
OTA Updates Mechanisms: A Taxonomy and
Techniques Catalog

Mónica M. Villegas1 and Hernán Astudillo2

1 Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile
monica.villegas@sansano.usm.cl

2 Universidad Técnica Federico Santa Maŕıa, Santiago, Chile
Centro Cient́ıfico y Tecnológico de Valparáıso (CCTVal)

hernan@inf.utfsm.cl

Abstract. The use of the Internet of Things (IoT) and Cyber-Physical
Systems (CPS) in industry and daily life has increased. The embed-
ded software of IoT systems requires updates over time for long-term
maintainability, bug fixes, and improvements. Developers and manufac-
turers design and implement OTA update systems in ad-hoc manners
because there are no specific standards and little empirical information
about mechanisms. This article describes a systematic literature review
to identify proposed OTA update mechanisms, and a taxonomy to orga-
nize them for system designers. Academic and professional (grey) litera-
ture was gathered from four information sources; 109 studies were found,
of which 29 remained after applying inclusion and exclusion criteria; and
they were recognized as belonging to six mechanisms (categories). Each
technique was associated to a mechanism, yielding an (initial) catalog
of OTA update techniques. This taxonomy and catalog can be used to
design IoT and CPS applications that must include OTA update func-
tionality.

Keywords: Over-the-Air (OTA) updates, Cyber-Physical Systems (CPS), Internet-
of-Things (IoT), Software design

1 Introduction

Software updates are an essential part of almost any computer-based system.
There exist different types of strategies for implementing these updates regarding
the methods and practices used for delivering software update packages to the
final systems. One of these practices is Over-the-Air (OTA) updates, which refers
to remotely updating the code on an embedded device3 and distribute data from
a server to clients or nodes in a network channel [12]. OTA updates are widely
used in several domains, like the Internet of Things (IoT) and Cyber-Physical
Systems (CPS).

For example, Firmware Over-the-Air (FOTA) is an actual technology to per-
form an update by wirelessly transmitting firmware update data to the target

3 https://docs.particle.io/tutorials/device-cloud/ota-updates

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 139



2 Villegas and Astudillo

devices [14]. Through FOTA, applications, operating systems (OS), and in some
cases, the full software stack [15], can be replaced.

The use of CPS and IoT in fields of industry and daily life, like automotive,
energy, building, and agriculture4 keep increasing. Depending on the robustness
and complexity in the systems designed, OTA updates will be needed eventually
for updating a large number of devices connected in a network where manual
updates will no be easy to perform (or maybe not feasible at all). CPS and IoT
systems’ embedded software requires updates over time for long-term maintain-
ability, bug fixes, and security improvement [38], [8] to avoid attacks as specified
and studied in [9, 10]. As technologies evolve, these OTA update systems de-
pend heavily on specifics of the system and platform technologies. The existence
of several hardware platforms and operating systems for IoT keeps growing, as
described in previous work [7]. Thus, many developers and manufacturers de-
sign and implement OTA update systems in ad-hoc manners since there are
no specific standards, including the complete design of such systems, and little
empirical information about mechanisms and generic dependencies is formally
reported. Our proposal is based on the analysis of recommendations reported by
recognized institutions and technology experts, vs. the techniques published in
the literature, in the context of OTA update systems designs for CPS and IoT
systems.

In previous work [11], we highlight the importance of taxonomies to organize
architectural elements that can be used to support software architects in their
work and will proceed likewise in this study. To this end, a mechanism is a soft-
ware or hardware component of an OTA update system; a recommendation is
a set of steps or mechanisms described by recognized institutions or technology
experts, which detail how OTA update systems should be designed; and a tech-
nique is a specific approach or procedure implemented by researchers, engineers,
or practitioners, and formally published as a document.

The research questions conducting our study were:

– RQ0: What mechanisms, techniques, or recommendations are reported in
OTA update systems for IoT and CPS?

– RQ1: How can these mechanisms, techniques, and recommendations be clas-
sified into a taxonomy?

The remainder of this article is structured as follows: Section 2 briefly sur-
veys previous work on software updates taxonomies; Section 3 addresses RQ0,
describing a systematic review design and execution; Section 4 addresses RQ1,
proposing a taxonomy to organize OTA update mechanisms, techniques, and
recommendations; and Section 5 summarizes and concludes.

2 Related Work

Some taxonomies have already been proposed to organize OTA update tech-
niques.

4 https://blog.bosch-si.com/bosch-iot-suite/how-to-manage-software-updates-in-iot

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 140



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 3

Brown and Sreenan [17] surveyed software update features of wireless sensor
networks and presented a taxonomy organized around ideas or design decisions,
with five categories: (1) Update Dissemination, (2) Update Activation, (3) Fault
Detection, (4) Fault Recovery, and (5) Management.

Halder et al. [18] surveyed remote OTA software updates in the automotive
sector, mainly from the security perspective. They proposed a taxonomy of secure
OTA software update techniques, with seven categories: (1) Symmetric Key,
(2) Hash Function, (3) Blockchain, (4) RSA and Steganography, (5) Symmetric
Key and Asymmetric Key, (6) Secure Hardware Module, and (7) Secure Update
Framework.

The U.S. NTIA (National Telecommunications and Information Adminis-
tration5, through its IoT Security Upgradability Existing Standards, Tools and
Initiatives Working Group, drafted a catalog [21] of existing IoT security stan-
dards. This catalog includes The Update Framework (TUF) [22]6, which helps
developers to secure new or existing software update systems.

These taxonomies have some shortcomings. Halder et al.’s taxonomy [18] fo-
cuses on the security of the OTA update systems, leaving aside quality attributes
like safety, security, recovery, management, dissemination, propagation, instal-
lation, scheduling, elaboration, and packaging. Also, neither taxonomy [18] [17]
gives specific techniques or procedures.

To address these shortcomings, we will analyze the whole OTA update pro-
cess, recognize mechanisms, and report specific techniques and procedures, giving
a finer-grained classification of existing OTA update solutions.

3 RQ0: Existing OTA update approaches for IoT and
CPS

A systematic review of academic and grey (professional) literature was performed
following the well-known guidelines by Kitcheham et al. [13].

