
Agile and software engineering, an invisible bond

Alvaro Ruiz de Mendarozqueta1, Fabio O. Bustos2 and Pedro E. Colla3

1 aruizdemendarozqueta@gmail.com, 2fabio.oscar.bustos@gmail.com, 3 pedro.colla@gmail.com
Universidad Tecnológica Nacional – Regional Córdoba1

Córdoba – Córdoba - Argentina

Abstract. The bond between agile practices and Software Engineering practices is clear and apparent for sea-
soned practitioners with experience on the operation of high maturity development environments, yet it’s often ig-
nored on the domain bibliography where most hybrid approaches are adopted. This article reviews a sensible sam-
ple of the bibliography to confirm that trend and develop a map between what long established Software Engineer-
ing practices and concepts stated as agile foundation principles. Previous research efforts are integrated into rein-
forcing which aspects of an agile-based project need to be addressed with priority to protect the additional value
yield by the usage of these methodologies.

Keywords: Agile, System Modelling, Software Engineering, Real Option Value

1 Background

In order to achieve their business goals, the organizations need to implement technologically advanced
software-based platforms; often needing to, partially or totally, develop them to ensure they meet the
business requirements as set by the competitive landscape.

Software development is, to some extent, a low maturity engineering practice; at least compared with
other branches of the engineering domain. Metrics shown by the industry, in terms of schedule compli-
ance, cost containment and ability to meet requirements are in general terms far from what is considered
acceptable in other industries (Jorgensen K. M., 2003).

Over time, good practices emerged aiming to improve different aspects of the software development
cycle, which eventually evolved as a cohesive body of knowledge known today as Software Engineering
(Fairley & Bourque, 2014).

In order avoid subjectivity into the measurement of the organization’s compliance with recommended
practices, different reference models such as CMMI ™ (Team, 2010), COBIT (ISACA, 2018) or even
tailored versions of more generic quality frameworks such as ISO-9000 (ISO, 2020) evolved. Such refer-
ence models and standards were eventually used to objectively compare organization’s capabilities, and
to mitigate the software development risks through the deployment and systematic usage of process prac-
tices and goals. The strategy to implement Software Engineering disciplines using a convergence to refer-
ence models were embraced by large industry players, eager to show up their capabilities to mitigate risks
as a competitive edge compared with other vendors unable to show the same strength.

A rigorous deployment and institutionalization of a formal process reference model, and the discipline
and costs associated with maintaining it over time, were adopted by a relatively small number of players
willing to do the long term commitments and investments required (M. Staples, 2007).

Other organizations, either because of lack of scale or because software development wasn’t within
their main domain of competences, found it difficult to justify the investments required to embrace a for-
mal process quality framework as their primary strategy to achieve their business goals. However, at the
same time these organizations still need to develop software as a crucial component of their competitive-
ness, or even survival; but they identify the formal and rigorous adoption of Software Engineering prem-
ises as way too costly to afford; at the same time, they might be impacted by cost, time and quality issues
derived from using a less rigorous methodological approach.

Agile methodologies all of the sudden stormed into the Software Engineering landscape as an attrac-
tive solution for small and medium businesses, which become able to achieve reasonable performance
into grasping the value out of their software development efforts with a relatively small investment and
organizational effort to institutionalize (Cockburn A. , 2007). There is no surprise in the huge adoption
rate in the industry.

1 Work partially funded by grant PID SIUTNCO0004902

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 225

mailto:fabio.oscar.bustos@gmail.com
mailto:pedro.colla@gmail.com

Under close study the value proposition of the agile methodologies shows the main advantage is com-
ing from introducing some formal and strict development framework into the project execution. This
factor can be further understood when it’s possible to map that, by using some popular agile methodology
such as SCRUM, most of the requirements for an organization to demonstrate compliance with CMMI ™

level 3 can be demonstrated (McMahon, 2010). Plenty of organizations can map the usage of agile meth-
odologies as part of their roadmap to achieve higher levels such as CMMI ™ Level 5 (McMahon, 2010)
(Maller, C.Ochoa, & Silva, 2004). This is confirmed by the professional experience of the authors apply-
ing agile methodologies on environments operating at SEI-CMMI Level 5 maturity level and seeing no
contradiction whatsoever among them.

Besides the benefits from a more rigorous project execution being introduced into the development
process, the flexibility to quickly align and adapt the software development activities to the business pri-
orities; that seamless decision capability also yield value to the project and can be successfully modeled
using a financial instrument called “real options” which assess the value gained by the organization by

continuously decide ways to optimize their outcomes. When this evaluation is made, a significant incre-
ment in the project value emerges from this factor ((Beck & Boehm, Agility through Discipline: a debate,
2003)) (Colla P. , 2012) (Colla P. , 2016).

