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Abstract. Optimal individual strategies for agents undergoing transac-
tions in the Yard-Sale model were studied. The inclusion of rationality
in their behavior by endowing each agent with a neural network and
training them with a genetic algorithm showed promising results.
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1 Introduction

It is a well known fact that many countries around the world display highly
uneven wealth distributions[1]. This phenomenon can be observed in all societies
to a certain degree, and has been present throughout human history.

Recurring statistical patterns were observed for the first time by the economist
Vilfredo Pareto a century ago, when he discovered the existence of power laws in
the wealth distributions of european countries[2]. Modern studies have painted
a more nuanced picture, in which these power laws are correct only for the high-
est social classes, while the group of poorer individuals exhibits a log-normal or
Gibbs distribution[3]. These observations lead to the following question: is this
kind of behaviour inherent to societies themselves?

With the goal of attaining a deeper understanding of the social interactions
that lead to this type of wealth distributions, simplified models based on en-
sembles of economic agents have been proposed. Consider a system of N agents.
A pair i and j, with wealths wi and wj respectively, is chosen at random, and
they take part in a transaction. After their mutual interaction their wealths will
evolve according to the following dynamics:

wi(t + 1) = wi(t) + (2ηi,j − 1)∆wi,j

wj(t + 1) = wj(t) − (2ηi,j − 1)∆wi,j ,
(1)

where ηi,j ∈ {0, 1} is a dichotomous random variable, and ∆wi,j is a quantity
determined by the specifics of the model. Note that under such a transforma-
tion the total amount of wealth in the system is conserved. One of the most
well known models within this family is the so called Yard-Sale model (YSM)[4],
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where agents interact risking a random fraction of their wealth. The main (and
only) interaction parameter is then defined as the risk factor r, which can be dif-
ferent for each agent. The amount of wealth transferred in each interaction will
be ∆wi,j = min(riwi, rjwj). It has been proven that the only possible macro-
scopic equilibrium for this system is the condensation of all wealth in a single
agent[5]. To alleviate this effect, an asymmetry is added to the distribution of
ηi,j , that favors the poorest of the agents i and j in a single transaction:

pi,j =
1

2
+ f

|wi − wj |
wi + wj

, (2)

where f ∈ [0, 1
2 ] is usually called the social protection factor. The macroscopic as-

pects for this type of models has been thoroughly studied for the past decades[6][7],
but studies regarding their microscopic behaviour are lacking.

In this work, we propose a new approach for the study of the YSM in which
agents are endowed with rational behaviour in their decisions. Keeping in mind
that the only parameter of interaction that agents have is their risk factor ri,
each agent will be allowed to change it at each time step. We are interested
in finding the optimal individual strategy. The solution will then be a function
ri(t+1) = R(~vi(t)) that maps an input vector ~vi(t) containing all the information
available to agent i at time t to the level of risk the agent will use in the following
time step.

2 Methods

We use an evolutionary algorithm to evolve a system of N agents, initialized
with wealths and risks uniformly distributed in the interval [0, 1]. The fitness of
each agent is then calculated as the average wealth obtained after Tgen Monte
Carlo steps (MCS), where a MCS is defined as N/2 YSM transactions in the
system. A new generation of agents is then created, where each new agent is an
imperfect copy of an agent of the previous generation, selected with a probability
proportional to its calculated fitness. The system is then reset to a new random
initial condition. The process iterates until convergence to a solution is reached.
We train for a range of f > 0.

We conduct three experiments. First we want to ascertain the existence of
an optimal strategy. To that purpose, 1000 systems of 10000 agents each, with
fixed risks uniformly distributed in the interval [0,1], are evolved to macroscopic
equilibrium, defined as the time at which the Gini index[8] becomes constant. In
the next couple experiments, each agent is given an equally structured multilayer
perceptron network (MLP) with random weights. The information vector ~vi is
taken as the input at each time step, and the risk of each agent will change
according to the corresponding output. First we let ~vi(t) = r(t), so that the
input is the previous step’s risk. In the third experiment we let ~vi(t) = w(t), the
wealth in the previous time step.
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3 Results

The histograms of the average wealth per agent hwii as a function of risk were
plotted, as shown in the top panel of Figure 1. The presence of local maxima in
these curves shows the existence of an optimal risk ropt that increases with f .

Fig. 1. Risk histograms of the average wealth per agent hwii for different values of f ,
belonging to 1000 untrained systems (top), and their comparison with density plots of
agents in the r − w plane belonging to 1000 trained systems (bottom).

The simplest form of rational behaviour is introduced in the second experi-
ment, as described in the previous section, by setting ~vi = ri(t). That is, every
agent can only see their risk at every time step, and change it according to
its MLP. It can be shown that this type of function always leads to a con-
stant, optimal r, independent of w. To find the optimal solution, 1000 systems
of 1000 agents each were trained in parallel and then brought to equilibrium
using CUDA. As the agents are described by two parameters, r and w, a density
plot was made in the r−w plane, as shown at the bottom panels in Figure 1. The
highest density of agents is centered at the optimal risk ropt, previously found
in the histograms, where each agent maximizes their average wealth. This result
indicates that the application of rational behaviour through self learning algo-
rithms in this type of systems is possible. It is noteworthy that the Gini index
for trained systems always converged to higher values than those of untrained
systems, hinting at the existence of higher wealth inequality.

The next step in complexity was giving the agents their wealth wi as input at
each time step. To verify the existence of convergence, 1000 systems were inde-
pendently trained once again, and then the functions defined by each individual
MLP were plotted in a density map. The result obtained for f = 0.3 after a rea-
sonably high number of generations (∼ 105), such that the curve defined by the
region of maximum density stops changing, is shown in the left panel of Figure
2. It can be seen that the best solution for high wealth agents is to increase their
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risk. This behavior can be attributed to the definition of the ∆wi,j for the YSM
(the money exchanged in each transaction): if the wealth of an agent is high,
a high risk ensures that the wealth exchanged will always be whatever fraction
the other agent is risking, and gives the maximum possible profit for the high-w
agent in the next immediate step.

Fig. 2. Left panel: solutions found by the trained agents for f = 0.3 after 105 gener-
ations. Right panel: comparison of the average wealth obtained by 100 trained agents
with baselines given by 900 agents with fixed r.

We observe that there is an increasing dispersion as the w values get lower,
until no solution is found for w < 10−8. This occurs because the agents are not
able to reach the region of lower w when they become sufficiently trained, and
thus those states are never experienced. To test whether the solution found is
successful or not, the average wealth obtained at every time step was compared
between the trained agents and two different groups that act as baselines: the
group of agents with the previously found optimal risk ropt (fixed), and all the
non-trained agents with fixed risks (chosen at random). The result is shown at
the right panel of Figure 2, where it can be seen that the trained agents obtain
the highest average wealth at all times.

4 Conclusion and Future Work

Microscopic aspects of the wealth distribution model known as the Yard-Sale
model were studied, which led to the observation of an optimal strategy for this
type of systems. The simplest rational behaviour was then incorporated in the
agents by using neural networks trained with a genetic algorithm, and it was
then confirmed that every agent could maximize their average wealth.

For future work, the incorporation of additional inputs to each agent’s MLP,
such as the wealth risked by the opponent, is currently being studied.
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