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Abstract. Machine Learning methods are widely used for data anal-
ysis in various areas. In this work we use Neural Networks for image
analysis in order to detect grape fruit clusters. A set of manually tagged
images is built and a comparison is made between different data aug-
mentation techniques in order to analyse the best way to expand the
image set. The technique presented here obtained up to 13% better de-
tection performance starting with only 100 images for training. The types
of transformations and filters that worked the best for these images are
discussed. In addition, training and detection times in five different hard-
ware infrastructures, both CPU and GPUs, are briefly discussed.

Keywords: machine learning, neural networks, deep learning, object
detection

1 Introduction

Machine Learning (ML) is the field of study that allows computers to have the
ability to learn without having been explicitly programmed to do so [10]. ML is
often associated with automatic detection of patterns or useful information in
data. The use of Machine Learning for data analysis is widely used in various
areas, from social to health and engineering [4,7]. This is particulary the case
in the area of automatic object recognition, which has direct applications in
agricultural processes [11].

A general need for agricultural producers is to have an adequate process
for estimating harvest; in particular, in our local region, grape harvest. Tradi-
tionally, the most accurate and fastest methodology for estimating the harvest
of grapes is given by the count of bunches per plant and weight estimation.
The extrapolation of the individual result to all plants determines the projected
production value. Direct visual estimation is also used, but is subjective. To
automate the analysis of grapevine images with the objective of improving the
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estimation of the grape harvest forecast is seen as a problem that can be ad-
dressed by ML, especially given the advances seen in recent years. For example,
[1] presented an algorithm based on mathematical morphology and pixel classi-
fication for grapevine berry counting, however images were taken placing a dark
cardboard behind the cluster, which is difficult for an operator to implement.
Then, yield prediction based on RGB images acquired “on-the-go” from an all-
terrain vehicle was presented in [2], however the capture of images was during
the night, which means that operators have to work in an unusual time window.
Also, ML has been used to identify apples at different times of growth using
YOLOv3 [14], and [3] presented an adaptation of crowd-counting algorithms for
the estimation of harvest yield for grape berries.

The relevant steps to automate the forecast process are: first, image ac-
quisition, then automatic cluster identification, and finally, cluster analysis for
harvest forecast. In this work we focus on the first stages of this process: image
acquisition, labeling, training and detection with Neural Networks.

A common limitation of Neural Networks (NN) is that they typically require
hundreds to thousands of training images for the correct detection of objects.
To address this, we first capture images on various vineyard farms, which were
then hand-tagged. A NN was trained using the images obtained from vineyards,
and was later used to generate detection models. A comparison of the resulting
detections, obtained from the same set of images made by trained models with
100 and 500 photographs, was made. Afterwards, a series of transformations
were applied to 100 images in the first set in order to increase the number of
data, which were used to train again and obtain new, improved models. Finally,
the detection percentages of these models were compared against the detections
of the two initial sets of images.

The work is organized as follows. Section 2 describes the computational tools
we use to carry out the analysis (2.1), our images (2.2), and the filters and
transformations applied to them (2.3). We then show and discuss our results in
Sec. 3. Finally, we elaborate conclusions and state future lines of research in Sec.
4.

2 Materials and Methods

The Python ImageAI library [6] was used to carry out the different analyses,
since it allows training custom object detection models on image datasets that
are in Pascal VOC annotation format. ImageAI uses the YOLOv3 architecture
[8,9], and only requires a few lines of code.

For the training stage, a pre-trained model provided by the same ImageAI
library was used, as faster progress is obtained using transfer learning compared
to training from scratch. The number of epochs used in the training was 100.
Also, batch size and learning rate were set at 2 and 0.0001 respectively. Different
models were generated, which were then evaluated by calculating the mAP score
(mean Average Precision) of each one in order to pick the most accurate, com-
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puted over the validation image set. Source code is available from the authors
via email request.

2.1 Machine Learning Algorithms

You Only Look Once (YOLOv3) algorithm [8,9] is a real-time object detection
system, which resizes the input images to 416× 416, has 53 convolutional layers
in its NN architecture and thresholds the resulting detections by the model’s
confidence.