3.1 Research Protocol

Search Strategy: The search strategy in this study was divided in two sections:

– S1: Search in databases
– S2: Search of grey literature using the Google Search engine

Works published in databases were considered for the extraction of relevant
information reported by researchers and practitioners, in which techniques were
already implemented in working OTA update systems. Data reported in grey
literature was considered since recommendations are regarded as sets of steps
for designing a complete OTA update system, grouping the relevant mechanisms
an OTA update system must-have. The results obtained were analyzed and used
to map the recommendations grouped into mechanisms with the reported tech-
niques. The search queries used were the following:

5 National Telecommunications and Information Administration: www.ntia.gov/
6 The Update Framework: www.theupdateframework.io

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 141



4 Villegas and Astudillo

– Databases: IEEE Xplore, ACM Digital Library, Science Direct
– Search string for Databases: “(OTA OR over-the-air) AND (update)

AND ((IoT OR (internet AND things)) OR (CPS OR (cyber AND physical
AND systems)))”

– Search string for grey literature using Google Search engine: “stan-
dard mechanisms techniques recommendations OTA updates systems IoT
CPS”

Inclusion/exclusion criteria: To select relevant material, we defined exclu-
sion and inclusion criteria.

– Exclusion Criteria:
• EC1. Texts not written in English or Spanish
• EC4. Not fully available texts
• EC2. Patents
• EC5. Not accessible texts
• EC3. Presentations

– Inclusion Criteria:
• IC1. A primary study must contain software or hardware components

used in the development of OTA update systems.
• IC2. A primary study must contain recommendations for the design of

OTA update systems.
• IC3. A primary study must have software or hardware techniques or

approaches for including on the OTA update process.
• IC4. Grey literature can be included (e.g., tech blogs written by ex-

perts or reports by recognized institutions) if they contain software or
hardware recommendations for the design and/or development of OTA
update systems.

Selection Process: The selection of the works was based in three phases for
the search in databases, and in two phases for the search of grey literature, which
is explained as follows:

– Search in databases:
• Phase 1 (PH1.1): Selection of works in which the title and abstract

were related to designing OTA update systems for IoT and CPS
• Phase 2 (PH1.2): Selection of works in which the introduction and pro-

posal were related to mechanisms, techniques or processes in the context
of OTA update systems for IoT and CPS

• Phase 3 (PH1.3): Extraction of the techniques used in the OTA update
systems reported for IoT and CPS

– Search of grey literature:
• Phase 1 (PH2.1): Selection of works in which the title and description

were related to recommendations for the design of OTA update systems
for IoT and CPS, including sets of steps or mechanisms, and published
by relevant institutions and tech blogs

• Phase 2 (PH2.2): Extraction of recommendations used in the design
of OTA update systems for IoT and CPS

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 142



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 5

3.2 Results from academic literature

Results from searching in databases and filtering through phases 1 (PH1.1) and
2 (PH1.2) are shown in Table 1.

Table 1. Results from databases search

Database Search Results PH1.1 PH1.2

IEEE Xplore 36 24 17

ACM Digital Library 35 5 3

Science Direct 3 3 1

After filtering through PH1.2, techniques, processes and design principles
involved in the OTA update of IoT and CPS devices were identified and extracted
through PH1.3 from selected works. Identified techniques in [19] were grouped
in T1 group of techniques. From [14], were grouped in T2. From [15], in T3.
From [16], in T4. From [25], in T5. From [26], in T6. From [27], in T7. From
[28], in T8. From [31], in T9. From [33], T10. From [34], T11. From [35], T12.
From [36], T13. From [38], T14. From [39], T15. From [40], T16. From [41],
T17. From [29], T18. From [30], T19. From [37], T20. And from [32], T21. Such
identified and extracted techniques (T groups) specified as follows, and will be
further classified.

Identified and extracted techniques (T groups):

– T1.1. Execution of scripts at run-time
– T1.2. Injection of intermediate code used by virtual machines and inter-

preted at run-time
– T1.3. Perform full-image replacement of the entire firmware at once
– T1.4. Enable partial code updates of protocols and applications
– T1.5. Use indirect function calls for not requiring source code modifications
– T1.6. Maintain functions pointers required by indirect functions to scale the

number of dynamic components
– T1.7. Decrease the dependencies with the system level defining system-level

boundaries
– T1.8. Reduce the overhead by linking components to components rather

than linking components to individual functions
– T2.1 Use a server for transferring update data to a coordinator device
– T2.2 Use a server for data verification based on the data HASH [42] for

when a coordinator device delivers data to each node device in a network
– T2.3 Use a coordinator device to disseminate update data to node devices

in a WSN
– T2.4 Use a coordinator device for sending updated data sequentially to each

node device in a network and perform data dissemination
– T2.5 Initiate the update process after the dissemination of update data is

performed

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 143



6 Villegas and Astudillo

– T3.1 Generate a set of keys for authentication between node devices and
server

– T3.2 Register the devices in server to identify each device in a network
– T3.3 Request and validate timestamp of update images
– T3.4 Include metadata update information, consisting of the metadata body,

and a signature
– T3.5 Include root metadata update information, consisting of an ASN17

data structure containing public keys used for data signature
– T3.6 Include timestamp metadata update information, containing files names,

length and the hashes used for the verification of the integrity of the updates
– T3.7 Include snapshot metadata update, informing about all targets meta-

data files released by the repository, indicating available update images
– T3.8 Include targets metadata update, listing information about the file-

names, files length, hashes and identifier of the devices of each available
firmware images

– T3.9 Inspect targets metadata to get valid Firmware Images
– T3.10 Download a valid firmware image as binary data according to the

filename of the targets metadata file
– T3.11 Deliver firmware image, breaking it down into verifiable transmission

blocks using a CRC8 checksum
– T3.12 Perform firmware update by using a bootloader to check if the storage

of the device contains a firmware. If not, the system starts immediately, else
the bootloader fully erases the flash memory and copies the new firmware
from to the Flash memory

– T3.13 Generate and submit a manifest to the Server informing the comple-
tion of the firmware upgrade

– T4.1 Use TLS (Transport Layer Security) to authenticate
– T4.2 Use DTLS (Datagram Transport Layer Security) to authenticate
– T4.3 Use smart contracts to verify the firmware update authenticity and

handle abnormal incidents during the update process
– T4.4 Use Web-based blockchain transaction monitor or mobile phone app

to check the firmware update status
– T4.5 Use permissioned blockchain network that supports the verification

process through smart contracts
– T4.6 Use a vendor service to initiate a new blockchain transaction containing

the target IoT device information and SHA19 hash of the new firmware
update

– T4.7 Use a vendor service for pushing the firmware update binary to the
target IoT device

