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Abstract. In this work, we present a new algorithm (AJSO) for high-
dimensional single objective problems. It is well known that finding high
quality solutions is still a challenge for complex problems like those found
in the literature as well as in real world concerning Smart Grids scenarios.
Our proposal AJSO is an improvement on a state-of-the-art differential
Evolution (DE) based algorithm known as SHADE. More specifically,
AJSO implements two novel mutation strategies and also incorporates
a mechanism for mantaining and taking good solutions from a special
archive when a particular condition during the exploration process is de-
tected. To compare the performance of AJSO, the benchmark given in
the WCCI/GECCO 2020 [4] is used. This challenge consisted of opti-
mization problems represented in two testbeds of Smart Grids problems.
In this paper we adopted the guidelines given in the WCCI/GECCO
2020 competition. Experimental results show that AJSO outperforms
SHADE in the two studied testbeds.

Keywords: Optimization, Smart Grids, Metaheuristics, Differential Evo-
lution

1 Introduction

Optimization problems require minimizing or maximizing a measure according
to a given configuration of values. If the possible permutations or combinations
in those configurations are really vast, thinking of exhaustive methods or brute
force becomes an impractical alternative. Despite this, stochastic algorithms such
as metaheuristics have been widely used to solve these situations. In particular,
Differential Evolution (DE) [6] is a stochastic algorithm that has proven to be
the basis for many improvements and advances, since it is simple and easy to pro-
gram. For its operation, DE needs to be adjusted by two parameters: a mutation
factor (F') and a probability of crossover (CR). Currently, DE-based algorithms
are widely competitive with other efficient and state-of-the-art optimization al-

gorith

ms [11], [13], [12].
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In order to understand the work in this area, we will briefly describe some
representative modifications and improvements made throughout the history of
DE:

- 2005, FADE [7], Fuzzy Adaptive Differential Evolution. Fuzzy logic controllers
are applied for parameters F' and CR.

- 2005, SaDE [8], Self adaptive differential Evolution. Parameters F' and CR are
updated in each generation by normal distributions.

- 2006, jDE [2]. The values of F' and CR are given by uniform distributions.

- 2009, JADE [3], introduces a new mutation strategy “current-to-pbest/1” by
adding an archive of less efficient solutions.

- 2013, SHADE, [4], which is based on JADE and proposes a memory for the
satisfactory values of F' and C'R. This algorithm was placed in third place in the
CEC 2013 competition.

- 2014, L-SHADE [5], uses SHADE and introduces a population decrease that
behaves linearly. It was the winner in the CEC 2014 competition.

- 2016, iL-SHADE [9] is an improvement over L-SHADE. This algorithm in-
troduces changes in initialization and memory update. It also features a new
mechanism to update the F and CR parameters, varying between the current
and maximum generation. It was ranked fourth in the CEC 2016 competition.
- 2017, jSO [10], uses the “current-to-pbest-w/1” strategy and introduces modi-
fications according to the search period on the mutation factor. It earned second
place in the CEC 2017 restricted limits competition.

- 2019, jDE100 [1] is a modification over jDE that adds two populations, one old
and one new. It also adds random restarts when search deadlocks are detected.
It was the winner of the CEC 2019 100 Digits competition.

In this work, we use one of these improvements and propose changes to solve a
high-dimensional problem applied to intelligent energy distribution.

The rest of the paper is organized as follows. In Section II, we present AJSO
by describing its main features and details. In Section III, we describe the exper-
imental design and the framework where the algorithms have been tested. Then,
in Section IV, the achieved results are shown and analyzed. Finally, in Section V,
the conclusions reached and some future works research lines are summarized.

2 Our approach: AJSO (Advanced JSO)

In this section, a new approach (AJSO) for solving single-objective real parame-
ter optimization is presented and its pseudo-code is shown in Algorithm 1. AJSO
is an enhanced version of SHADE [4] and jSO [10], two well-known algorithms
based on DE. SHADE preserves two population structures, the first one keeps
the current population and the other one (an archive) contains the replaced indi-
viduals throughout the search process. It also incorporates a recently successful
historical parameter memory to guide the generation of parameter control values,
for both crossover and mutation operators.

In our proposal, three structures are used to maintain different type of so-
lutions. The first one is the main population P,, the second one maintains an
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Archive of useful recent generated solutions, and the last one preserves the
history of best individuals found at each generation (A,). The Population and
Archive structures have a fixed N size, while the third one grows dynamically at
each generation. The process to update the control parameters is different than
in SHADE and will be described later.

