
Extended Petri Net Processor
for Embedded Systems

Luis Orlando Ventre, Orlando Micolini, and Emiliano Daniele

Depto. Computación Lab. de Arquitectura de Computadoras
Facultad de Ciencias Exactas F́ısicas y Naturales - U.N.C

Córdoba, Argentina
{luis.ventre,orlando.micolini}@unc.edu.ar,emiliano.daniele@mi.unc.edu.ar

https://fcefyn.unc.edu.ar/

Abstract. The evolution of technology and electronic devices, the wide-
spread use of IoT, and the compliance with specific regulatory require-
ments of the industry have made the process of designing embedded
systems more complex and challenging. These systems are generally par-
allel, concurrent, reactive, and/or event-driven. In these systems, the
data and events are heterogeneous and non-deterministic as they interact
with the external environment. Extended Petri nets constitute an elec-
tive platform and system-independent modeling language, which makes
it appropriate for modeling embedded systems. To take full advantage of
the modeling efforts, it is desirable to use the built models to obtain part
of the system implementation. This paper presents the design and imple-
mentation of an Extended Petri Processor and its modular architecture.
This processor makes use of the extended state equation of Petri Nets,
executing the model of the mentioned systems, intending to mitigate the
time needed for development, and to reduce programming errors.

Keywords: Petri Processor, Petri Nets, Synchronization, IoT, Code
Generation, FPGA.

1 Introduction

Nowadays, critical, reactive (RS) and event-driven embedded systems (EDA)
[1] are in high demand, especially by Industry 4.0 [2]. The design of these sys-
tems must meet strict non-functional requirements since they are parallel, con-
current systems and interact with variables and events from the system itself
and from the outside world, where the data and events are heterogeneous and
non-deterministic [3]. This article presents the design and implementation of an
extended Petri processor and its modular architecture, for the development of
these types of systems. This processor aims to reduce development time and
mitigate programming errors.

The design phases of an embedded system include the development of the
model based on a set of requirements [4]. This model is the basis for other stages,
including the application building stage [5].

ISBN 978-987-4417-90-9 450

CACIC 2020
DIIT UNLaM / Red UNCI

2 Extended Petri Net Processor for Embedded Systems

Non-autonomous and extended PN is a general-purpose modeling language
that supports the modeling of reactive, concurrent, and parallel systems regard-
less of the platform. In the design of RS and EDA, the transformation of the
model into software implies a translation work that leads to interpretation and
implementation errors. In order to mitigate these errors, this processor capable
of running the model regardless of the platform has been developed.

According to our research documents, there is no history of automatic code
generation or model execution performed by a processor. The innovation of this
proposal includes the design and implementation of a modular heterogeneous ar-
chitecture processor, which executes the extended state equation of PN [12], and
which has the expression capacity of a Turing machine. This processor keeps all
the properties verified in the model, since the model is essentially not interpreted
and/or transcribed in code, but rather executed.

As a precedent to this work, and as part of this same research project, the
development of a modular Petri processor (PP) that executes ordinary PN can
be found in [6]. The main difference is the expression capacity, which is not that
of a Turing machine since it cannot execute models with different types of arms
or guards. Also, in [7], a study was carried out on more than 70 references that
make use of PN for the solution of SR and EDA.

The following section sets out the objectives of this work; while in section 3
a brief theoretical framework is presented. Then, in section 4, the architecture
of the Extended Petri Processor (PPX) is described as the proposed solution.
In section 5, the results, the tests carried out and finally the conclusions are
exposed.

2 Objectives

The system’s logic model contains the necessary information for implementing
the software logic. The coding stage involves successive iterative efforts to refine,
interpret, and transcript the model into code, detecting and correcting errors in
the process. This entails an overload of effort and time in the development stages.

The main objective of this work is the design and implementation of a pro-
cessor that executes the logic model as code, thus unifying the modeling and
coding stages. As a secondary objective, a modular design and interconnection
with a traditional processor is carried out.

