
Simplifying concurrency and monitoring on Arduino

for Internet of Things

Ricardo Moran1,2, Matías Teragni1, Gonzalo Zabala1

1Universidad Abierta Interamericana, Centro de Altos Estudios en Tecnología Informática,

Ciudad Autónoma de Buenos Aires, República Argentina

2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires,

Calle 526 e/ 10 y 11, La Plata, Buenos Aires, República Argentina

{Ricardo.Moran, Matias.Teragni, Gonzalo.Zabala}@uai.edu.ar

Abstract. The Internet of Things (IoT) presents several challenges and

opportunities to improve people’s lives. Experts agree on the importance of

involving the community in the process of defining and creating IoT in order to

succeed. Platforms like Arduino make it simple for non-technical people to build

IoT devices. However, they also present difficulties that complicate their

adoption and limit their reach. In this paper, we focus on the Arduino language

and its limited support for concurrency and monitoring, which we deem essential

for the IoT. We explore the existing solutions offered by the Arduino ecosystem

and analyze their strengths and weaknesses. Finally, we propose an alternative

solution based on a high-level programming language designed to tackle these

issues with the help of an embedded virtual machine.

Keywords: Internet of Things, cloud computing, programming language, virtual

machine, Arduino, concurrency, monitoring

1 Introduction

In the last decade, the development of networks of smart devices capable of sensing

their environment, connect to the Internet, and publish data to cloud servers has led to

a concept known as the Internet of Things (IoT). It is estimated that between 2008 and

2009 the number of “things” connected to the internet has surpassed the number of

people [1]. While this evolution of the Internet architecture presents privacy and

security risks [2] it also has the potential to improve people’s lives [1].

In order to face these challenges in a satisfactory way several experts agree that it is

important to reach out and involve more people in the IoT creation [3]. The Maker

culture (a technology-based extension of the Do-It-Yourself movement [4]) could play

an essential role in involving the society, in part thanks to the rise in popularity of

platforms such as Arduino that make relatively easy and inexpensive to build IoT

devices.

ISBN 978-987-4417-90-9 599

CACIC 2020
DIIT UNLaM / Red UNCI

Arduino is a microcontroller board that has become one of the most popular

platforms for building electronic projects, especially among hobbyists, artists,

designers, and people just starting with electronics. Apart from being open-source

hardware, one of the reasons for its popularity is its software library and integrated

development environment (IDE) that provides an abstraction layer over the hardware

details, making it possible to build interesting projects without a complete

understanding of more advanced microcontroller concepts such as interrupts, ports,

registers, timers, and such. At the same time, this abstraction layer can be bypassed to

access advanced features if the user needs them making Arduino a platform suitable for

both beginners and experts, allowing non-technical users to participate in the IoT

phenomenon.

However, there are several aspects in which the Arduino language lacks proper

support for the needs of an IoT project, introducing extra complexity that can

overwhelm a beginner while building any kind of interesting system.

The first issue we identify is the lack of support for concurrency in the language

itself. Even moderately complex problems require some sort of simultaneous task

execution. Almost all IoT devices need to be able to perform some combination of the

following tasks: communicate with other devices; read the value of several sensors;

make decisions based on these values; connect to the Internet and publish their sensor

data to the cloud [5]. Usually these tasks need to be done simultaneously but since the

Arduino language does not provide any concurrency support it is left to the programmer

to implement an arbitrarily complex scheduler in order to avoid interfering one task

with another.

The second problem that Arduino presents is its complete lack for remote

monitoring, a requirement for almost every IoT project. The lack of a standard protocol

forces the programmer to design a different ad-hoc protocol for each project, which

limits code reusability and is hard for non-technical users to implement properly. Other

solutions are available in the form of open-source libraries but most of them suffer from

issues that cannot be dismissed.

In this paper we will discuss the existing solutions, their limitations, and propose an

alternative approach based on the use of a high-level programming language especially

designed for these use cases that can be executed by a small virtual machine running in

the microcontroller.

2 Related work

Regarding concurrency support, although the Arduino language does not provide any

concurrency abstraction by default, third-party libraries are available that attempt to

address this issue.

