555,44 169.55
Average Total Time 186.46 627.97 615.52 183.83

adaptive approach interrupts the Markov chain when the candidate solution
is better than the current one, reducing the computational effort in comparison
with MCLa2. Furthermore, in comparison with the literature our proposals are
better than ILS in 80% of the networks and equal in the remaining ones.

6 Analysis of the GP-Z2-2020 Network Results

This section is devoted to the analysis of the results of the HSA when solving
the real instance (GP-Z2-2020 network). Table 5 presents the results of the three
HSA’s configurations and the corresponding to the ILS algorithm [8] for different
metrics: best and average TIC values (rows 1 and 2), the average time to find the
best solution (row 3), and the average total time (row 4), expressed in seconds.
The minimal values found by each metric are boldfaced.

HSA using MCLa2 finds minimal TIC values. This is an expected result
since similar observations were made in the previous analysis taking into account
networks of comparable complexity. An analogous situation is observed regarding
the execution times. Furthermore, the three HSA solvers find better average
TIC values than ILS, being HSA with MCLs the option that consumes similar
execution times than ILS.

7 Conclusions

In this article, we analyze the influence of a relevant control parameter of the
HSA solver proposed to solve the WDND optimization problem. The study in-
cludes a static (MCLs) and two adaptive (MCLa1 and MCLa2) configurations.
We test the HSA’s performance with three MCL configurations by using 50 Hy-
drogen networks. Furthermore, we introduced a new WDND instance based on
a real case, which was solved successfully by this solver.

The analysis of the results obtained in the experimentation allows us to
conclude the following. The adaptive configurations find better solutions than
the static one by adapting the MCL to the search context. These adaptations
require an extra computational effort to calculate the MCL during the search.
The HSA with MCLa1 presents a good tradeoff between solution quality and
effort since this adaptive method interrupts the Markov chain if a better solution
than the current one is found. When our proposals are contrasted against ILS [8],
the HSA’s configurations outperform or equal ILS in every WDND network.

A challenging extension of this work will be to implement and test our HSA
using big-data distributed frameworks to deal with larger dimension WDND
networks.
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