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Abstract. Real-time rendering applications are difficult software engi-
neering development projects, due to the complexity of the implemented
algorithms required to achieve interactive frame rates. To provide a faster
development process, the rendering engines implement many of these al-
gorithms to support developers. In this article, we present a real-time
physically-based rendering engine supporting global illumination. It sup-
ports diffuse indirect illumination, glossy reflections, refractions (trans-
parency), soft shadows, and light emitted from emissive surfaces at in-
teractive frame rates.

Keywords: physically-based rendering, real-time rendering, rendering en-
gine, global illumination, directx, cone tracing, voxels

1 Introduction

Real-time rendering is the process of synthesizing three-dimensional data as im-
ages on a computer at interactive frame rates [1]. For high-quality virtual rendered
scenes, Global Illumination (GI) techniques are required to simulate the light ex-
changes of indirect illumination in those scenes. While these techniques allow a lot
of realism to be added, calculating that GI, in real-time, is a difficult challenge.

Traditionally, indirect illumination has been too costly to compute under real-
time constraints. Like most real-time rendering applications, access to the graphic
accelerator cards (GPUs) is required. Rendering engines provide an abstraction
layer on top of the graphic APIs and, in most cases, extra features that speed up
the development of graphic applications. These characteristics should facilitate the
engine to synthesize high-quality images with GI. By adhering to Physically-Based
Rendering (PBR) models, a more accurate representation of how light interacts
with surfaces could be provided.

In this paper, we present NATUS, an advanced rendering engine to assist de-
velopers in the design of realistic graphic applications. This is based on a PBR
model, that allows users to easily configure the material appearance of the objects
in their scenes, being assured that these will behave correctly under different light-
ing conditions. To achieve a high level of realism, the engine also provides a GI
model. Its implementation allows dynamic scene objects and light sources, that
would affect the final result of the indirect illumination.

Its architecture makes it easily extensible. New scenes can be created and the
rendering pipeline modified. NATUS Engine is implemented in C++ and exe-
cutable demos are available at http://natus.io/project/natus-engine.
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2 Related Work

In the last couple of years several hybrid approaches have been developed, many of
which are executed on the GPU, and have been implemented in commercial graphic
engines like Unreal, CryEngine and Unity3D. Unreal Engine 4 [2] is the current
iteration of one of the first major game engines to have come out to the public [3]. It
uses DirectX, OpenGL, as well as WebGL. Unreal Engine 4 supports Screen Space
Global Illumination (SSGI), a feature that aims to create natural-looking lighting
by adding dynamic indirect lighting to objects within the screen view. CryEngine
is another industry-level game engine [4]. It is known to produce state-of-the-art
graphics and performance and supports Voxel-Based Global Illumination and soft
shadows. Unity 3D [5] uses also a middleware for Realtime GI. At the moment,
this solution is deprecated and Unity 3D is developing a new solution for real-time
global illumination [6].

Most of the mentioned Engines require desktop GPUs with large amounts of
memory and are suited for high-end desktop systems. But despite these limita-
tions, it’s thanks to the use of simplified reconstructions of the 3D scene coupled
with clever algorithms and optimizations, that simulation of global illumination is
practicable in the real-time graphic applications of today.

3 NATUS Rendering Engine Architecture

Like most engines, our system is built in layers [7]. Its different functionalities
are carefully partitioned by topic and level of complexity. The upper layers of the
system depend on the functionalities defined on the lower layers to create a more
sophisticated and complex set of features. An overview of the architecture is shown
in Fig. 1, and the details are described below.

Middleware
The middleware is the lowest layer of the system architecture and provides the
interface to the GPU via the DirectX 12 API. It contains all the third party
libraries and APIs that make up the foundation of a windows-based rendering
engine. Two of the most important programming interfaces are the DirectX 12
API and the Win32 API [8]. In addition, the application supports the libraries
Tiny OBJ [9], to load 3D Meshes from files, and Dear ImGUI [10], for the
construction of the application UI.