The additional value proposition isn’t coming without some problems on their own, as a key under-
standing and strict adoption of the methodologies involved are still required. Different authors (Ismail,
2016) (Bhasin, 2012) (Miller, 2013) (Caballero, Calvo-Manzano, & Feliu, 2011) discuss problems faced
by agile methodologies in terms of delays, additional costs and product quality issues, as well as the ex-
istence of significant product backlogs. These are, basically, the issues Software Engineering has histori-
cally evolved to address.

In the professional experience of the authors, the association between agile methodologies and Soft-
ware Engineering practices are often rejected by agile practitioners as not compatible, even further in
plain contradiction. Especially when the overall perception leads to the notion that most of the flexibility
provided by agile methodologies can be lost if paired with Software Engineering concepts.

The authors will address in this article the intuition that a strong, albeit sometimes hidden, the bond
does exist between Software Engineering practices and agile methodologies, using SCRUM as the refer-
ence methodology for such analysis.

2 Agile and Software Engineering relationship at a fundamental level

The traditional approach has been that software is a tool for organizations to improve their internal
productivity through automation efforts. The current competitive landscape drives the need for a platform
to improve or even been part of the value chain to produce their income, and therefore being subject to
continuous competitive pressure to innovate in very short times. This is a very volatile context where the
development methodology has to support very fast development cycle times.

Ever since Ken Beck developed the ground rules of the agile methodologies, till their current massive
adoption level the bibliography proliferated with platforms, usage guidelines, strategies to implement and
practical examples in different industries (Rico, 2008) (Cohen, et al., 2004) (Pikkarainen & Passoja,
2005)(Pikkarainen & Mantyniemi, 2006) (Rico, s.f.) (Favaro, 2003) (Favaro, 2004).

The agile approach, which is contained as part of the Agile Manifesto (Beck, et al., 2001) (Duncan,
2019) prioritizes individual actions and their interactions over process and tools, leverage the software as
documentation, cooperation and close teamwork with the customer (product owner) above negotiation
and, perhaps the most significant component, incorporate change into the methodology rather than oppos-
ing it following a pre-defined plan.

“We are uncovering better ways of developing software by doing it and helping others do it. Through
this work we have come to value:

● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more. "

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 226

3

Figure 1 Agile conceptual modeling (Morse, 2012)

Given the known problems of traditional software development such as massive delays, products that

did not fulfill its purpose adequately after years of development and cost overruns, a group of pioneers
thought of a radical paradigm shift. The traditional paradigm tries to establish the requirements compre-
hensively at the beginning of the project, whose duration is fixed, and then to estimate, based on the de-
velopment plan, the effort, the necessary resources, and the schedule to be fulfilled.

There are multiple examples of failure, delays, and problems in such paradigm. In the new paradigm
(Cockburn A. , 2007), as shown in Figure 1 Agile conceptual modeling , a fixed time window is estab-
lished, a small team of developers is organized and functionality is continuously evaluated, with the per-
manent help of the "owner" of the requirements providing the necessary sponsorship.

 The manifesto is complemented by 12 principles that highlight some fundamental ground rules such
as customer integration in the development process, ownership by the entire team of everything that is
produced, and a sustainable pace of work.

In brief, the dominant principles are:
1. Our highest priority is to satisfy the customer through early and continuous delivery of valua-

ble software.
2. Welcome changing requirements, even late in development. Agile processes harness change

for the customer's competitive advantage.
3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.
4. Business people and developers must work together daily throughout the project.
5. Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.
6. The most efficient and effective method of conveying information to and within a develop-

ment team is face-to-face conversation.
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity --the art of maximizing the amount of work not done-- is essential.
11. The best architectures, requirements, and designs emerge from self-organizing teams.
At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

Efforts have been made to establish a structured time retrospective on the evolution of agile disciplines

and software engineering practices (Agile Alliance, 2020), but we have preferred a more holistic ap-
proach based on a group of relevant bibliographic references in the judgment of the authors.