– T4.8 After an IoT device receives the OTA firmware update binary from
the vendor service, it computes the SHA1 hash of the received binary for
validation

7 ASN1: https://tools.ietf.org/html/rfc6025
8 CRC: https://barrgroup.com/tech-talks/checksums-and-crcs
9 SHA1: https://www.ssl.com/faqs/what-is-sha-1

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 144



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 7

– T4.9 Validate the update through the IoT device which queries a transaction
identifier while using smart contracts

– T4.10 When validation of the update succeeds, the IoT device applies the
firmware update and sends a status update to the blockchain. Otherwise,
the OTA firmware update process will be aborted, and a failure notice will
be recorded

– T4.11 Vendor service queries the blockchain to collect update statistics to
determine further actions

– T5.1 Upload of the new update file to a gateway using persistent flash
storage and Coffee File System

– T5.2 After transmission of update file to a gateway is finished and veri-
fied, Deluge algorithm is started for distributing the file in the network in a
broadcast fashion to end devices

– T5.3 After a file is stored and verified on every device in a network, a
gateway will be commanded to update the respective end devices

– T6.1 Use ARM TrustZone to support secure booting and facilitate secure
OTA updates using RSA encryption

– T6.2 Use X-Cube SBSFU (Secure Boot and Secure Firmware Update) in
which a device receives the encrypted binaries and security engine will man-
age operations and critical data

– T6.3 Use Crypto-bootloader of MSP430, providing security against unau-
thorized firmware updates and IP encapsulation

– T6.4 Use Bootcore which is a serial flash memory device used to load the
code from external memory to embedded RAM (Random-Access Memory)
or ROM (Read-Only Memory)

– T6.5 Use Advanced Encryption Standard - Cipher Block Chaining (AES-
CBC) and RSA, ciphers to secure firmware updates

– T6.6 Use JTAG/SWD, a debug infrastructure that can be used as a lock/unlock
mechanism

– T7.1 Use Deluge for code dissemination, in which code image is divided into
a set of fixed-size pages and further divided into packets. Packets are then
transmitted by using a three-way handshake for reliability

– T7.2 Use MNP (Multihop Network Reprogramming) for code dissemination.
A multihop reprogramming service which avoids collision, and employs a
sleep mechanism to save energy

– T7.3 Use Rateless Deluge which reduces the need for packet retransmission
– T7.4 Use Freshet [45] for code dissemination, which uses topology informa-

tion to conserve energy
– T7.5 Use MDeluge [46] for code dissemination, to support WSNs with mobile

sensor nodes
– T7.6 Use ReXOR [47] for code dissemination, which is a lightweight and

density-aware protocol
– T7.7 Use CoCo+ [48] for code dissemination optimizing the three-way hand-

shake mechanism

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 145



8 Villegas and Astudillo

– T7.8 Use EECD (Excellence Estimation Code Dissemination) [43] for code
dissemination using selection scheme based on link quality for transmission
count in code dissemination

– T7.9 Use ACDP (Adaptive Code Dissemination Protocol) for code dissem-
ination to reduce communication cost and achieve load balance

– T7.10 Use Dsare [44] for code dissemination, which addresses control mes-
sage redundancy and energy balancing problems

– T7.11 Stablish an optimal payload size in terms of energy efficiency
– T7.12 Use simple and efficient link quality estimation scheme using LQI

(Link Quality Indicator) in code dissemination
– T7.13 Use code dissemination scheme on top of Deluge
– T8.1 Use a Web-based dashboard solution for controlling firmware updates
– T8.2 Establish an Admin type of user role in the update process using a

Web-based dashboard to keep track of registered devices and versions of
firmware available

– T8.3 Establish a Firmware uploader/manufacturer type of user role in the
update process using a Web-based dashboard, who will be able to add dif-
ferent versions of firmware for each device

– T8.4 Establish a Firmware user role in the update process using a Web-based
dashboard, in which new users must sign-up for being able to authenticate
and access to the dashboard and register their IoT device details for firmware
updates

– T8.5 Use Device fingerprinting, a technique used to forensically identify an
electronic device on the internet and avoid sending the firmware image to
the wrong device

– T9.1 Use encoded payload using a secure representation/format such as
JOSE (JSON Object signing Encryption)

– T9.2 The end node starts the FOTA image download
– T9.3 In response of acknowledgment, the server sends a full encrypted

firmware object
– T9.4 Use a Payload containing the encrypted FOTA data
– T9.5 Perform acknowledgment when required to every object in the network

from the client-side to the server
– T9.6 The server keeps track acknowledgments sent from client devices for

resuming when connection breaks
– T10.1 Use secure download of firmware from the server
– T10.2 FOTA initializes a trusted application
– T10.3 Use trusted application to calculate the checksum of file chunks
– T10.4 Use checksum calculation of firmware File for verification
– T10.5 FOTA reads signature of firmware file and provides it to a trusted

application
– T10.6 Use checksum and signature trusted application to verify the firmware
– T10.7 Use Emmc/NAND flash drivers for writing firmware to flash
– T10.8 Send firmware update status to FOTA application and reboot
– T11.1 Use creation of the smart contracts

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 146



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 9

– T11.2 Use direct distribution of firmware update, directly from the server
of the manufacturer

– T11.3 Use peer-to-peer firmware update, happening between devices of the
same type and from the same manufacturer

– T12.1 Use Flash-Over-CAN which is the basis for wireless software updates
– T12.2 Use partial software Updates, which download only the changed parts

of the update binary
– T13.1 Perform version check
– T13.2 Perform update code testing
– T13.3 Perform Rollbacks when needed
– T14.1 Download an updated module from a software repository
– T14.2 Add linker metadata to the resulting binary module through a com-

pilation step
– T14.3 Check compatibility with the already deployed modules maintained

in a binary module repository, through a compatibility analysis step
– T14.4 Verify the module in a simulation or digital twin network, mirroring

the actual network, through a functional verification step
– T14.5 Encrypt and sign the update binary module
– T14.6 Transfer the binary module to the devices through a dissemination

step
– T14.7 Install and make the binary module operational, through an activa-

tion step
– T15.1 Use a client-server security architecture that includes strong authen-

tication
– T15.2 Use an implementation of hardware-assisted secure boot and run,

such as OTA Manager and Update Installer
– T15.3 Use security-hardened pre-installed, mobile and third-party apps to

enhance protection against attacks
– T15.4 Use secure Subscriber Identity Module (SIM) based authentication

between cellular and Wi-Fi networks using Access Network Discovery and
Selection Function (ANDSF)