Low-Level Renderer
The low-level renderer manages the drawing of the primitives by communicat-
ing with the graphics API. At this level, the design is focused on rendering
a collection of render items as quickly as possible, without much regard to
visibility issues. According to Gregory [7], this renderer should be completely
agnostic as to the type of spatial subdivision or scene graphic used. This allows
for the design of a system that is specifically suited to the needs of different
types of applications. This module is integrated by six components.
The Graphics Device Interface main task is to initialize DirectX (configure the
rendering pipeline, prepare the render buffers, etc.) for our engine framework
and to manage the communication with the GPU.
The main components of a scene, Cameras, Lights, 3D objects and Materials,
are defined in this engine layer. It supports two standard types of cameras
available, a Free Camera, and a Spherical Camera, three different types of light
sources, that is, point, spot and directional lights, and Meshes to represent
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Fig. 1: The layered architecture of the rendering engine

the 3D objects. The Materials are lightweight components that describe how
a surface should react under different light conditions, by including references
to the texture resources it uses, color tints, and other physical properties. A
detailed description of the material model is given in section 4. Materials only
hold the attributes that describe the behavior given their interaction with
light, but the actual computation of this behavior is done on the shaders.
The rendering engine supports four types of Shaders, that is, vertex, geometry,
pixel, and compute. There is a predefined collection of shaders for different
purposes, including texture filtering and clearing, geometry voxelization, voxels
rendering, sky rendering ,and global illumination. Finally, the Render Item is a
lightweight component that keep rendering information from each scene object,
such as a reference to the mesh and the material objects, the transformation
matrix, and so on, in order to submit a draw call to the graphics API.

Scene Graph
This layer manages which contents will be submitted to the low-level renderer
based on some sort of visibility determination. The Scene class holds the scene
information, that is, the main camera, collections of 3D Meshes, Render Items,
textures and materials, and Light Sources. When the Rendering Engine starts
up, it initializes the current scene instance by configuring the camera location
followed by loading of textures and 3D Meshes, construction of materials,
assembling of render items, and finalizing with lights configuration.

Visual Effects
This layer is where all of the advanced rendering effects that our engine is
capable of simulating are implemented, based on the functionality provided by
the low-level renderer. These effects can be enabled or disabled on the custom
scenes defined by the programmer. The most relevant effects, Ambient Occlu-
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sion (AO) and Global Illumination (GI), are described in more detail in section
5. The engine also implements Dynamic Shadows to calculate shadows from
directional light sources with the traditional shadow map scheme proposed by
Williams[11]. In addition to these, it provides Gamma Correction, performed
at the end of all lighting calculations to ensure that the values in the final
image are properly gamma-corrected, and Environment Mapping, to simulate
reflections and refractions coming from the distant background. NATUS also
implements HDR Lighting, in order to have a wider range of color values to
calculate the final illumination. Once finished, it transforms the HDR values
back to the LDR using the Hable [12] algorithm.

Front End
This is the uppermost layer defined in the engine architecture, that is, the
2D user interface. To develop this interface we use a third party library for
C++, Dear ImGUI. It is fast, portable, renderer agnostic, and has no external
dependencies, particularly suited for integration in game engines and real-
time 3D applications. The UI includes the lighting panel, the material panel
and transform panel.
The Lighting Panel panel is the main control point for the engine lighting
features and is divided into two sections, one for the GI settings and another
for configuring the light sources in the scene. The Lighting Panel is shown in
Fig. 2. The GI section has settings for the scene voxelization, different effects

Fig. 2: The lighting panel (left). Material and transform panels (center and right).

computed via voxel cone tracing, environment reflections, and ambient light.
The light sources section contains a list of light sources in the scene, whose
properties can be modified via this panel. Lights can be added or removed from
the scene through this panel. The Material Panel allows the user to control the
appearance of objects in the scene, by manipulating the material properties
of the selected object. This panel and its texture picking window are shown
in Fig. 2. The Transform Panel controls the position, orientation and scale of
objects, and lights in the scene relative to the world. It is shown in Fig. 2.