For its operation the NN divides the image into a grid, and predicts bounding
boxes and the level of certainty of each box for each region. The confidence
scores quantify the likeliness that a given region contains an object, as well as
its accuracy.

2.2 Image dataset

The set of images used was assembled from photographs taken of espaliers from
different vineyards, two of which are in the Valle de Uco. Additionally, bunches
from espaliers belonging to the Instituto Nacional de Tecnoloǵıa Agropecuaria
(INTA), in Lujan de Cuyo were photographed. Two smartphones were used
to capture the images (with 25- and 13-megapixel sensors). The varieties pho-
tographed included Malbec and Cabernet Sauvignon, both dark-colored, used to
make red wine. Close-ups of the bunches and general plans of the espaliers were
made.

Each image was then annotated in Pascal VOC format, with the labelImg tool
[15], which is straightforward to apply, and generates files with .xml extension
that store the coordinates of the upper left and lower right vertices of each
manually generated annotation. In this way, more than 800 images were tagged,
corresponding to more than 3000 grape bunches.

These images, and their respective annotations, were separated into three
sets, which we will call bunch600, bunch120 and detect, detailed below:

– bunch600: consists of 500 images used as a training set (2253 annotated
bunches), and 100 images used for the validating set (472 annotated bunches).
These sets include photographs taken with bunches in the foreground and
in the background;

– bunch120: consists of 100 images used as a training set (593 annotated
bunches), and 20 images used for the validation stage (102 annotated bunches).
In this case all the images used were in the foreground;

– detect: consists of 100 images (641 annotated bunches), which were used
after the training to test the chosen model, generated in the first stage.

2.3 Image filters and transformations

Increasing the data present in the dataset (known as image augmentation) is a
common technique that seeks to increase the number of images in a sparse train-
ing set, based on transformations such as rotation, translation, noise addition,
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etc. [5,12]. Image augmentation relies on how NNs interpret image characteris-
tics: small modifications are interpreted as completely different images by the
NN.

In this sense, a series of filters and transformations were applied to the images
of bunch120 using the ImageMagick software [13]. Two types of tests were per-
formed. On the one hand, tests the training and validation set was duplicated
with the reflection transformation, the solarize filter and the contrast limited
adaptive histogram equalization were used, as detailed below.

– mirror: horizontal mirroring;
– solarize: when solarizing, the color of the pixels whose luminosity exceeds

a certain limit is inverted, in this case the limit was set at 60%;
– clahe: adaptive histogram equalization improves local contrast and enhances

edge definitions in each region of an image. To apply clahe, a grid of defined
pixel width and height tiles is used, where each box contains a fixed number
of classes or bins, and a limit is established for localized contrast changes.
In this case the boxes were 5% of the width and height of the image, and
contained 128 bins each. In addition the contrast limit was set at 4.

On the other hand, the training and validation set was quintupled by applying
four different values of the same type of filter:

– laplacian noise: with attenuation values 1.5, 3.0, 4.5 y 6.0;
– paint: blurred from “drops” of paint that blends the colors present in an

environment and turns them into a single-color area. Used radius values: 3,
5, 7 y 9.

The noise, paint, solarize and clahe filters modify the images, but not the
labels of the grape clusters. On the other hand, the mirror filter requires a
transformation to be applied to .xml files, so labels are also mirrored. Thus,
from the 100 images of bunch120, five new training sets were obtained, three
around 200 images each, and two around 500 images each (matching, in number,
the bunch600 dataset). Similarly, the same transformations were applied to the
validation images, to maintain the proportions between both sets. Fig. 1 shows
the types of filters applied to the original image (a).

3 Results and Discussion

Results of the detections from chosen models obtained by the NN are presented.

3.1 Hardware and Software Description

The analysis of the images is carried out mainly using GPUs. The following
equipment belonging to the Toko cluster of the FCEN UNCuyo was used:

– Toko computing node with four AMD Opteron 6376 CPU, with 16 CPU
cores at 2.3GHz each (64 cores total), 128 GB of RAM.
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(a) original (b) mirror (c) solarize

(d) clahe (e) laplacian noise (f) paint

Fig. 1. Example of an original image and its transformations.