The most sophisticated libraries we surveyed are implementations of a real-time

operating system for microcontrollers known as FreeRTOS [6] [7]. These libraries offer

prioritized, preemptive multitasking. However, they are harder to use than the

alternatives, requiring the user to specify several configuration parameters, which can

be challenging for a novice programmer. Most libraries take a simpler approach, which

is to support cooperative multitasking. These libraries differ in their implementation

ISBN 978-987-4417-90-9 600

CACIC 2020
DIIT UNLaM / Red UNCI

details and, thus, the programmer needs to understand the tradeoffs of each library in

order to correctly predict the behavior of the program. Some libraries, like

ArduinoProcessScheduler [8] and Task [9], force the user into the object-oriented

paradigm and require the definition of classes for each independent process. Others,

like Automaton [10] and Yet Another State Machine [11], are event-driven and focus

on helping the user to create state machines. Most libraries, however, simply allow the

user to specify which procedures should run concurrently by adding them to a global

scheduler’s list or using macros to define them. ArduinoThread [12] and everytime [13]

take another approach worth mentioning, they do not implement truly independent

tasks, but instead provide facilities to schedule the execution of procedures at desired

intervals. Each time a task is executed it will run to completion. The main difference

between the two is that everytime is fully based on compile-time macros, which makes

it impossible to dynamically create new processes. While all these libraries and

frameworks have their own tradeoffs, they all exhibit the same flaw: they require the

user to understand the execution model provided by the library to use it effectively. If

the programmer fails to understand the strengths and limitations of the library, they may

be punished with potentially hard to debug errors [14]. In the case of the cooperative

multitasking libraries, the limitation is evident: the user needs to be extra careful not to

use blocking code (like the “delay” function or a long-running loop) or risk interfering

with the execution of other tasks. This can be exacerbated by the fact that most third-

party libraries, tutorials, and code examples on the web assume total control of the CPU

and, thus, may use blocking functions that are not compatible with this programming

style. For an experienced programmer this could represent a minor problem but for a

beginner it could mean an unsurpassable challenge.

Alternative programming languages for the Arduino platform address the

concurrency problem in different ways. We found several implementations of high-

level languages and virtual machines for the Arduino platform. Most of them are based

on preexisting general-purpose programming languages such as Java [15], Scheme [16]

or Python [17]. In these cases, support for concurrency depends on the implementation

and is tied to the mechanisms already existing in the language. A more noteworthy

example is the Transterpreter project [18], a virtual machine explicitly designed to

exploit concurrency on embedded systems. This virtual machine runs occam-pi

programs on several platforms, one of which is Arduino [19]. Occam-pi is a variant of

the occam programming language [20], especially designed to write concurrent

programs based on communicating sequential processes (CSP) process algebra [21].

Occam-pi has a rich set of runtime libraries that provide functions for interacting with

Arduino features such as the serial port, PWM and TWI. Regarding performance, the

execution of bytecodes has been reported be 100 to 1000 times slower than the

execution of native code.

Regarding monitoring and communication capabilities, the current options are

limited. All Arduino boards have native support for serial communication and the

Arduino language includes several functions to allow the user to read or write from the

Serial. However, writing a custom protocol on top of the Serial can be challenging for

beginners. For this reason, a popular choice for Arduino developers is the Firmata

library [22].

Firmata is a standard protocol for communicating the Arduino with software on a

host computer. It was designed to allow users to write custom firmware without having

ISBN 978-987-4417-90-9 601

CACIC 2020
DIIT UNLaM / Red UNCI

to create their own protocol. Client libraries for several languages are available online

and the host implementation comes already bundled as one of the default libraries in

the Arduino IDE. The protocol is extensible, and it can be used to communicate through

the serial port, Wi-Fi, ethernet, and Bluetooth. The usefulness of Firmata has made it a

very popular library but it has its drawbacks. On the one hand, the protocol details might

not match exactly the requirements of the project, in which case the user is left with no

alternative but to dive in the Firmata code and adapt it to suit its needs. This might be

challenging for a beginner. On the other hand, if the protocol satisfies the project

requirements then the simplest option is to upload the StandardFirmata that comes as

an example with the library. The StandardFirmata was designed to include as much

functionality as possible into a single firmware, but doing so leaves little room for any

custom code the user might wish to add to the sketch (on Arduino UNO

StandardFirmata uses 38% of program storage and 52% of dynamic memory) and

adding new functionality to the StandardFirmata sketch can be complicated. Another

option is to import Firmata into the sketch as a library, in which case the user would

have to manually implement the functions to handle the relevant messages provided by

the Firmata protocol.