Before entering the main loop, the population is initialized, and the archive
equals the population. In this part of the code, the memory is given random
values that follow a normal distribution. These values in turn will be the mean
for future calculations of the respective values of parameters CR and F. After
initialization, the algorithm enters the evolutionary stage. The variable sF is
described in [4] This stage continues until the stop criterion is reached, which in
our case is given by a maximum number of evaluations completed. In the body of
the main loop, a population is evaluated with two different mutation strategies,
to subsequently carry out eight evaluations with the best strategy.

Algorithm 1: AJSO

1 //Initialization phase

2 g=1,Ny = Ninis;

3 Initialize population P, = (z14, ..., n,4) randomly;

4 Set all values in Mcg, Mg following a normal distribution with
HCR = ICR and OCR = 0.05 S UE = IF and op = 0.1;

5 Archive = Py;

6 // Main loop

7 while The termination criterion is not met do

8 Sort and select the best B individuals;

9 Obtain a vector of values with CR and sF’;

10 From sF' get jF';

11 Generate two new populations with two different strategies;

12 Control limits and evaluate;

13 Select the best strategy S;

14 // Exploitation phase

15 for i =1to 8 do

16 Sort and select the best B individuals;
17 Obtain a vector of values with CR and sF’;
18 From sF get jF;
19 Generate a new population with the best strategy from 13;
20 Control limits and evaluate;
21 Update Archive;
22 Update Memory Parameters;
23 if nsp =0 and B, = BSF and nfes > I_evalmax * 0.4 then
24 ‘ add in the Archive one of the best global past (A4,);
25 end
26 end
27 end
CACIC 2020
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2.1 Mutation and crossing process

The SHADE algorithm [4] builds a mutant vector ¥;, according to the strategy
“current-to-pbest/1” as shown in the next equation:

Vi,g+1 = Vi g + sF * (Upbest —Vig + Ur1 — vr?)a

where individual vppes; is randomly selected from the top N xp (p € [0,1])
members in generation g. The indices ¢, 1 and r2 are randomly selected from
[1,N] such that they differ from each other.

AJSO (our algorithm) incorporates two ways to mutate solutions by following
two different strategies. In order to this, element of the population or elements
of the archive are part of the strategies according to the need of the moment.
The first strategy uses elements of the population to generate individual i of
generation g + 1:

—

o Tt sF (T = Tig) + GF * (T — G), i rand(0,1) < CR;.
nott Uig, otherwise,

where sF' is a scalar obtained from applying a normal distribution on a random
value in memory. jF' is a proportion less than sF' and, v, is a random vector
among the best B elements of the previous generation. The second strategy is
stated as follows:

o ) U+ 8F 5 (Up1 — Vi) + JF % (Tp3 — Upa), if rand(0,1) < CR;.
vt V4, g5 otherwise.

Here, vectors ¥,3, U4 are element randomly selected from Archive and different
from each other.

2.2 Selecting the best strategy

After checking that the modified solutions are within the allowed limits of the
decision variables, the algorithm proceeds to evaluate these solutions. When the
evaluation concludes, a selection process is carried out to obtain the best strategy
between the two used in the previous step. The selection criterion is that which
produced a new population with more improvements with respect to the old one.

2.3 Updating the historical memory

In this section we describe the update of the values for the control memories
Mp and Mcg. The elements of historical memory, similarly used in SHADE,
are updated in the exploitation stage (lines 14 to 26 of Algorithm 1). For this
purpose, the evaluation of each population also counts the numbers of individuals
that improve compared with the respective old values. That value is called nsp
for the Number of Successful Parameters, its complement respect to the total
number of new individuals generated is called Number of Fail Parameters (nfp).
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If more than a half of the individuals in a generation improved the previ-
ous population (nsp > nfp), the following formula is applied to update m; €
Memory which are used as explained before for future values of control param-
eter F':

1.5 * avg(goodF) — 0.5 %« m;  within limits (0,1].
m; =
UCs out of limits (0,1]

where avg calculate the average of a list of numbers and goodF' is a list of sF
values which have improved the individual in the population.

If the number of individuals in a generation that improved does not exceed
the half of the population (nsp <= nfp) the following formula is used to update
Memory:

m; + 0.2 % (0.5 * avg(goodF + BadF) — 0.8 x m;)  within limits (0,1].
m; = o

ms, out of limits (0,1],
where BadF' is a listing of sF' values that could not be improved in the popula-
tion.