It comes as not a surprise the manifesto is solidly supported by the practices and principles of software
engineering. Albert Endres and Dieter Rombach (Endres & Rombach, 2003) say that ‘Requirement defi-
ciencies are the prime source of project failures’ so interactions and customer collaboration are critical for
project success. This statement is covering principles 1 and 4.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 227

Gerald Weinberg (Weinberg, 1992), reviewing different definitions of quality conclude that ‘Quality is

value for some person’, covering principle 1. It is also related to principle 4 because delivering working
software soon is the way of adding value to the customers which, far from being a surprise, is strongly
supported by value management financial principles involving time and risk as to the main contributors or
detractors for it (Brealey & Myers, 2016)

In a classic paper Davis (Davis, Bersoff, & Comer, 1988) remarks that ‘For every application beyond
the trivial, user needs are constantly evolving. Thus, the system being constructed is always aiming at a
moving target’ this statement not only supports the manifesto values, but also address principle 2. Anoth-
er source for supporting principle 2 comes from the very CMM foundation as Watts Humphrey
(Humphrey, 1989) says that trying to have stable requirements is a misconception: ‘We must start with
firm requirements’ he concludes.

Deliver software to customers as fast as possible is referenced by Alan Davis (Davis A. , 1994); Mary
and Tom Poppendieck (Poppendieck & Poppendieck, 2003) says that ‘Rapid delivery is an operational
practice that provides a strong competitive advantage’ addressing principle 3.

Not fulfilling what is stated in principle 4 is mentioned by Steve McConnell (McConnell S. , 1996) as
one of the project classic mistakes.

Robert L. Glass (Glass, 2002) collects facts and fallacies of software engineering, one of the facts is a
classic one: ‘Requirements errors are the most expensive to fix when found during production but the
cheapest to fix early in development’ that is clearly related to principles, 1, 3 and, 4. This topic is the
main theoretical foundation on why the contention of defects needs to be performed on a given cycle
avoiding them to cascade into the following.

Principle 5 is referred and addressed by many authors, Boehm (Boehm, Improving Software
Productivity, 1987) stated ‘Management of people. The next most significant influence by far is that of
the selection, motivation, and management of the people involved in the software process. Steve
McConnell (McConnell S. , 1996) referred to the lack of motivation as one of the project’s classic mis-
takes. He says ‘Undermined motivation. Study after study has shown that motivation ably has a larger
effect on productivity and quality than any other factor’ and refers to (Boehm, Improving Software
Productivity, 1987). Tom DeMarco and Tim Lister (DeMarco & Lister, 1987) strongly state the im-
portance of productive teams. Alistair Cockburn and Jim Highsmith (Cockburn & Highsmith, 2001)
stress individual competence as a critical factor in project success and identifies the emphasis on people
skills as a key factor underlying in all Agile methodologies.

Regarding principle 6, Tom DeMarco and Tim Lister (DeMarco & Lister, 1987) addressed different
problems in order to develop productive teams including communication. Luke Hohmann devoted a full
chapter (Communication) (Hohmann, 1997) proposing a communication framework to get the best com-
munication possible. Daniel Coleman (Coleman, 2015) stated that ‘Interpersonal and group communica-
tion must travel multiple dimensions and optimal performance enabling the connection between two
brains in the field of leadership goes through ways to improve emotional intelligence itself’ and focuses

on the way we communicate as a key issue to improve performance.
The meaning of what is a working software is fully covered in the traditional books of Software and

Quality Engineering [(Sommerville, 2015), (Weinberg, 1992), (Fairley & Bourque, 2014), (McConnell S.
, 1996), (Martin R. , 2012) among others]. Tom Gilb, (Gilb, 1988) developed an entire framework called
‘Evolutionary Delivery’ that includes several elements of the Agile Manifesto and the Scrum Framework.
Some of the elements and definitions of the method are: ‘Early, frequent iteration’, ‘Complete analysis,
design, build and test at each step’, ‘Result orientation, not software development process orientation’,

‘On not knowing, and keeping it small and simple’, covering principles 3, 7, 8 and 10.
In our understanding, the lack of quality and poor design leads to rework and thus a high Cost of Poor

Quality (CoPQ), which disables the possibility to deliver value fast and introduces wasted effort being
therefore one of the most counterproductive factors for team motivation (Ruiz de Mendarozqueta, Bustos,
& Colla, 2019). Traditional books of Software and Quality Engineering (Sommerville, 2015), (Weinberg,
1992), (Fairley & Bourque, 2014), (McConnell S. , 1996), (Martin R. , 2012) among others covered the
topic and it is straightforward to see how the poor quality erodes delivering value fast.

‘Requirements gold-plating’ and ‘Developers gold-plating’ are mentioned by Steve MacConnell

(McConnell S. , 1996) as project classic mistakes; Mary and Tom Poppendieck (Poppendieck &
Poppendieck, 2003) stated ‘Eliminate Waste’ as one of the fundamental principles explained as avoiding

rework and not developing unnecessary functionality. All these references pointed out to simplicity, the
main component of principle 10.