4 Physically-Based Materials

Our rendering engine materials follow a physically-based model implemented by
our standard shader, which incorporates the advanced lighting algorithms and cal-

ISBN 978-987-4417-90-9 211

CACIC 2020 
DIIT UNLaM / Red UNCI



culations to simulate realistic surface lighting interaction. Physics-based rendering
(PBR) is a methodology with no defined standard. The two most common work-
flows are metal/roughness and specular/glossiness. One of the first defined work-
flows, the metallic workflow, has been explored by Disney [13] and Adobe [14]
and has been evolving, now emerging as a standard. We adopted this workflow,
also used for real-time rendering by Epic Games in the Unreal Engine 4 [15]. This
workflow is defined by a set of physical attributes, which are fed to the standard
shader as textures or values. These attributes are diffuse albedo, metallic, and
roughness:
• Albedo. The albedo or base color map is an RGB texture map that can

contain the diffuse reflected color for dielectrics and the reflectance values for
metals [16, 14]. It should not contain any lighting information. The alpha value
of the albedo component color controls the transparency level for the material.

• Metallic. This map allows to define which areas of a material denote raw
metal. As a grayscale map, it describes which areas in the base color should
be interpreted as the reflected color (dielectric) and which ones as metal re-
flectance values, representing 1.0 (white) a raw metal.

• Roughness. This map describes the surface irregularities that cause light
scattering. While rougher surfaces will have larger and dimmer-looking reflec-
tions, smoother surfaces will have concentrated specular reflections. On this
map, white (1.0) represents a rough surface and black (0.0) a smooth one.
The roughness map plays an integral part in the Cook-Torrance illumination
model [1].
Other maps are usually attached. NATUS also supports ambient occlusion

(AO) map, Normal map and Emission property. The AO map takes into account
how much of the ambient environment lighting is accessible to a surface point. It
only affects the diffuse contribution and should not occlude the specular contri-
bution. In our implementation, the indirect diffuse lighting provided by the GI is
multiplied by the AO. The Normal map is integrated into the PBR Material in
order to simulate surface details. The Emission property controls the intensity of
light emitted from the surface; when a material has a non-zero emission value it
appears to be self-illuminated. During the real-time GI process, the emission value
is used for the indirect diffuse lighting calculations to affect the illumination of
nearby objects.

5 Voxel-Based Global Illumination
The voxel cone tracing is a GI technique introduced by Crassin et al. [17]. It cal-
culates an approximation of the indirect lighting, generated by one or two bounces
of light, for fully dynamic scenes in interactive applications, allowing both diffuse
and glossy reflections with very realistic visual results. Instead of working on the
actual geometry, a scene voxel representation is created and stored in the GPU.
This representation can be created once for static geometry and per frame for
dynamic objects. This algorithm is the central point of the GI Pipeline whose
implementation is presented in Fig. 3.
Shadow Mapping The first step in the GI pipeline is to generate the correspond-

ing shadow maps,that are going to be used later in the light voxelization step.
We use percentage closer filtering [18], an improvement of the classic shadow
mapping technique that allows smoothing the shadow edges. The map resolu-
tion is a trade off between speed and quality, and we use a screen resolution
of 2048x2048 to produce an image without visual artifacts.
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Fig. 3: Overview of the global illumination (GI) pipeline

Voxelization During the voxelization step, we use geometry shaders to output a
voxelized representation of the lighting in the original scene geometry. We use
the GPU hardware rasterizer to voxelize the scene geometry into a regular grid
of voxels. Based on the Crassin et al. [17] approach, the voxel grid is stored in
a 3D Texture. The scene illumination data is then saved into the grid voxels
to effectively store the direct lighting from the scene. Each 3D texture voxel is
represented by a single RGBA16 value; the alpha channel is used for opacity.

Filtering In order to perform voxel cone tracing of the 3D texture for full GI,
it is necessary to filter it to generate a mipmap chain. The filtering pass, use
the filtering GPU capabilities to create that mipmap. The 3D mipmap level
generation is an extension of the 2D implementation by Nils Daumann [19].