3 Methodology and Tools

There are several modeling tools, among which are: UML diagrams [8] and Petri
Nets (PN) [9, 10]. UML diagrams provide the necessary characteristics, partially,
but they essentially lack mechanisms for formal verification that strictly guar-
antee compliance with critical requirements, which are fundamental aspects to
be implemented in the SR and EDA.

Since the extended, non-autonomous, PN [11] allows to model concurrency,
local and global state, and parallelism, it is possible to verify them formally.

ISBN 978-987-4417-90-9 451

CACIC 2020
DIIT UNLaM / Red UNCI

Extended Petri Net Processor for Embedded Systems 3

They are executable [7] and scalable when expressed with the extended state
equation [12]; they have been considered to be the most convenient formalism
and have been selected as a modeling tool and a processor execution language.

The development tools and implementation of the PPX are explained and
described in subsection 4.5.

3.1 Petri Nets

A marked PN, denoted as PN, is a quadruple [5] defined by:

PN = (P, T, I,M0) (1)

Where:

– P = p1, p2, · · · , pn is a finite, non-empty set of places.
– T = t1, t2, · · · , tm is a finite, non-empty set of transitions.
– I is the incidence matrix that relates places with transitions and vice versa.
– M0 is the initial markup of the PN.

3.2 Synchronized or Non-Autonomous PN

This type of PN introduces events into the model and it is an extension of
autonomous PN [11] [7]. Non-autonomous PNs model systems in which firings
are synchronized with external discrete events. Events are associated with tran-
sitions, and the firing occurs when two conditions are met: the transition is
enabled and the event associated with the transition had taken place.

External events correspond to changes in the state of the system’s environ-
ment (including time) while internal events are changes in the state of the system
itself. Synchronized PNs can then be defined as a triplet:

PNsync = (PN,E, sync) (2)

Where:

– PN is a marked PN,
– E is a set of external events and
– sync is the function that relates the transitions T with E ∪ {e}, where {e}

is the null event, that is, those transitions that are automatically fired.

Perennial, Non-Perennial and Null Events
There are different types of events. A detailed description can be found in [7].

Extended Equation of State
In order to mathematically represent the existence of the new inhibitor, reader
and reset arms, a matrix is required for each type of arc. These matrices are
similar to the matrix I. When the arcs have a weight equal to one, the terms
of the matrix are binary. A transition can be enabled if it meets the following
conditions: if it has an inhibitor arm that does not have a token in the associated
place; if it has a reading arm, and the place associated has one or more tokens; if

ISBN 978-987-4417-90-9 452

CACIC 2020
DIIT UNLaM / Red UNCI

4 Extended Petri Net Processor for Embedded Systems

it has a guard and the guard value is equal to true; if it has an event associated,
and one or more events were queued and if it has a label with a time interval,
and the counter is in the valid time range.

So the extended equation of state is now defined as:

M(j+1) = Mj + I ∗ (σ and Ex)#A (3)

In this expression Ex is the extended enabled vector, represented by:

Ex = E and B and L and G and Z (4)

Where E,B,L,G y Z are the enabled vectors of the different arcs. The details
of the calculation of (3) and (4) are found in [12].

4 Architecture of the Solution

The hypothesis of this work is based on the fact that a model made with a non-
autonomous PN is a set of instructions, equations and restrictions or rules to
generate the I/O behavior of a system. That is, the model is described as state
transitions and mechanisms to accept input trajectories and generate output
trajectories depending on their state.

The defining, in terms of system specifications, has the advantage of a solid
mathematical basis and unequivocally defined semantics. To specify a behavior,
the model needs an agent. This is basically a computer system capable of exe-
cuting the model. The same model, expressed in a formalism, can be executed
by different agents, thus enabling portability and interoperability at a high level
of abstraction.

In this project, the PPX is the agent in charge of executing the model by
making use of (3), so that it can generate the desired behavior. Extended PNs
allow to model systems of events or stimuli, states, logic, policy and actions,
which means it can be decoupled and they manage the control and execution of
the whole system.