– T15.5 Include ability to update software at component level and provision
for strong reversion to basic factory software in case of OTA update failure

– T15.6 Dynamically compare two versions of the firmware and create a delta
file to minimize network bandwidth utilization

– T15.7 Use OTA management to track all client revisions and determine the
lifecycle of the software versions

– T15.8 Include reliably secure data transfer end-to-end with an inbuilt resilience-
layer for handling network interruptions, no coverage areas and minimizing
data retransmission

– T16.1 Use public key pre-installation and management
– T16.2 Use higher key decryption complexity on constrained node devices
– T17.1 Perform confirmation of a firmware update when is available over an

FTP server
– T17.2 Download the released update file into a T5320A+G flash memory

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 147



10 Villegas and Astudillo

– T17.3 Store and verify the firmware update
– T17.4 Identify the targeted end device
– T17.5 Reprogram the targeted end device
– T17.6 Verify software update succeeded
– T18.1 Update the control software when the device receives a firmware file

through an HTTP POST request
– T18.2 Check periodically for new updates available through a management

software
– T18.3 Store the firmware file in the flash drive when it arrives
– T18.4 Before upgrading, the integrity, security, and robustness of the firmware

file must be validated to check if the downloaded file matches the one on the
server

– T19.1 Use MQTT10 for critical security patches or Software firmware up-
dates which cannot wait and need reliable, guaranteed and fast delivery

– T19.2 Use MQTT + CoAP11 (CoAP encapsulated inside MQTT), which
utilizes MQTT protocol as base and encapsulates CoAP protocol inside
MQTT as URL

– T19.3 Use CoAP Only for communicating IoT devices and Gateway. Once
the Gateway has received software package, it forwards it to CoAP clients

– T20.1 Include user network analysis, including host IP address, file names of
firmware, the current version of firmware, device brands and types of routers

– T20.2 Use single-user or batch updating settings depending on different
situations

– T20.3 Use update schedule to arrange multi-period updating tasks and sus-
pend or resume tasks of update modules

– T20.4 Use single-user and batch update processes to execute firmware up-
date. A Batch update process solves large numbers of routers firmware up-
date. A single user update process solves on-demand and urgent firmware
update

– T21.1 Use a server that uses representational state transfer (REST) archi-
tecture to perform the request and receive a response via HTTP protocol

– T21.2 Assign a specific identifier to a newly uploaded file, which can be
fetched by a RESTful API ’GET’ request

– T21.3 Periodic checks by the gateway for latest updated versions of firmware
– T21.4 Serial communication between gateway and end device after firmware

update permanent storage
– T21.5 Communicate the firmware update file size along with the number of

bits that will be transmitted
– T21.6 Transmit update file through serial cable from the gateway to the

end nodes
– T21.7 In an end device, all received binary data will be stored into its

temporary storage to reduce the memory consumption

10 http://mqtt.org/
11 https://coap.technology/

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 148



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 11

– T22.1 Use End-to-End Security, in which a device must verify that OEM
originates a firmware update it receives, and OEM must specify device-
specific constraints on the update

– T22.2 Use update authorization from a controller, in which the controller
must control which firmware updates must be installed on Device

– T22.3 Include attestation of the update installation, by obtaining a verifiable
proof of successful update installation

– T22.4 Include protection of Code and Secret Keys on Device for code in-
tegrity

– T22.5 Impose minimal computational and storage burden on Device

3.3 Results from grey literature

Step PH2.1 (searching grey literature with Google Search) yields eight relevant
information sources (see (Table 2), of which six are recognized organizations and
institutions, and two are recognized tech blogs in the software and IoT industry.

Table 2. Results from search in Google Search engine

Search Results PH2.1

Google Search
engine

49500 but only 35
were shown since
Google omitted not
relevant entries
(4 pages of search)

8 selected:
1. Texas Instruments
2. DZone
3. Cloud Security Alliance (CSA)
4. Internet Engineering Task Force (IETF)
5. European Union Agency for Network
and Information Security (ENISA)
6. Particle
7. INRIA
8. EUROSMART

From Texas Instruments12 [4], extracted recommendations were grouped in
R1 groups of recommendations. From DZone13 [1], in R2. From Cloud Security
Alliance (CSA)14 [2], in R3. From Internet Engineering Task Force (IETF)15 [3],
in R4. From European Union Agency for Network and Information Security
(ENISA)16 [20], in R5. From Particle17 [5], in R6. From INRIA18 [23], in R7.
And from EUROSMART19 [24], in R8.

12 http://www.ti.com/
13 https://dzone.com/
14 https://cloudsecurityalliance.org/
15 https://www.ietf.org/
16 https://www.enisa.europa.eu/
17 https://docs.particle.io/
18 https://hal.inria.fr/
19 https://www.eurosmart.com/

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 149



12 Villegas and Astudillo

Identified and extracted recommendations (R groups):

– R1.1 OTA deployment operator security
– R1.2 Incremental roll-out of OTA updates
– R1.3 Securely downloading the update
– R1.4 Security from physical attacks
– R1.5 Authenticating the OTA update image
– R1.6 Minimizing intrusion
– R1.7 Reversion if the OTA image fails to boot successfully
– R2.1 Automatic recovery from corrupted or interrupted updates is a must
– R2.2 Code provenance and integrity checks are essential
– R2.3 Code compatibility verification is advisable
– R2.4 Use secure communication channels by default
– R2.5 Partial updates should be possible
– R3.1 Backup the current working configuration of IoT device before apply-

ing an update
– R3.2 Rollbacks should be supported; however, older images should not be

reloaded without vendor authorization
– R3.3 System design should allow administrators to schedule updates to their

devices to avoid network saturation and limit unintended downtime
– R3.4 Vendors should support configuration options by system administra-

tors in support of automatic updates
– R3.5 One component must manage updates of multiple microcontrollers

that compose IoT devices
– R3.6 Update strategy, differential or complete image should be adapted to

the bandwidth constraint
– R3.7 Updates should be authenticated and integrity protected from end-to-

end
– R3.8 Verification signing keys storage must be secured
– R3.9 Provide a recovery procedure to cover update failure
– R3.10 Ensure a long-term support contract by vendors
– R4.1 The update mechanism must deliver by broadcast, allowing updates

to reach multiple users at once
– R4.2 End-to-end security must be used to verify and validate firmware im-

ages
– R4.3 Rollback attacks must be prevented
– R4.4 All information necessary for a device to make a decision about the

installation of an update must fit into the available RAM of a constrained
IoT device