Voxel Cone Tracing In this step, paths are traced through the filtered voxel
structure in order to gather and approximate the indirect lighting for a point.
A cone ray samples the volume on each step. The sampled volume is traced
from the apex of a cone, located in a point p0 on the object surface, and
along its axis oriented in the desired direction (pd) with an aperture angle θ.
The sampling region is increased on every step, based on the diameter of the
cone. This expansion of the volume being sampled is approximated by taking
samples from different mipmap levels generated during the filtering stage; the
traced distance t, allows deciding the mipmap level to sample [17]. The whole
process of tracing cones is done entirely on the pixel shader. Opacity αi and
color ci of each sample i from the voxel structure are integrated front-to-back
along the cone to approximate the incoming indirect light at point p0 and the
corresponding occlusion value α.

Render The illumination at a point p combines the direct illumination, calcu-
lated using the physically-based Cook-Torrance BRDF, and the indirect diffuse
illumination, reflections, and refractions from voxel cone tracing.
The indirect illumination at a surface point p is described by the hemisphere
integral of the rendering general equation. To compute this integral efficiently,

Fig. 4: Cone distributions approximate different phenomena. a) Multiple cones approx-
imate indirect diffuse light. b) Wide cone approximates rough specular reflection. c)
Narrow cone approximates fine specular reflections.
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Crassin et al. [17] observed that the hemisphere can be partitioned into a sum
of integrals, each of them gathering the indirect light from the scene for a
cone. We use nine cones oriented over the hemisphere in order to gather all
the indirect light from the scene for the diffuse reflection, as shown in Fig. 4.
For the specular reflection and refraction we use a single cone in the reflected,
or the refracted, direction, and its aperture is specified based on the surface
material roughness. Specular cone apertures for different material roughness
are shown in Fig. 4.

Fig. 5: Different material roughness on the same surface. (a) Completely rough surface
with diffuse reflection only. (b) Slightly rough surface with diffuse and specular reflections.
(c) Very smooth surface with high specular reflection.

The visual appearance of the cone tracing configurations are shown in Fig. 5.
An advantage of voxel cone tracing is that the same cones distribution can be
used to approximate the indirect diffuse reflection (combining color values),
and the ambient occlusion (combining occlusion values). The accumulated oc-
clusion value α returned from cone tracing represent the final occlusion value.
Soft shadows can be casted by tracing a cone from each surface point p towards
the light sources.

6 Evaluation

The application was tested on a mid-range desktop PC. We used a NVIDIA
GeForce GTX 960 (2GB) GPU, an Intel Core i5 8400 CPU and 16GB of RAM.

The default scene used to evaluate our rendering engine is based on the classic
Cornell Box scene. We placed a point light slightly above the center, illuminating
the entire box. The objects placed inside have different geometrical complexity
and their appearances were configured to showcase different material properties
(Table 1).

Object Diffuse Metallic Roughness IOR Emission
RGBA format (0.0-1.0) (0.0-1.0) ≥ 0.0 ≥ 0.0

Dragon [ 1.0, 1.0, 1.0, 1.0 ] 1.0 0.1 1.0 0.0
Buddha [ 0.0, 0.0, 0.0, 0.0 ] 0.0 0.1 3.0 0.0
Suzanne [ 1.0, 1.0, 1.0, 1.0 ] 0.0 0.1 1.0 0.0
Teapot [ 0.0, 0.5, 0.0, 1.0 ] 0.0 1.0 1.0 0.0

Table 1: Material settings for each object in the test scene. IOR: Index Of Refraction.

The default scene was tested using a 1283 voxel grid, and a 1024x768 screen
resolution. We tested the following lighting settings, with whom the scenes in Fig. 6
were rendered:
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• Test 1. Only direct illumination (No GI).
• Test 2. GI, including reflections and refractions.
• Test 3. GI and soft shadows.
• Test 4. GI, soft shadows and ambient occlusion.
• Test 5. GI, with only emissive wall.