4.1 Architecture of the PPX

The main blocks of the PPX implement (3) which are: matrix-program, calculation-
state, queues, and policies.

4.2 PPX modules

The Fig.1 represents a synthesized version of the processor.
Matrix-Program Modules: responsible for defining the processor program

with the matrices and vectors of the state equation. They are represented in
Fig.1,identified with ∗, and they are: the matrices I, H, R, Rst, A and Time
comparison window, and the vector of automatic firings.

ISBN 978-987-4417-90-9 453

CACIC 2020
DIIT UNLaM / Red UNCI

Extended Petri Net Processor for Embedded Systems 5

Calculation-Status Modules: responsible for calculating and maintaining
the status of the PN. Its components are marked in Fig.1 with #, which are: the
state vector, the new state vector, L, B, V, E, G, S, the timers array, the vector
of possible firings, the Adder and the Calculation-reset module.

Queues module: responsible for storing the input and output events and
communicating the results of the PN execution with the traditional processor,
Microblaze (MCS)[13]. These components are marked in Fig.1 with @ (the firing
and exit request queues).

Policies Module: responsible for selecting the transition with the highest
priority from the vector of possible firings. Its components have been identified
on the Fig.1 with &, they are the Firing Policy Matrix and the highest priority
Firing Vector.

In
ci

d
en

ce
 M

at
ri

x
I

State vector

Ze
ro

s
Fl

ag
 V

ec
to

r

Incidence Matrix RIncidence Matrix H

L VectorB Vector

Timer
arrangement

Sign_OR(Vector E)

Ti
m

e
C

o
m

p
ar

is
o

n

W
in

d
o

w
 M

at
ri

x

V VectorG Vector

A
d

d
er

New State Vector

Firing Policy Matrix

Automa�c
firings

Place Reset

R
es

et
 C

al
cu

la
to

r
(V

 a
n

d
 R

0
)o

r
(V

 a
n

d
 R

1
)o

r
(V

 a
n

d
 R

2
)o

r
(V

 a
n

d
 R

3
)o

r
(V

 a
n

d
 R

4
)o

r
(V

 a
n

d
 R

5
)

R0

R2

R4
R3

R1

MicroBlaze Bus
To MicroBlaze (GPIO)

Firing request
queues

S
V

ec
to

r

Possible fire Vector E

Highest priority

fire vector

Transi�on Fire

*

*

**

*

#

#
#

#

#
#

#
#

##

#

#

@

#

&
&

Output queues @

I0

I2

I4

I1

I3

V

R5

ModulesState calcula�onQueues Matrixes

@ & # *

Comparator
>=

P
0

P
1

P
2

P
3

P
4

P
5

I5

*

R
es

et

A
rm

M

at
ri

x
R

st

Fig. 1. PPX architecture.

4.3 Modules Description

The parts and functions of each component correspond to (3). They are consis-
tent with the proposed modular structure and the main ones are:

Incidence Matrix I - array of integers. Its dimension is |T | × |P |.
Inhibitor Arms Matrix H - binary matrix. Its dimension is |T | × |P |.
Reader Arms Matrix R - binary matrix. Its dimension is |T | × |P |.
Arm Matrix Reset Rst - binary matrix. Its dimension is |T | × |P |.
Time Comparison Window Matrix - stores the alpha and beta values

which correspond to the lower and upper time limits [5].
State Vector - vector of positive integers. Its dimension is |P |.

ISBN 978-987-4417-90-9 454

CACIC 2020
DIIT UNLaM / Red UNCI

6 Extended Petri Net Processor for Embedded Systems

Vector L - binary vector. Its dimension is |T |. Inhibits the transition if the
place is not marked.

Vector B - binary vector. Its dimension is |T |. Inhibit the transition if the
place is marked.

Vector V - binary vector. Its dimension is |T |. Enable sensitive transition
if your timer is in the window range (between alpha-beta).

Guardian Vector G - binary vector with the guard values. Its dimension
is |T |.

Sensitized Vector S - binary vector, where each position corresponds to
each column of the matrix of possible next states. Its dimension is |T |.