– R4.5 A power failure at any time during the update process must not cause
a failure of the device

– R4.6 The firmware update mechanism must not require changes to existing
firmware file formats

– R4.7 The new firmware update mechanism must be able to operate with a
small bootloader, specific to most IoT devices

– R4.8 The update mechanism must account for multiple permissions

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 150



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 13

– R4.9 The new IoT firmware update architecture must support manifest files
containing specific details about the update

– R5.1 Ensure that the device software/firmware, its configuration, and its
applications can update Over-The-Air (OTA)

– R5.2 Ensure the update server is secure
– R5.3 Ensure that the update file is transmitted via a secure connection
– R5.4 Ensure that the update file does not contain sensitive data
– R5.5 Ensure that the update file is signed by an authorized trust entity and

encrypted using accepted encryption methods
– R5.6 Ensure that the update package has its digital signature, and signing

certificate chain, verified by the device before the update process begins
– R5.7 Offer an automatic firmware update mechanism
– R5.8 Backward compatibility of firmware updates
– R5.9 Automatic firmware updates should not modify user-configured pref-

erences, security, and/or privacy settings without user notification
– R6.1 Atomic updates
– R6.2 Automatic rollbacks
– R6.3 Minimal disruption
– R6.4 Application and Device OS version management Support for updates

for sleeping devices
– R6.5 Encrypted communications
– R6.6 Sender verification
– R6.7 Firmware releases
– R6.8 Release by device groups
– R6.9 Intelligent firmware releases
– R7.1 Produce firmware updates that are integrity-protected and authenti-

cated
– R7.2 Trigger the device to fetch (via push or pull) and verify the integrity

and authenticity of a firmware image and then reboot
– R7.3 Delegate authorization to another maintainer, in case of new ownership

or change of contracts (we use the same technique to switch trust anchor
when it expires or has to be revoked)

– R7.4 Reconfigure the device so that cryptographic algorithms can be up-
graded if needed

– R8.1 Control the installation and update of the software in operating sys-
tems

– R8.2 The device should include a secure boot process, verifying that the
device bootloader and kernel have not been modified

– R8.3 Roll-back to a secure state after a security breach occurs or if an
upgrade is not successful

– R8.4 Transmit Update file via a secure connection
– R8.5 Update file shall not contain sensitive data
– R8.6 Prevent reverting to old software versions
– R8.7 Encrypt update file using accepted encryption methods

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 151



14 Villegas and Astudillo

– R8.8 Verify signature and certificate in the device before the update process
begins

– R8.9 Perform firmware updates Automatically
– R8.10 Non-disruptive updates
– R8.11 Ensure an update is signed cryptographically
– R8.12 Implement run-time protection and secure execution
– R8.13 Implement resistance to perturbation, ensuring that the device is

resistant to perturbation attacks that could lead to the malfunctioning of
the device

– R8.14 Encrypt data during processing ensuring that the data is not exposed
during the update process or accessed by an unauthorized party

– R8.15 Implement Code obfuscation to protect the confidentiality of source
codes/binaries from reverse engineering and IP theft

– R8.16 Implement Generic Error messages to ensures that the error messages
do not reveal any sensitive information to an attacker

– R8.17 Robust password recovery and reset mechanism In the event of an
authentication failure for users safely and securely reset or recover lost and
forgotten passwords

– R8.18 Prevent Version Downgrade by verifying update files versions, to
ensure that the device is not being updated with an older and vulnerable
version of the firmware

– R8.19 Ensures that the trust is maintained on devices by checking for au-
thenticity and integrity of the update file using its signature before the file
is executed

– R8.20 Reduces human intervention in update processes
– R8.21 Ensure updates do not cause disruptions by altering user settings

4 RQ1: A Taxonomy for OTA Updates Mechanisms

This section organizes the gathered information on OTA update solutions, yield-
ing (1) a taxonomy of OTA update mechanisms, and (2) a catalog of techniques
for each mechanism. The OTA update taxonomy is based on grouping and ho-
mologating the recommendations extracted (R groups), by relating recommen-
dations regarding their aimed quality attribute (QA) inside the OTA update
process and deriving into six mechanisms. The techniques catalog elaboration
was based on mapping the extracted techniques (T groups) with the mechanisms
(M items).

Tables 3 and 4 homologate recommendations presented in the R1 to R8
groups into six mechanisms. The mechanisms are represented by the M items:

– M1. Mechanism for secure and safe updates
– M2. Mechanism for updates management
– M3. Mechanism for code dissemination, propagation and installation
– M4. Mechanism for system recovery
– M5. Mechanism for updates scheduling
– M6. Mechanism for elaboration and packaging

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 152



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 15

Table 3. Mechanisms classification (part 1)

R
1
.1

R
1
.2

R
1
.3

R
1
.4

R
1
.5

R
1
.6

R
1
.7

R
2
.1

R
2
.2

R
2
.3

R
2
.4

R
2
.5

R
3
.1

R
3
.2

R
3
.3

R
3
.4

R
3
.5

R
3
.6

R
3
.7

R
3
.8

R
3
.9

R
3
.1

0

R
4
.1

R
4
.2

R
4
.3

R
4
.4

R
4
.5

R
4
.6

R
4
.7

R
4
.8

R
4
.9

R
5
.1

R
5
.2

R
5
.3

R
5
.4

R
5
.5

R
5
.6

R
5
.7

R
5
.8

R
5
.9

M1 X X X X X X X X X X X X X X X X X X X X

M2 X X X

M3 X X X

M4 X X X X X X

M5 X X

M6 X X X X X X

Table 4. Mechanisms classification (part 2)