The Principle 11 is anchored to the definition of a system as a ‘set of elements, dynamically related,
that interact by exchanging information and energy to obtain a result providing information and energy’

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 228

5
(Meadows, 2008); it is easy to apply the definition to the software. Systems theory says that the behavior
of the system is determined by its structure (Meadows, 2008). The structure of the system is determined
by the architecture and design (Sommerville, 2015), (Endres & Rombach, 2003), (Fairley & Bourque,
2014), (McConnell S. , Code Complete, 1993). Emerging architecture (SAFe): the architecture that
emerges is the result of refining the initially proposed architecture, or intentional architecture, with the
feedback of the developers in each iteration, verifying the quality of the design and code.

The Scrum embrace, inspect and adapt (Institute) philosophy implements principle 12. This principle
addresses the very well-known software engineering principle for continuous improvement (Humphrey,
1989), (Sommerville, 2015).

3 Relationship between Agility, Scrum and Software Engineering Practices

In the previous section we made a strong case that all basic agile premises are actually well established
Software Engineering practices, which would lead as a reasonable conclusion that agile methodologies
are a well-integrated corpus of practices that represents just another way to address requirements under
the umbrella of the Software Engineering domain.

To further support our views the authors selected a small sample of bibliography on agility, without
any attempt to avoid any skewness but aiming to have a fair coverage of the bibliography and by no
means exhaustive but often cited on academic efforts and as part of the daily professional exercise, and
reviewing that small corpus sample with focus on frameworks such as Scrum and XP. An immediate
observation shows there is a noticeable scarcity of direct references for implementing software engineer-
ing practices. In the Table 1, we summarize a sample of a group of references and their relationship to
software engineering practices and vice-versa.

Table 1 Software Engineering Bibliographical cross-reference

Reference References between agile and software engi-
neering

(Shore & Warden, S., 2008) Brief reference to software design
(Cohn, Succeding with Agile, 2010) Brief reference to software design and code refactor
(Beck & Boehm, Agility through Discipline: a debate, 2003) Referencing size of projects using XP
(Lan & Balasubramaniam, 2007) No references
(SCRUMstudy, 2013) No references
(Deemer, Benefield, Larman, & Vodde, 2012) No references
(Schwaber & Sutherland, The Scrum Guide, 2017) No references
(Boehm & Turner, Management Challenges to Implementing
Agile Processes in Traditional Development Organizations,
2005)

Minor references

(Martin R. , 2012) Code design and code quality in detail.
No reference to agile methods nor Scrum.

(Sommerville, 2015) Scrum and XP introduction but there is no relation with the
other topics of software engineering

(O’Regan, 2017) No references
(Schwaber, A CIO’s Playbook for Adopting the Scrum Method

of Achieving Software Agility, 2005)
It does not prescribe software engineering practices.
Recommend to keep it simple and to let the team decides

(Duncan, 2019) Minor references to design
(Poppendieck & Poppendieck, 2003) Some general references to design approaches
(Cohn, Essential Scrum, 2012) Minor references
(McConnell S. , More Effective Agile: A Roadmap for Software
Leaders, 2019)

Minor references to code quality

(Martin R. , 2019) A chapter with coding practices
(Stellman, 2014) No references
(Fairley & Bourque, 2014) Reference to Agile as a Method in Software Engineering

Models and Methods chapter
(Johnson & Sims, 2012) No references

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 229

Software engineering bibliography, on the other hand, often considers agile methodologies as part of
their body of knowledge. A lack of symmetry is observed as most of the available bibliography for agile
methodologies avoid to reference their recommendation and practices as the actual implementation of
different disciplines proposed by Software Engineering sources.

It is worth mentioning that, at the dawn of the agile methodologies (Cohen, Lindvall, & Costa, 2004)
they emerged to overcome the drawbacks presented by the waterfall style lifecycle. From that perspective
agile practitioners saw little value in adopting well defined processes which they perceived as rigid and
value detractors while, at the same time, high maturity organizations working in compliance with SEI-
CMMI™ based reference models identified that agile methods addressed most of the intermediate maturi-
ty requirements (Paulk, 2002). This trend seems to have been widespread as agile methodologies became
mainstream since their inception.

A systematic bibliography review, presented in Table 2, shows that over a sample deemed relevant of
20 papers on agile topics; only 6 papers (30%) contain explicit references to Software Engineering princi-
ples and/or practices, 4 papers (20%) contain indirect references, and 10 papers (50%) contain no refer-
ence at all. This is taken as an indicator that agile sources do a weak bridge between the concepts they
describe which present correspondences with Software Engineering methods and principles.