(a) (b) (c)

(d) (e)

Fig. 6: Cornell Box scene with (a) only basic direct lighting, (b) direct and indirect light-
ing, (c) full GI,including soft shadows, (d) full GI and ambient occlusion, and (e) emissive
wall materials, and no other light sources.

6.1 Results and discussion

We ran the tests described in section 6. All of them performed very well, with
frame rates over 30 fps even on full HD (1920x1080) resolutions and all GI ef-
fects enabled. These results differ significantly from those obtained with Blender’s
Cycles renderer. Although the visual results of path tracing are slightly superior
in Blender, the performance penalty compared to our engine is very significant.
It takes about 20 ms to our application to generate one frame with full GI. Un-
der the same hardware, Cycles needs 18 minutes to generate it. This is around
67.500 times higher. Fig. 7 shows the comparison between both rendering engines
at 1024x768 resolution. AO is not enabled on our application to more closely match
the reference.

Table 2 shows the average time to render one frame for different voxel grid
resolutions and fixed 1024x768 screen resolution. The rows marked with an asterisk
are the averages when voxelization is not run on each frame. This Table shows
the performance implications of running GI in our rendering engine. It can be
seen that the automatic voxelization of the scene on each frame has an impact
on the performance, specially visible on Test 1 where no GI is being calculated.
Automatic voxelization could be disabled for scenes with no dynamic lighting or
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Fig. 7: (a) Voxel Cone Tracing in NATUS (20ms). (b) Path Tracing in Blender (18 min)

Voxel Resolution Test 1 Test 2 Test 3 Test 4
256 6.62 24.05 29.02 29.01

256(*) 1.72 19.36 24.26 24.26
128 4.09 18.23 22.36 22.34

128(*) 1.79 16.23 20.36 20.36
64 4.92 15.41 18.45 18.44

64(*) 1.77 12.45 15.53 15.52

Table 2: Average time (ms) per frame for each test scene under different voxel grid
resolutions. Rows with asterisk indicate that voxelization does not run on each frame.

objects. That allows to gain a small performance boost. Anyway, we get real-time
performance (over than 33fps) in all test cases. We observe a strong performance
decrease when GI is activated on Test 2, which is completely reasonable. Adding
traced soft shadows in Test 3 also increases the render times by an average of 3
ms, but there is no penalty for enabling traced AO. As it is obtained using the
same cones traced for indirect diffuse lighting, both effects can be calculated at
the same time.

Voxel Resolution Shadow Map Voxelize Filter Cone Trace
256 0.31 3.01 1.72 28.96
128 0.30 1.96 0.23 22.83
64 0.30 3.14 0.06 16.22

Table 3: Average time (ms) per step for test scene 4 under several voxel grid resolutions

Table 3 shows the average time it takes to perform each step of the full GI
algorithm, with indirect diffuse lighting, reflections, refractions and soft shadows.
It can be seen that the most expensive step in the GI algorithm is cone tracing the
voxel structure. It is interesting to see that voxelization of a 643 voxel grid takes
more time than that of a 1283 voxel grid. Generating the mipmap chain on the
filtering step is quite fast, and the shadow mapping step does not really depends
on voxel resolution which is why it doesn’t really change.

7 Conclusions and Future Work

In this article, we present a real-time rendering engine capable of synthesizing high
quality images with full Global Illimunation. It was designed following a layered
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architecture, where each layer has a specific responsibility within the application
which also allows it to be easily extended.

Main features of our engine are the introduction of PBR materials coupled with
a simulation of full GI. Our PBR material model is based on the metallic workflow
which is a de-facto standard on most of the real-time rendering applications used
nowadays, allowing for the authoring of materials in third party applications like
Substance Designer [20].

The voxel cone tracing allows a wide range of GI effects such as indirect diffuse
reflections, ambient occlusion, glossy reflections, transparency and soft shadows
to be achieved in real-time with high quality results. While this method yields
very good results for dynamic scenes, there are still a few issues that need to be
addressed. The major downside of this technique is that it only performs well under
small scenes. A similar technique, used for shadow mapping, known as Cascaded
Voxelization [21] could be used to extend this solution for bigger scenes.
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