R
6
.1

R
6
.2

R
6
.3

R
6
.4

R
6
.5

R
6
.6

R
6
.7

R
6
.8

R
6
.9

R
7
.1

R
7
.2

R
7
.3

R
7
.4

R
8
.1

R
8
.2

R
8
.3

R
8
.4

R
8
.5

R
8
.6

R
8
.7

R
8
.8

R
8
.9

R
8
.1

0

R
8
.1

1

R
8
.1

2

R
8
.1

3

R
8
.1

4

R
8
.1

5

R
8
.1

6

R
8
.1

7

R
8
.1

8

R
8
.1

9

R
8
.2

0

R
8
.2

1

M1 X X X X X X X X X X X X X X X X X X X X X

M2 X X X X X X

M3

M4 X X X

M5 X X

M6 X X

Tables 5-7 show the classification of the techniques presented in the T1 to
T22 groups. The classification was based on mapping the mechanisms of the
OTA update taxonomy with the techniques, deriving into a techniques catalog
for OTA updates in the IoT and CPS context. The taxonomy and catalog can
be used by engineers and practitioners while designing OTA update systems for
CPS or IoT systems.

Table 5. Techniques classification into mechanisms (part 1)

T
1
.1

T
1
.2

T
1
.3

T
1
.4

T
1
.5

T
1
.6

T
1
.7

T
1
.8

T
2
.1

T
2
.2

T
2
.3

T
2
.4

T
2
.5

T
3
.1

T
3
.2

T
3
.3

T
3
.4

T
3
.5

T
3
.6

T
3
.7

T
3
.8

T
3
.9

T
3
.1

0

T
3
.1

1

T
3
.1

2

T
3
.1

3

T
4
.1

T
4
.2

T
4
.3

T
4
.4

T
4
.5

T
4
.6

T
4
.7

T
4
.8

T
4
.9

T
4
.1

0

T
4
.1

1

T
5
.1

T
5
.2

T
5
.3

T
6
.1

T
6
.2

T
6
.3

T
6
.4

T
6
.5

T
6
.6

M1 X X X X X X X X X X X X X X X

M2 X X X X X

M3 X X X X X X X X X X X

M4

M5

M6 X X X X X X X X X X X X X X X

The proposed taxonomy is shown in Figure 1. The techniques catalog is
shown in Figure 2. Each mechanism in the proposed taxonomy is described as
follows:

1. Mechanism for secure and safe updates (M1): Performs the download
of the update files through secure channels without exposing the system to
possible attacks through software or hardware.

2. Mechanism for updates management (M2): Allows vendors or users
to create strategies for controlling and performing updates physically or re-
motely.

3. Mechanism for code dissemination, propagation, and installation
(M3): Defines the update dissemination and installation strategy and ex-
poses the update details and information to orchestrate the installation in
IoT or CPS networks.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 153



16 Villegas and Astudillo

Table 6. Techniques classification into mechanisms (part 2)

T
7
.1

T
7
.2

T
7
.3

T
7
.4

T
7
.5

T
7
.6

T
7
.7

T
7
.8

T
7
.9

T
7
.1

0

T
7
.1

1

T
7
.1

2

T
7
.1

3

T
8
.1

T
8
.2

T
8
.3

T
8
.4

T
8
.5

T
9
.1

T
9
.2

T
9
.3

T
9
.4

T
9
.5

T
9
.6

T
1
0
.1

T
1
0
.2

T
1
0
.3

T
1
0
.4

T
1
0
.5

T
1
0
.6

T
1
0
.7

T
1
0
.8

T
1
1
.1

T
1
1
.2

T
1
1
.3

T
1
2
.1

T
1
2
.2

T
1
3
.1

T
1
3
.2

T
1
3
.3

T
1
4
.1

T
1
4
.2

T
1
4
.3

T
1
4
.4

T
1
4
.5

T
1
4
.6

T
1
4
.7

M1 X X X X X X X X X X X X

M2 X X X X X X

M3 X X X X X X X X X X X X X X X X X X X X X

M4 X X X

M5 X

M6 X X X X

Table 7. Techniques classification into mechanisms (part 3)

T
1
5
.1

T
1
5
.2

T
1
5
.3

T
1
5
.4

T
1
5
.5

T
1
5
.6

T
1
5
.7

T
1
5
.8

T
1
6
.1

T
1
6
.2

T
1
7
.1

T
1
7
.2

T
1
7
.3

T
1
7
.4

T
1
7
.5

T
1
7
.6

T
1
8
.1

T
1
8
.2

T
1
8
.3

T
1
8
.4

T
1
9
.1

T
1
9
.2

T
1
9
.3

T
2
0
.1

T
2
0
.2

T
2
0
.3

T
2
0
.4

T
2
1
.1

T
2
1
.2

T
2
1
.3

T
2
1
.4

T
2
1
.5

T
2
1
.6

T
2
1
.7

T
2
2
.1

T
2
2
.2

T
2
2
.3

T
2
2
.4

T
2
2
.5

M1 X X X X X X X X X X X X X X

M2 X X X X X X X X X

M3 X X X X X X X X X X X

M4 X

M5 X X

M6 X X

4. Mechanism for system recovery (M4): Allows uninstalling an updated
image in case of malfunctioning after the update and exposes a way for
recovering to an initial and stable state on the end devices.

5. Mechanism for updates scheduling (M5): Allows the scheduling of the
updates by vendors or users remotely or through a local application.

6. Mechanism for elaboration and packaging (M6): Structures and orga-
nizes the update image in full or partial updates, and specifies the strategy
for the compression/decompression of update images/packages in both the
server and the end device.

Fig. 1. OTA Update Mechanisms Taxonomy

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 154



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 17

Fig. 2. OTA Update Techniques Catalog

5 Conclusions

OTA (Over-the-air) Update is an essential functionality of IoT and Cyber-
Physical Systems. This article presented the design and results of a systematic
literature review of academic and grey (professional) literature, which addresses
two research questions about (1) which approaches have been proposed and (2)
how they can be classified. Two hundred six (206) approaches were identified,
132 in academic literature, and 74 in grey sources. A careful analysis led to clas-
sify then into six common mechanisms, allowing to create an (initial) catalog of
techniques for OTA update systems.