A popular alternative is to use an IoT cloud solution. In this case, the user only needs

to use a library provided by the platform it wishes to use and the library will take care

of all the communication details. A survey of existing solutions in this space shows a

variety of platforms offering services like real time data capture, data visualization and

device management related tasks through remote cloud servers while implying “pay-

as-you-go” notion [5]. While these platforms simplify the development of IoT systems,

they require the user to write code to interact with their cloud services. In most cases,

this code is relatively straightforward as it focuses on defining what information is sent

to the cloud and what to do with the information received, but the behavior of those

libraries is usually opaque and too complex, forcing the programmer to call periodically

to certain functions that actually perform the synchronization. Of all the existing

solutions we have focused on Thinger.io, the results of our analysis are shown in the

sub-section below.

3 Proposed solution

We propose the implementation of a domain-specific language (DSL) supported by a

virtual machine running on the Arduino. The nature of a DSL ensures that the logic

usually present in IoT solutions can be expressed concisely and the abstraction layer it

provides guarantees that the programmer cannot unintentionally interfere with the

concurrent task execution. We call this language UziScript and we believe it would be

a suitable alternative to the Arduino language for IoT.

ISBN 978-987-4417-90-9 602

CACIC 2020
DIIT UNLaM / Red UNCI

4 Implementation

4.1 General architecture

Fig 1 Architecture diagram of the UziScript toolchain and virtual machine

The architecture of the proposed solution consists of three distinct components: a

firmware for the Arduino devices, a hub that handles the communication with the

devices, and client tools that allow users to manage the entire system.

The firmware is a regular Arduino sketch that contains the language runtime,

responsible for executing the programs as well as monitoring the state of the device.

The hub, connected directly or indirectly to the Arduino boards, contains all the

compilation tools and a web server that presents a REST API interface. The client tools

are web applications that, through the hub server, allow to program, monitor and control

all the devices in the system from any computer or phone that can reach the Hub server.

This architecture has several benefits.

1. Flexibility: the client tools, being a web app, could be used from any device, using
a web browser or installing it as a native app; the hub could be deployed on the cloud
or on premise, depending on the needs of the user.

2. Portability: the current firmware supports different Arduino boards (including UNO,
Micro, Nano, MEGA 2560, and Yun) and we have also received reports of it working
successfully on other compatible boards such as DuinoBot [23], Educabot [24], and
TotemDUINO [25].

3. Interactivity: the runtime allows to compile and upload new programs at a fraction
of the time required to compile an Arduino Sketch, this allows for a more interactive
programming style that encourages experimentation and learning.

4. Scalability: a single hub could handle multiple devices and multiple hub instances
could be deployed on a single system.

In the following sections we will explain some of the design choices we consider

relevant for the IoT. For a detailed description of the implementation see [26].

ISBN 978-987-4417-90-9 603

CACIC 2020
DIIT UNLaM / Red UNCI

Programming language. The UziScript programming language was designed to

allow non-expert programmers to express concurrent tasks and facilitate monitoring the

IoT device. Its syntax is based on C, which is familiar to most programmers including

Arduino developers. In the following sections we will present some code examples.

To support concurrency, we added the “task” keyword, which represents behavior

that can be executed periodically at a configurable rate. The scheduling and execution

of each task is performed automatically by the runtime and the language allows the user

to start, stop, pause, or resume any given task. Each task execution is independent.

To support monitoring, the runtime automatically keeps track of all the global

variables in the program as well as the value of each pin in the Arduino. Thus, to publish

some value to the outside world, the user only has to assign it to a global variable

declared using the “var” keyword. To check and manipulate the value of either a

digital or analog pin, the user does not have to write any code at all because they are

monitored automatically.