Timers arrangement - vector of integers. Its dimension is |T |. They are
counters that are activated when the associated transition is enabled and are
reset when it is disabled or fired.

Firing Request Queues - its interface exposes an input vector to the PPX,
where each position of the vector corresponds to a transition.

Exit Queues - its interface exposes an output vector from the PPX, where
each position of the vector corresponds to a transition.

Firing Policy Matrix - binary matrix of dimension |T | × |T |. Its values
indicate the relative priority between transitions.

Highest Priority Firing Vector - binary vector that represents the tran-
sition to be fired.

4.4 Processor Algorithm

Single-server semantics have been adopted in this work, so only one transition is
fired at a time. Two cycles are required for each firing to determine and report
the new status.

Cicle 1 - Calculations - In this cycle, the necessary calculations are per-
formed to determine which transition to fire.

The tagging vector is compared with each column of the incidence matrix,
denoted in Fig.1 as Ii, to get the sign bit of each element of the array of possible
next states. The results are binary columns where the i-th column contains the
signs of the values of the next marking vector, in case the transition i is executed.
This matrix contains only the signs of the possible next states; given a column,
if any of the values is negative, it means that the next state will not be reachable
by the PN (negative values in a tagging vector indicate that the transition is not
enabled). To obtain this value, a logical disjunction is performed between all the
elements of each column. The vector S is built using these values.

For each element of the state vector, a zero bit is determined. With these
bits, the zeros flag vector is constructed. This indicates whether or not the place
is marked and it is indicated in Fig.1 as Zeros Flag. The vectors B y L are
calculated with the product of the Zeros Flag vector and the matrices H and R,
respectively.

The Guards Vector G is updated from the MCS processor, since it represents
all the conditions that are external to the PPX processor.

ISBN 978-987-4417-90-9 455

CACIC 2020
DIIT UNLaM / Red UNCI

Extended Petri Net Processor for Embedded Systems 7

The vector V indicates whether a transition is enabled (based on the values
of the vector S), and if it is in the time window programmed in the Array of
Timers.

The transitions that are possible to be fired are obtained from the logical
conjunction between the vectors B,L,G, V and S. The logical disjunction be-
tween the Firing Request Queue vector and the Automatic Firings indicates the
transitions that are requested to fire. Next, the logical conjunction between these
last two vectors is carried out, which indicates the possible firings, noted as E in
Fig.1. This vector contains a value of 1 in the positions of the transitions that are
possible to fire. Since single-server semantics have been adopted, it is necessary
to determine the highest priority transition to fire. To achieve this, the Firing
Policies Matrix is used. This returns the highest priority Firing Vector, which
contains a value equal to 1 in the transition to fire. In this cycle it is also calcu-
lated if any place should be zeroed, so the internal product is performed between
the columns Ri of the matrix of reset arms (Rst) and the highest priority Firing
Vector. This calculation is carried out by the module named Reset calculator. If
the value is one, the place reset bus sets the place value to zero.

Cycle 2 - Update - This is the cycle that computes the firing of the transi-
tion that was selected in the previous cycle. Here, the firing takes effect and the
value of the marking vector is updated. To achieve this, the selected transition
works as a column selector.

The adder, which is at the top of the Fig.1, performs the sum of the marking
vector with the matrix column I selected by the firing vector. The result of
that sum is stored as the new marking vector. In this cycle, if applicable, the
space indicated on the reset bus is reset. Additionally, the queues are updated;
increasing the output queue counter and decrementing the input queue counter.

4.5 PPX, FPGA, and Microblaze MCS

The PPX solves the logic of the system so it operates with an associated pro-
cessor [7][6] which executes the actions required. To achieve this, the PPX was
interconnected with the MCS processor as shown in Fig.2. It was implemented
in a Spartan 6 FPGA from Xilinx (Atlys) [14], in which an IP-core MCS was
installed since it is included in the ISE tool [15] and it has a low impact on the
resources required for its implementation. A communications module (UART)
was also installed in order to carry out the testing and a clock management
module (DCM). This configuration has been selected to establish comparisons
with the work carried out in [6].