Although OTA update systems are not a new topic, most of the grey liter-
ature reports describe only empirical information or learned experiences, rather
than reflective approaches or standardization; indeed, we found evidence for
only one draft standardization proposal. This undoubtedly leads developers and
OEMs to develop and implement non-standard and ad-hoc, empirically-based
OTA software update systems.

We also detected that OTA update systems are essential to all IoT or CPS
system design since improvements and maintenance are continuously required
after deployment. OTA update systems must be designed to exhibit several qual-
ity attributes: scalability (since any amount of devices might be in a network);
availability (since images must be ready to be used for performing updates and
devices can not stop working after updates); and security (since downloads, au-
thentications, and installation must always be in a secure way).

Since there are several technologies and techniques that can be included in a
design, having a taxonomy of mechanisms and a catalog of techniques will allow
practitioners to quickly identify design options. Further work will explore how
to help designers to compare alternatives and make actual design decisions with
the available information.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 155



18 Villegas and Astudillo

Acknowledgments

This work has been partially supported by ANID PCHA/Doctorado Nacional
under grant 2017-21171351 and ANID PIA/APOYO AFB180002 (CCTVal).

References

1. Califano, J. 2018. “How to Approach OTA Updates for IoT”, DZone (2018-06-19).
https://dzone.com/articles/how-to-approach-ota-updates-for-iot.

2. Cloud Security Alliance. 2018. “Recommendations for IoT Firmware Up-
date Processes”. https://downloads.cloudsecurityalliance.org/assets/research/
internet-of-things/recommendations-for-iot-firmware-update-processes.pdf.

3. Moran, B., Meriac, M. and Tschofenig, H. 2017. “A Firmware Up-
date Architecture for Internet of Things Devices”. https://tools.ietf.org/html/
draft-moran-suit-architecture-00.

4. Lethaby, N. 2018. “A more secure and reliable OTA update architecture for IoT
devices”. http://www.ti.com/lit/wp/sway021/sway021.pdf.

5. Particle. 2018. “OTA Firmware Updates”. https://docs.particle.io/tutorials/
device-cloud/ota-updates.

6. Lee, E. A. 2010. “CPS foundations”. Design Automation Conference, pp. 737-742.
7. Villegas, M. M., Orellana, C. and Astudillo, H. 2019. “A study of over-the-air (OTA)

update systems for CPS and IoT operating systems”. Proceedings of the 13th Euro-
pean Conference on Software Architecture-Volume 2, pp. 269-272.

8. Orellana, C., Villegas, M. M. and Astudillo, H. 2019. “Mitigating Security Threats
through the use of Security Tactics to design Secure Cyber-physical Systems (CPS)”.
Proceedings of the 13th European Conference on Software Architecture-Volume 2.
pp. 109-115.

9. Loukas, G. 2015. “Cyber-Physical Attacks: A Growing Invisible Threat”. 1st edition,
Butterworth-Heinemann.

10. Seifert, D. and Reza, H. 2016. “A Security Analysis of Cyber-Physical Systems
Architecture for Healthcare”. Computers. 5. 24.

11. Orellana, C., Villegas, M. M. and Astudillo, H. 2019. “Architectural Tactics for
Scalability”. XXII Ibero-American Conference on Software Engineering, pp. 128-140.

12. Kavya, M., Kishore, C. and Rajath Kumar, K. S. 2018. “Verification and validation
of data on Wi-Fi Over The Air(OTA)”. 3rd IEEE International Conference on Recent
Trends in Electronics, Information and Communication Technology, pp. 429-433.

13. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J. and Linkman,
S. 2009. “Systematic literature reviews in software engineering – A systematic liter-
ature review”. Inf. Softw. Technol. 51, 1, 7–15.

14. Park, H., Kim, H., Kim, S., Mah, P. and Lim, C. 2019. “Two-phase dissemination
scheme for CoAP-based firmware-over-the-air update of wireless sensor networks:
demo abstract”. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems. Association for Computing Machinery, pp. 404–405.

15. Mbakoyiannis, D., Tomoutzoglou, O. and Kornaros, G. 2019. “Secure over-the-air
firmware updating for automotive electronic control units”. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing. Association for Computing
Machinery, pp. 174–181.

16. He, X., Alqahtani, S., Gamble, R. and Papa, M. 2019. “Securing Over-The-Air
IoT Firmware Updates using Blockchain”. In Proceedings of the International Con-
ference on Omni-Layer Intelligent Systems. Association for Computing Machinery,
pp. 164–171.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 156



OTA Updates Mechanisms: A Taxonomy and Techniques Catalog 19

17. Brown, S., Sreenan, C.J. 2013. “Software Updating in Wireless Sensor Networks:
A Survey and Lacunae”. Journal of Sensor and Actuator Networks. 2. pp. 717-760.

18. Halder, S., Ghosal, A. and Conti, M. 2019. “Secure OTA Software Updates in
Connected Vehicles: A survey”. ArXiv, abs/1904.00685.

19. Ruckebusch, P., De Poorter, E., Fortuna, C. and Moerman, I. 2015. “GITAR:
Generic extension for Internet-of-Things ARchitectures enabling dynamic updates of
network and application modules”. Ad Hoc Networks. 36.

20. European Union Agency for Network and Information Security (ENISA).
2017. “Baseline Security Recommendations for IoT in the context of Crit-
ical Information Infrastructures”. https://www.enisa.europa.eu/publications/
baseline-security-recommendations-for-iot/at\ download/fullReport

21. National Telecommunications and Information Administration (NTIA) - Existing
Standards, Tools and Initiatives Working Group (WG1). 2017. ”Catalog of Existing
IoT Security Standards Version 0.01” (2017-09-12). https://www.ntia.doc.gov/files/
ntia/publications/iotsecuritystandardscatalog draft 09.12.17.pdf

22. Asokan, N., Nyman, T., Rattanavipanon, N., Sadeghi, A. and Tsudik, G. 2018.
“ASSURED: Architecture for Secure Software Update of Realistic Embedded De-
vices”. ArXiv, abs/1807.05002.

23. Zandberg, K., Schleiser, K., Acosta, F., Tschofenig, H. and Baccelli, E. 2019. “Se-
cure Firmware Updates for Constrained IoT Devices Using Open Standards: A Re-
ality Check“. IEEEAccess, IEEE, 7, pp.71907-71920.