Firmware. The firmware contains the virtual machine responsible for user program

execution and a monitor program that allows it to interact with the hub controller.

Periodically, this monitor program will send the status of the Arduino and receive

commands, allowing the hub to fully control the virtual machine, including directly

manipulating the variables and the pin state, debug the current user program, or

download a new one.

Monitoring tools. The dashboard is a web tool that allows to monitor and control

any global in the program or any pin on the Arduino device. In order to simplify this

task for the user the dashboard allows to configure a blank canvas with a set of

configurable widgets. Depending on the type of widget, it allows to either display or

control a value.

5 Validation

To validate the effectiveness of the proposed approach we built an IoT greenhouse

control system with the following requirements:

1. It can have one or more Arduino devices.
2. It should have a set of sensors to monitor the internal greenhouse conditions as well

as a set of actuators that will allow to control said conditions.
3. It must have a dashboard that allows the user to check and control the entire system

from a web browser.

We will compare three different implementations of the system. One will be written

in the UziScript programming language. For the second we will use a project we built

in 2017 using the Arduino language and the thinger.io cloud solution [27]. And for the

third we will use the irrigation control system described in Donald Norris book “The

Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and

BeagleBone Black” [28].

ISBN 978-987-4417-90-9 604

CACIC 2020
DIIT UNLaM / Red UNCI

Before we begin with the analysis it is important to note the differences between

these three implementations. The following table shows the needed resources and

functionality provided by each system.

UziScript Thinger.io Norris

Microcontrollers

required

1 1 2

Sensors Temperature x2
Door open

Ambient light

Temperature x2
Door open

Ambient light

Moisture

Actuators Fans

Irrigation

Fans

Irrigation

Irrigation

The entire code for the thinger.io is available at GitHub [27], Norris’ code can be

found in his book [28], and the UziScript program is displayed below.

import stepper from 'Stepper.uzi' {

p0 = D3; p1 = D4; p2 = D5; p3 = D6; steps = 48;

}

import thermistor1 from 'Thermistor.uzi' { pin = A1; }

import thermistor2 from 'Thermistor.uzi' { pin = A2; }

var stepping; var temp1; var temp2; var n_readings = 10;

task control() running {

“The stepping flag can be modified from the dashboard”

if stepping { stepper.step(30); }

}

task sensors() running {

var t1; var t2;

repeat n_readings {

t1 = t1 + thermistor1.readDegrees();

t2 = t2 + thermistor2.readDegrees();

delayMs(1);

}

temp1 = t1 / n_readings;

temp2 = t2 / n_readings;

}

We will compare the following aspects of the solution: concurrency, monitoring, and

code size:

Concurrency. The UziScript version uses concurrent tasks to group the different

responsibilities of the program. This makes the code easier to understand and modify

because it decouples the code to control the stepper motor from the code that checks

the temperature sensor. In contrast, the sequential nature of the thinger.io version

conflates the different tasks into one sequential procedure. The negative effects of this

limitation can be seen in the code that gathers the temperature sensor readings on each

tick. In Norris’ version the separation of concerns into independent tasks is done using

two Arduinos instead of just one. His implementation uses one Arduino for the control

ISBN 978-987-4417-90-9 605

CACIC 2020
DIIT UNLaM / Red UNCI

system and the other for the monitoring, and connects the two using a radio module.

This provides true parallelism but makes the system more complex, expensive, and

adds an extra point of failure, since the communication between the Arduinos can be

interrupted.

Monitoring. While Norris and thinger.io versions have a large portion of the code

related to the monitoring aspect of the solution, the UziScript version handles this

almost with no extra code. Since the UziScript runtime handles the monitoring

transparently, all the pins and global variables are automatically published to the host

computer. This allows the user to see and change any value from the web dashboard

without requiring extra code in the device to handle the communication.

Code size. Norris version uses two Arduino boards, so we need to consider both

sketches (143 LOC + 18 LOC = 148 LOC). The thinger.io version takes advantage of

several libraries provided by the cloud platform, which allowed us to write much less

code (118 LOC). In contrast, the UziScript version can fit in a single page (23 LOC).