– Toko computing node with two AMD EPYC 7281 CPU, with 16 CPU cores
at 2.1GHz each (32 cores total), 128 GB of RAM.

– Toko computing node with one AMD Ryzen 7 2700 with 8 cores and 16
threads running at 3.2 GHz with 64 GB of DDR4 RAM memory.

– Two AMD FX-8350 nodes with 8 cores running at 4 GHz and 32GB of DDR3
RAM. One node with an NVIDIA GeForce GTX Titan X (Maxwell GM200
architecture) with 12 GB of memory, and another node with an NVIDIA
GeForce GTX Titan Xp (Pascal GP102) with 12 GB of memory.

The Toko cluster is running Slackware Linux current 2020 64bit with ker-
nel 5.4.28, gcc 9.2, NVIDIA driver 410.73 and CUDA 10. The software used
to perform the analysis was developed around the imageAI 2.1.5 library with
tensorflow-gpu 1.13.1, keras 2.2.4, and python 3.7.2. In the section 3.3 we dis-
cuss the performance of the NN running in this hardware.

3.2 Image detection

Frequently, the same cluster is divided at detection and reported as two or three
different objects, depending on whether there are leaves or branches partially
obstructing it. In this situation, it was considered that each one of these detec-
tions corresponded to the real cluster if the intersection between both rectangles
(the detection and the hand-labeled rectangles) was greater than 25%.

Also, a manually tagged cluster is considered “well detected” if the rectangle
detected by the NN and the tagged rectangle match 60% or more. If a labeled
cluster corresponds to several smaller detected rectangles, it is considered “well

35ISBN 978-987-4417-90-9

CACIC 2020 
DIIT UNLaM / Red UNCI



detected” if the sum of the surfaces in the small rectangles represents at most
60% of the real surface of the labeled rectangle.

As explained in Sec. 2.2, detect is the set of images that was used to test
the models. It consists of 100 images, containing 641 labeled clusters in total.
These images were tagged in order to compare them against NN detections, but
the NN did not had access to the tags at any time during training. The Table 1
shows the difference in detections between bunch120 and bunch600, which have
100 and 500 training images, respectively. The name “originals” means that the
images do not have any type of filter or transformation applied.

Table 2 compares the detections achieved by the combination of bunch120
(original images) and the application of a transformation type, which increases
the number of images to 200 of training. On the other hand, the Table 3 compares
the combinations of four filters, reaching 500 training images per test.

Table 1. bunch120 vs. bunch600
originals originals
bunch120 bunch600

Total clusters detected 455 593
Total clusters not detected 186 48
Total other detections 125 211
Percentage of correct detections 70.98% 92.51%
Average certainties 50.3 52.45
Standard deviation certainties 9.73 9.8

Table 2. Dataset detections that duplicate the training set
originals originals originals
+ clahe + mirror + solarize

Total clusters detected 458 480 536
Total clusters not detected 183 161 105
Total other detections 80 123 217
Percentage of correct detections 71.45% 74.88% 83.61%
Average certainties 51.38 55.92 54.45
Standard deviation certainties 11.38 11.25 13.82

Table 3. Dataset detections that quintuple the training set
originals originals

+ laplacian + paint
Total clusters detected 454 467
Total clusters not detected 187 174
Total other detections 108 86
Percentage of correct detections 70.82% 72.85%
Average certainties 46.87 48.07
Standard deviation certainties 8.57 13.29

Regarding the level of certainty, a distinction is made between detections that
correspond to clusters, from detections of other objects that could —or not—
be partial-view clusters, not considered in the labeling. The different tables, in
addition, report the average and standard deviation of the certainties of the
detections that correspond to real clusters. Figure 2 shows the percentages of
certainty of the detections obtained after training with images of bunch120 and
bunch600, without the application of transformations or filters. On the left,
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graphs (a) and (c) take into account the certainties for labeled clusters, while
graphs (b) and (d) on the right take into account detections from other objects.