24. Eurosmart. 2019. “Technical Report TR-e-IoT-SCS-Part-2”. https://www.
eurosmart.com/wp-content/uploads/2019/11/Part-2-Eurosmart IoTsCS-GPP v1.
2 RELEASE.pdf

25. Kauer, F., Meyer, F. and Turau, V. 2017. “A holistic solution for reliable over-
the-air software updates in large industrial plants”. 13th Workshop on Intelligent
Solutions in Embedded Systems, pp. 29-34.

26. Kumar, S. K., Sahoo, S., Kiran, K., Swain, A. K. and Mahapatra, K. K. 2018. “A
Novel Holistic Security Framework for In-Field Firmware Updates”. http://dspace.
nitrkl.ac.in/dspace/bitstream/2080/3140/1/2018 ISES SKumarK NovelHolistic.pdf

27. Kim D., Nam H. and Kim D. 2017. “Adaptive Code Dissemination Based on Link
Quality in Wireless Sensor Networks”. IEEE Internet of Things Journal. 4. 3. pp.
685-695.

28. Thakur, P., Bodade, V., Achary, A., Addagatla, M., Kumar, N. and Pingle, Y.
2019. “Universal Firmware Upgrade Over-The-Air for IoT Devices with Security”.
6th International Conference on Computing for Sustainable Global Development, pp.
27-30.

29. Nikolov, N. 2018. “Research Firmware Update Over the Air from the Cloud”. IEEE
XXVII International Scientific Conference Electronics - ET, pp. 1-4.

30. Thantharate, A., Beard, C. and Kankariya, P. 2019. “CoAP and MQTT Based
Models to Deliver Software and Security Updates to IoT Devices over the Air”.
International Conference on Internet of Things and IEEE Green Computing and
Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart
Data, pp. 1065-1070.

31. Doddapaneni, K., Lakkundi, R., Rao, S., Kulkarni, S. G. and Bhat B. 2017. “Se-
cure FoTA Object for IoT”. IEEE 42nd Conference on Local Computer Networks
Workshops, pp. 154-159.

32. Chandra, H., Anggadjaja, E., Wijaya, P. S. and Gunawan, E. 2016. “Internet of
Things: Over-the-Air (OTA) firmware update in Lightweight mesh network protocol
for smart urban development”. 22nd Asia-Pacific Conference on Communications,
pp. 115-118.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 157



20 Villegas and Astudillo

33. Dhobi, R., Gajjar, S., Parmar, D. and Vaghela, T. 2019. “Secure Firmware Up-
date over the Air using TrustZone”. Innovations in Power and Advanced Computing
Technologies, pp. 1-4.

34. Witanto, E. N., Oktian, Y. E., Kumi, S. and Lee, S. 2019. “Blockchain-based OCF
Firmware Update”. International Conference on Information and Communication
Technology Convergence, pp. 1248-1253.

35. Steger, M., Boano, C. A., Niedermayr, T., Karner, M., Hillebrand, J., Roemer,
K., Rom, W. 2018. “An Efficient and Secure Automotive Wireless Software Update
Framework”. In IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp.
2181-2193.

36. Varadharajan, V. S., Onge, D. S., Guß, C. and Beltrame, G. 2018. “Over-the-Air
Updates for Robotic Swarms”. In IEEE Software, vol. 35, no. 2, pp. 44-50.

37. Teng, C., Gong, J., Wang, Y., Chuang, C. and Chen, M. 2017. “Firmware over
the air for home cybersecurity in the Internet of Things”. 19th Asia-Pacific Network
Operations and Management Symposium, pp. 123-128.

38. Bauwens, J., Ruckebusch, P., Giannoulis, S., Moerman, I. and Poorter, E. D. 2020.
“Over-the-Air Software Updates in the Internet of Things: An Overview of Key
Principles”. In IEEE Communications Magazine, vol. 58, no. 2, pp. 35-41.

39. Khurram, M., Kumar, H., Chandak, A., Sarwade, V., Arora, N. and Quach, T.
2016. “Enhancing connected car adoption: Security and over the air update frame-
work”. IEEE 3rd World Forum on Internet of Things, pp. 194-198.

40. Kim, J. Y., Hu, W., Shafagh, H. and Jha, S. 2018. “SEDA: Secure Over-the-Air
Code Dissemination Protocol for the Internet of Things”. In IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 1041-1054.

41. Mirfakhraie, T., Vitor, G. and Grogan, K. 2018. “Applicable Protocol for Updating
Firmware of Automotive HVAC Electronic Control Units (ECUs) Over the Air”.
IEEE International Conference on Internet of Things and IEEE Green Computing
and Communications and IEEE Cyber, Physical and Social Computing and IEEE
Smart Data, pp. 21-26.

42. Edgar, T. W. and Manz, D. O. 2017. ”Research Methods for Cyber Security, Chap-
ter 2 - Science and Cyber Security”. Syngress.

43. Liu, Q., Shen, J., Xiao, B., Wang, B. W. and Linge, N. 2015. “EECD: A Code
Dissemination protocol in a WSN-based Home Energy Management System”. IEEE
International Conference on Consumer Electronics, pp. 279-280.

44. Do, Dinh-Sy and Young, K. 2015. “Lightweight Reprogramming and Energy Bal-
ancing in Wireless Sensor Networks.” International Journal of Distributed Sensor
Networks. 2015. 1-8.

45. Krasniewski, M. D., Panta, R. K., Bagchi, S., Yang, C.-L., and Chappell, W. J.
2008. “Energy-efficient on-demand reprogramming of large-scale sensor networks”.
ACM Trans. Sen. Netw. 4, 1, Article 2, 38 pages.

46. Zheng, X. and Sarikaya, B. 2009. “Task dissemination with multicast deluge in
sensor networks”. In IEEE Transactions on Wireless Communications, vol. 8, no. 5,
pp. 2726-2734.

47. Dong, W., Chen, C., Liu, X., Bu, J. and Gao, Y. 2011. “A lightweight and density-
aware reprogramming protocol for wireless sensor networks”. In IEEE Transactions
on Mobile Computing, vol. 10, no. 10, pp. 1403-1415.

48. Zhao, Z., Bu, J., Dong, W., Gu, T. and Xu, X. 2015. “CoCo + : Exploiting cor-
related core for energy efficient dissemination in wireless sensor networks”. Ad Hoc
Networks. 37.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 158