Although we understand lines of code is not an optimal measure of the size of a program

(especially when comparing different languages) the difference is worth noting and

shows one of the benefits of using a DSL.

6 Conclusions and future work

In this paper we have analyzed the limited support for concurrency and monitoring in

the Arduino language. We believe these issues limit the potential and reach of the

Arduino regarding IoT.

We have explored some of the different solutions currently available as third-party

libraries for the Arduino platform and we have proposed a solution based on a virtual

machine and high-level language called UziScript.

We have described the implementation of said language, explaining how it solves

the identified issues, and we validated its effectiveness by using it to build a small IoT

system and comparing it to alternative solutions. The UziScript language presents

benefits in code size, concurrency support, and monitoring capabilities. However, of all

the implementations we have analyzed, the IoT cloud solution provides more

functionality out of the box. This is not a surprise, being a mature commercial product,

the cloud solution allows users to build custom dashboards using a simple web interface

with support for multiple widgets for different sensors and actuators. The UziScript

dashboard, on the other hand, offers limited visualization options and the virtual

machine supports only a small number of sensors and actuators.

Despite its current limitations, we believe the implementation works as a successful

proof of concept for the proposed architecture and we encourage anyone interested to

proceed further with its development.

There are still a lot of improvements to be made. A major issue we found is

performance. Our early measurements show the UziScript virtual machine to be 6 to 10

times slower than native Arduino code. While this performance might be good enough

ISBN 978-987-4417-90-9 606

CACIC 2020
DIIT UNLaM / Red UNCI

for some applications, we believe there is still room for improvement both in the

runtime and compiler.

Another potential problem is the restriction on program size. Considering that most

Arduino boards have limited memory, it is desirable that the virtual machine code and

the user programs are as compact as possible.

Finally, we are working towards polishing the client tools to make them more

suitable for the IoT. In particular, the dashboard should allow the user to use different

visualization strategies to display the data from the devices.

Although it is not finished yet we believe the proposed approach is promising and

we hope to explore it further in the future.

References

[1] D. Evans, The Internet of Things: How the Next Evolution of the Internet Is
Changing Everything, Cisco Internet Business Solutions Group (IBSG), 2011.

[2] S. Sicari, A. Rizzardi, L. Grieco y A. Coen-Porisini, «Security, privacy and trust in
Internet of Things: The road ahead,» Computer Networks, vol. 76, pp. 146-164,
2015.

[3] D. De Roeck, K. Slegers, J. Criel, M. Godon, L. Claeys, K. Kilpi y A. Jacobs, «I
would DiYSE for it!: a manifesto for do-it-yourself internet-of-things creation,»
NordiCHI '12 Proceedings of the 7th Nordic Conference on Human-Computer
Interaction: Making Sense Through Design, pp. 170-179, 2012.

[4] J. Tanenbaum, A. Williams, A. Desjardins y K. Tanenbaum, «Democratizing
technology: pleasure, utility and expressiveness in DIY and maker practice,» CHI
'13 Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 2603-2612, 2013.

[5] P. P. Ray, «A survey on Internet of Things architectures,» Journal of King Saud
University - Computer and Information Sciences, vol. 30, nº 3, pp. 291-319, 2018.

[6] P. Stevens, «feilipu/Arduino_FreeRTOS_Library,» Github, [En línea]. Available:
https://github.com/feilipu/Arduino_FreeRTOS_Library. [Último acceso: 13 12
2019].

[7] Floessie, «Floessie/frt,» Github, [En línea]. Available:
https://github.com/Floessie/frt. [Último acceso: 13 12 2019].

[8] A. Wisner, «wizard97/ArduinoProcessScheduler: An Arduino object oriented
process scheduler designed to replace them all,» 15 January 2017. [En línea].
Available: https://github.com/wizard97/ArduinoProcessScheduler. [Último
acceso: 23 July 2017].

[9] M. Miller, «Makuna/Task,» Github, [En línea]. Available:
https://github.com/Makuna/Task. [Último acceso: 13 12 2019].