Fig. 2. Percentages of certainty of the detections obtained after training with the orig-
inal images of bunch120 (above) and bunch600 (below).

Similarly, Fig. 3 has on its left the cluster detections, obtained from the
training carried out with the images of bunch120 together with the reflection
transformation (a), next to the solarize filter (c), and next to the clahe equaliza-
tion (e). On the right, instead, are represented the detections of other objects.
Likewise, Fig. 4 shows the graphics corresponding to the training with images
with Laplacian filter and paint.

As expected, the NN reaches a higher detection of 92% from the dataset
bunch600, while detection from bunch120 only reaches 70%. However, the ap-
plication of some image augmentation techniques leads to an increase in the
number of detections. Duplicating the original dataset using filters such as mir-
roring or solarizing achieves an increase from 4% to 13%. However, quintupling
the original dataset only accounts for 2% more detection when using the paint
filter.

It is remarkable that a higher detection rate was obtained among the original
images plus their mirrors (200 images), than the original ones plus four paint
filter applications (500 images). Simply duplicating the data using this particular
transformation can achieve better results than quintupling the data, with the
addition of less computer time.

On the other hand, the tests of solarize filter, mirrored images, clahe equal-
ization and application of four values of paint are the ones that present higher
percentages of certainty, even higher than those of bunch600 . However, the use
of solarize is also the one that leads to additional “other detections”.
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Fig. 3. Percentages of certainty of the detections obtained after training with the origi-
nal images of bunch120 together with their reflections (above), together with the images
with solarization (middle), and together with the clahe equalization (below).

Fig. 4. Percentages of certainty of the detections obtained after training with the orig-
inal images of bunch120 together with four values of paint (above) and four values of
Laplacian noise (below).
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3.3 Computational performance

The estimation of performance was a secondary objective of this work. The
analysis was performed in five different hardware infrastructures, both CPUs
and GPUs. For this analysis the data set bunch120 was used and the time is
equivalent to one experiment. Table 4 shows that the Titan Xp GPU, as ex-
pected, has the best performance being ∼3 times faster than 64 cores of the
Opteron 6376 node and ∼1.4 times faster than the previous generation Titan X
GPU. The two GPUs have superior performance to the fastest CPU, the AMD
Epyc 7281.

The training time for 100 experiments (section results 3.2) on the Titan Xp
GPU, from the original bunch120 image set and mirror (200 images) took ∼11
hours and original bunch120 and 4 filters paint (500 images) took ∼31 hours. In
the case of bunch600 (500 images) the training took ∼30 hours. Detection time
is ∼1.5 seconds per image using the model generated by bunch120 + mirror on
the same Titan Xp GPU. Due to these training times the number of filters that
could be tested were limited as the use of the Toko cluster is shared amongst
other users.

Table 4. Mean time in seconds for five separate training executions in five different
CPUs and GPUs infrastructures.

Hardware Mean time (s) Standard deviation
Opteron 1652 35
Ryzen 1080 29
Epyc 962 21

Titan X 787 7
Titan Xp 563 12

4 Conclusions and Future Work

Cluster detection models were trained from new constructed datasets of 100 and
500 images each. Their detection percentages were compared, as well as the mod-
els obtained after using data augmentation techniques. With the methodology
presented in this work, it was possible to increase the number of detections by
13%, although it was not possible to match the detection percentage obtained
from the training with 500 images. Despite expectations, not all possible trans-
formations lead to better results, as in the case of Laplacian noise application.
Although a greater number of detections is achieved from a large training set,
the difference that can be obtained from the application of some specific modi-
fications to a smaller dataset is remarkable.

As future work, we expect to generate new models from the application of
different transformations in the images, such as new translations or rotations,
and apply adversarial learning techniques to re-train the NN. The next step is to
increase the number and variety of images in the bunch600 dataset to increase
the number of images present in the dataset; we expect that such a step will
decrease the number of “other detections”.
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