The procedure for updating memory elements that store CR values (Mcrg)
is analogous to that described in this subsection.

3 The problem and results

3.1 Problem definition: Optimization applied to energy distribution

The distribution of energy has many stages from its generation to its distribution
for consumption. In smart grids, the distribution of energy is optimized for both
consumers and suppliers, so it is highly desirable to find a good balance between
demand and supply. This balance can be modeled as an objective function where
the input variables to the function have certain restrictions. Due to space issues
in this link® the reader may find a more detailed description of the objective
functions.

3.2 The benchmark

We have evaluated the performance of the AJSO with the IEEE WCCI / GECCO
2020 benchmark “CEC-C4 FEvolutionary Computation in the Energy Domain:
Smart Grid Applications”. This benchmark has two testbeds. The first one aims
at optimizing energy resources management for day-to-day use in smart grids
under uncertain environments. 500 scenarios with a high degree of uncertainty
are used. The second testbed is concerned with a two-tier optimization of end-
user bidding strategies in local energy markets (LM). These two levels represent a

3 http://www.gecad.isep.ipp.pt/ERM-competitions/wp-content/uploads/2019/
12/WCCI2020_Guidelines.pdf
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complex problem where competitive agents at the one level try to maximize their
profits by modifying a price, on the other hand, an agent tries to minimize costs.
The competition proposes 50,000 as a limit for the total number of evaluations
for each testbed.

Table 1 and Table 2 contain statistical values and positions for the classifi-
cation following the criteria of WCCI 2020 for three algorithms studied, DE (a
basic version), SHADE, and AJSO. The value that summarizes the respective
performances is represented by RankingIndez. The calculation of this value can
be found in the Guideline of the WCCI Competition.

Alg |RankingIndex|PAvgFit|PstdFit| PminFit|PmaxFit|PvarFit
DE 442.64 329.09 | 23.38 | 286.53 | 376.89 | 546.70
SHADE| 370.81 267.03 | 27.63 | 217.93 | 316.31 | 763.87
AJSO 311.11 214.68 | 24.07 | 182.50 | 277.26 | 579.45
Table 1. Results obtained by DE, SHADE and AJSO in the TestBed 1

Alg |RankingIndex|AvgFit|StdFit| VarFit|minFit|maxFit| AvgProfit
DE 3.03 3.03 | 0.07 [0.0059| 2.86 | 3.20 -4.98
SHADE 2.49 2.49 | 0.09 [0.0084| 2.35 2.64 -4.04
AJSO 2.28 2.28 | 0.04 [0.0020| 2.20 | 2.35 -3.60

Table 2. Results obtained by DE, SHADE and AJSO in the TestBed 2

I DE
N SHADE
I AJSO

100 R — “'-‘—

AvgFit stdFit
Stats

Fig. 1. Comparison between 20 runs of testbed 1 for the three algorithms

Figure 1 and 2 show violin plots to compare the performances of the three
algorithms taking into account 20 runs, showing repectively AvgF'it and stdF'it
in the testbed 1 and Fit and Profit in the testbed 2. The figure shows the
efficiency of AJSO having a better evaluation and converging much faster than
DE and SHADE for the WCCI proficiency test suite. Based on this figure, we
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Fig. 2. Comparison between 20 runs of testbed 2 for the three algorithms

observe that AJSO is quicker in finding better values, avoiding the waste of
evaluations of the cost function. Therefore, this implies that the exploration
phase correctly discards various sectors of search spaces.

4 Conclusions and Future Work

In this article we have proposed AJSO, a new algorithm based on SHADE to
solve a Smart Grid application presented at WCCI 2020. AJSO saves the best
of each generation (A4,) and makes more efficient use of the Archive to better
explore the search space. Both improvements have been introduced as part of the
mutation operator and in the updating of the historical memories of the controls
parameters. If stagnation is detected, AJSO inserts good solutions in the Archive
from A, structure. In turn, the combination of two mutation strategies allows
the algorithm to vary between two abilities, one concerning the amplitude and
the other one the depth.

The incorporation of all these characteristics allowed our proposal to obtain
the best scores compared to DE and SHADE. In a future work, a deeper analysis
can be performed by varying Population and Archive sizes. Currently, AJSO has
very few parameters to calibrate, but it may be possible to incorporate values
that modify the updating of the memories.
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