[10] Tinkerspy, «tinkerspy/Automaton,» Github, [En línea]. Available:
https://github.com/tinkerspy/Automaton. [Último acceso: 13 12 2019].

[11] bricofoy, «bricofoy/yasm/,» Github, [En línea]. Available:
https://github.com/bricofoy/yasm/. [Último acceso: 13 12 2019].

ISBN 978-987-4417-90-9 607

CACIC 2020
DIIT UNLaM / Red UNCI

[12] I. Seidel, «ivanseidel/ArduinoThread: A simple way to run Threads on Arduino,» 15
May 2017. [En línea]. Available: https://github.com/ivanseidel/ArduinoThread.
[Último acceso: 23 July 2017].

[13] K. Fessel, «fesselk/everytime: A easy to use library for periodic code execution.,» 2
February 2017. [En línea]. Available: https://github.com/fesselk/everytime.
[Último acceso: 23 July 2017].

[14] O. Meerbaum-Salant, M. Armoni y M. Ben-Ari, «Habits of programming in
scratch,» ITiCSE '11 Proceedings of the 16th annual joint conference on
Innovation and technology in computer science education, pp. 168-172, 2011.

[15] G. Bob, «HaikuVM: a small JAVA VM for microcontrollers,» 2017. [En línea].
Available: http://haiku-vm.sourceforge.net/. [Último acceso: 15 Junio 2017].

[16] R. Suchocki y S. Kalvala, «Microscheme: Functional programming for the
Arduino,» de Scheme and Functional Programming Workshop, Washington, D.C.,
2014.

[17] «PyMite - Python Wiki,» 2014. [En línea]. Available:
https://wiki.python.org/moin/PyMite. [Último acceso: 15 Junio 2017].

[18] C. L. Jacobsen y M. C. Jadud, «The Transterpreter: A Transputer Interpreter,»
Communicating Process Architectures 2004, vol. 62, pp. 182-196, 2004.

[19] C. L. Jacobsen, M. C. Jadud, O. Kilic y A. T. Sampson, «Concurrent event-driven
programming in occam-π for the Arduino,» Concurrent Systems Engineering
Series, vol. 68, pp. 177-193, 2011.

[20] M. Elizabeth y C. Hull, «Occam-A programming language for multiprocessor
systems,» Computer Languages, vol. 12, nº 1, pp. 27-37, 1987.

[21] A. W. Roscoe y C. A. R. Hoare, «The laws of Occam programming,» Theoretical
Computer Science, vol. 60, nº 2, pp. 177 - 229, 1988 .

[22] H.-C. Steiner, «Firmata: Towards Making Microcontrollers Act Like Extensions of
the Computer,» NIME, pp. 125-130, 2009.

[23] A. Rojas, «Reporte Robótica Educativa,» Universidad Nacional de La Pampa
(UNLPam), 2017.

[24] «Educabot,» [En línea]. Available: https://educabot.org/. [Último acceso: 13 12
2019].

[25] Totem, «TotemDUINO | Totemmaker.net,» Totemmaker.net, [En línea]. Available:
https://totemmaker.net/product/totemduino-arduino/. [Último acceso: 13 12 2019].

[26] R. Moran, M. Teragni y G. Zabala, «A Concurrent Programming Language for
Arduino and Educational Robotics,» de XXIII Congreso Argentino de Ciencias de
la Computación (La Plata, 2017), 2017.

[27] CAETI GIRA, «GIRA/IoTGreenhouse,» Github, [En línea]. Available:
https://github.com/GIRA/IoTGreenhouse. [Último acceso: 13 12 2019].

[28] D. Norris, The Internet of Things: Do-It-Yourself at Home Projects for Arduino,
Raspberry Pi and BeagleBone Black, McGraw-Hill Education TAB, 2015.

ISBN 978-987-4417-90-9 608

CACIC 2020
DIIT UNLaM / Red UNCI

	Workshops
	WPSTR - Procesamiento de Señales y Sistemas de Tiempo Real
	Simplifying concurrency and monitoring on Arduino for Internet of Things (13370)