4.6 Queues

The input and output queues of the PPX are configurable, each transition has
an input queue and an associated output queue. A detailed description is found
in [6].

ISBN 978-987-4417-90-9 456

CACIC 2020
DIIT UNLaM / Red UNCI

8 Extended Petri Net Processor for Embedded Systems

Microblaze
MCS

Rx

GPIO Bus

GPIO Bus

Tx
UART UART comm

FPGA Spartan 6
Digital Clock Manager

Extended
Petri Net
Processor

Fig. 2. Interconnection between processors.

4.7 Priorities and Conflicts between Transitions

The PPX does not detect conflict states [11] between transitions, this is why
it treats all enabled transitions as if they were in conflict (single server). This
semantics, in conjunction with the priority policy module, also solves the prob-
lem of conflicts and makes it deterministic. The Firing Policies Matrix module
determines the transition to fire, this module is configurable at runtime.

5 Results

With the PPX-MCS heterogeneous architecture, different application cases were
executed to evaluate its performance. The successful executions of the cases were
raised in [16] [17]. The comparison of resources has been carried out taking into
account the results obtained in [6]. For the purposes of this comparison, the
configuration, FPGA and development tools selected were the same.

FPGA Resource Consumption - The processor was installed with differ-
ent configurations of vector and matrix elements. Each configuration is expressed
with a triplet of integers, which are: P×T×Pa, where P is the number of places,
T the number of transitions, and Pa the length of the word that represents the
weight of the arcs and the amount of tokens that a place supports. Multiple
kernel syntheses were performed using different word-lengths (4-bit and 8-bit
data). In Fig.3 a) the amount of resources that were used from the FPGA is dis-
played for synthesized configurations. In Fig.3 a) the exponential increase in the
consumption of resources is observed, as the number of elements of the matrices
and vectors increase. In Fig.3 b) and Fig.4 b) the consumption of resources of
the PPX is compared to the PP, where the average increase of LUTs is 10%
while the increase in register consumption is 18%. Overall, the impact of the
MCS processor in resources is 12.72% for LUTs, and 21.09% for registers. These
resources are the same for all the synthesized configurations of the PPX.

Frequency Analysis - The maximum theoretical frequencies for the dif-
ferent processor instances are shown in Fig.4 a). Since optimizations have been
made to the modules and interconnects, the PPX has achieved a substantial
improvement in frequency over the PP. It is observed that for a configuration of
8x8x8, the maximum frequency is 257MHz while for 8x8x4 it is 271MHz; for a
16x16x8 configuration the frequency is 190 MHz and for 16x16x4 it is 216 MHz.
It should be noted that the decrease in frequency, with respect to the length

ISBN 978-987-4417-90-9 457

CACIC 2020
DIIT UNLaM / Red UNCI

Extended Petri Net Processor for Embedded Systems 9

10000

20000

30000

40000

50000

60000

PP LUTs

PPX LUTs

0

10000

20000

30000

40000

50000

60000

PPX LUTs

PPX Registers

0

8x8
x4

8x8
x8

16x1
6x4

16x1
6x8

24x2
4x4

24x2
4x8

32x3
2x4

32x3
2x8

8x8
x4

8x8
x8

16x1
6x4

16x1
6x8

24x2
4x4

24x2
4x8

32x3
2x4

32x3
2x8

(a) (b)

Fig. 3. a) Consumption of LUTs and PPX Registers. b) Comparison of the use of
LUTs between PPX and PP.

of the word, is 18% in average. On the other hand, if the length of the word is
maintained and the number of places and transitions is increased, that is, the
size of the PN, the difference in frequency is significantly larger, on average 30%.

50

100

150

200

250

300

PPX

PP

00

8x8
x4

8x8
x8

16x1
6x4

16x1
6x8

24x2
4x4

24x2
4x8

32x3
2x4

32x3
2x8

8x8
x4

8x8
x8

16x1
6x4

16x1
6x8

24x2
4x4

24x2
4x8

32x3
2x4

32x3
2x8

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

PP Registers

PPX Registers

(a) (b)

Fig. 4. a) Comparison of theoretical maximum frequencies between PPX and PP. b)
Comparison of Records between the PPX and the PP.

6 Conclusion

In this project, a processor (PPX) was designed and implemented for execut-
ing the extended state equation, with a modular architecture. This processor
extends the semantic capacity of the PP developed in [6]. The inclusions of dif-
ferent types of arcs, temporal semantics, and guards in the PPX give the PPX
the expression capacity of a Turing machine without significantly increasing the
necessary resources. Queue scheduling and support for different types of events
have been maintained, as well as the communications module. The results show
that the PPX is suitable, for the FPGA selected, for embedded systems that
require up to 32 composite logical conditions, 32 logical variables, and 32 events
that must be evaluated simultaneously. From the data obtained in the frequency

ISBN 978-987-4417-90-9 458

CACIC 2020
DIIT UNLaM / Red UNCI

10 Extended Petri Net Processor for Embedded Systems

analysis, the substantial improvement in the maximum theoretical frequency
with respect to the PP stands out. The serial communication module has facili-
tated the configuration, debugging, and programming tests from a console. The
modular implementation of the PPX implies a breakthrough for maintenance,
scalability and future autoconfiguration.

Referencies

1. N. Halbwachs, Synchronous programming of reactive systems. Springer Science &
Business Media, 2013, vol. 215.

2. K. Schwab, The fourth industrial revolution. Currency, 2017.
3. A. Munir, A. Gordon-Ross, and S. Ranka, Modeling and optimization of parallel and

distributed embedded systems. John Wiley & Sons, 2015.
4. B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and Simulation: Discrete

Event & Iterative System Computational Foundations. Academic press, 2018.
5. M. Diaz, Petri nets: fundamental models, verification and applications. John Wiley

& Sons, 2013.
6. O. Micolini, E. N. Daniele, and L. O. Ventre, “Modular petri net processor for

embedded systems,” in Argentine Congress of Computer Science. Springer, 2017,
pp. 199–208.

7. O. Micolini, “Arquitectura asimétrica multicore con procesador de petri,” Ph.D.
dissertation, Facultad de Informática, UNLP 2015.

8. B. Selic and S. Gérard, Modeling and analysis of real-time and embedded systems
with UML and MARTE: Developing cyber-physical systems. Elsevier, 2013.

9. M. Zhou and N. Wu, System modeling and control with resource-oriented Petri nets.
Crc Press, 2018.

10. S. Siewert, Real-time embedded components and systems. Cengage Learning, 2016.
11. R. David and H. Alla, Discrete, continuous, and hybrid Petri nets. Springer, 2005,

vol. 1.
12. O. Micolini, L. O. Ventre, and M. I. Schild, “Generalized state equation for non-

autonomous petri nets with different types of arcs,” 2016.
13. P. D. Group and ATLAS, “Xilinx, microblaze processor reference guide.”
14. C. Digilent. Atlys spartan-6 fpga trainer board. [Online] Available: https://

store.digilentinc.com/

15. C. XILINX. Ise webpack design software. [Online]. Available: https://www.

xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html

16. O. Micolini, L. O. Ventre, and M. Ludemann, “Methodology for design and de-
velopment of embedded and reactive systems based on petri nets,” in 2018 IEEE
Biennial Congress of Argentina (ARGENCON). IEEE, 2018, pp. 1–7.

17. O. Micolini, L. O. Ventre, M. Ludemann, J. I. R. Viano, and C. C. Bien, “Case
study of reactive and embedded system design modeled with petri nets,” in 2018
IEEE International Conference on Automation(ICA-ACCA). IEEE, 2018, pp. 1–7.

ISBN 978-987-4417-90-9 459

CACIC 2020
DIIT UNLaM / Red UNCI

	Workshops
	WARSO - Arquitectura, Redes y Sistemas Operativos
	Extended Petri Net Processor for Embedded Systems (13367)