Table 2: Agile Methodologies Papers Bibliographical cross-reference

The very same factors that erode into the value on typical non-agile software development projects are

observed on projects using agile methodologies; it is not difficult to observe these factors are often not
addressed as systemic problems that hinder the capability to address them. Factors such as defect fallback
from one cycle (sprint) to the next, rework effort, the increased effort devoted to addressing the technical
debt on the product backlog and the need to rigorously validate & verify the developed components are
observed with enough frequency to be self-evident. In this sense, statistics from Chaos Standish Group
(Liebert, 2019), shows that “agile project success rates are two times higher than success rates of water-
fall projects. However, it also states that over 50% of evaluated projects have failed to meet all require-
ments of project constraints — time, budget and scope”. Those figures reveal a poor performance record,
even for the most successful software development methodology applied in the industry today.

4 Systemic modeling of the agile methodologies value

In his landmark book (Weinberg, 1992), Gerald Weinberg states that a systemic view and system mod-
eling for software management and steering patterns, is needed for coping with the traditional software
development problems.

A previously developed line of work exploring the value of SCRUM (Colla P. , 2012) (Colla P. , 2016)
followed by the exploration of typical software development issues and how they are expressed on typical

Reference Agile and Software Engineering
(Bustard, Wilikie, & Greer, 2013) (Hoda, Salleh, & Grundy, 2018) (Cohen,
Lindvall, & Costa, 2004) (Kuhrmann, et al., 2019)
(Ebert & Paasivaara, 2017) (Harvie & Agah, 2016)

Papers on Agile methodologies that contain
explicit references to Software Engineering. In
general, the agile process which considers SW
Engineering practices are different SCRUM
flavors, particularly when done at-scale. The
emergence of hybrid development flavors
(water-scrum-fall) is also observed.

(Vijayasarathy & Butler, 2016) (Mohan, Ramesh, & Sugumaran, 2010)
(Falessi, et al., 2010)
 (Karlstrom, 2005)

Papers on Agile methodologies that contain
indirect references to Software Engineering. In
general the references appear in connection with
SW architecture or overarching product man-
agement practices.

(Mantovani Fontana, Reinehr, & Malucelli, 2015)
 (Vallon, Strobl, Bernhart, Prikladnicki, & Grechenig, 2016) (Dingsøyr,
Fægri, Dybå, Haugset, & Lindsjørn, 2016)
 (Chora, et al., 2020)
 (Bick, Spohrer, Hoda, Scheerer, & Heinzl, 2018)
 (Jorgensen M. , 2019)
 (Kersten, 2018)
 (Cockburn & Highsmith, 2001) (Akbar, 2019)
 (Telemaco, Oliveira, Alencar, & Cowan, 2020)

Papers on Agile methodologies that do not
contain references to Software Engineering. It is
observed that some of these papers discuss well-
known development issues (e.g. coordination
among teams, need of a maturity model for
agile, requirements management, need of met-
rics to evaluate performance, etc.), without
reverting to the well-established practice base
provided by the SW Engineering to address
them.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 230

7
agile projects (Ruiz de Mendarozqueta, Bustos, & Colla, 2019) show that without great care to manage
the main parameters of the software development cycle, an agile approach provides some extra protection
of the project ultimate value, but at some point might end up eroding on that value. Software processes
don’t usually introduce restrictions to apply any given methodology of choice, only to deploy the controls

to ensure no inviolate is actually overridden.
Simulation means seems to be the handiest tool to evaluate the relationship between depending varia-

bles of the system with their independent counterparts, as well as to explore the potential relationship and
the degree of independence among variables. Any evaluation made based on simulation requires a fair
estimation of the values assigned to different parameters and their assumed distributions; clearly not
much more than an advance to stronger quantitative methods based on field information.

The adoption of mature and well-proven as effective Software Engineering practices preserves the val-
ue of the project, by minimizing deviation with the business scenarios in terms of cost and calendar. This
aims to achieve the overall balance of income and expenditure as well as optimizing other organizational
and intangible factors typically factored into the opportunity cost used to discount cash flows, in this way
the value can be measured by using the Net Present Value (NPV) of the project flows. The analysis tries
to grasp the value for the organization from an investment standpoint, as it considers the cash flow and
the risk to materialize it from a given a-priori point of view.

Simultaneously, the possibility to prioritize requirements over time, in a way that enhances almost con-
tinuously the value proposition of the organization, configures options, which can be valued using the
Real Option Valuation methods (Brealey & Myers, 2016) (Mun, 2002).

The overall relationship among systemic variables can be expressed as a cause-effect model (Ruiz de
Mendarozqueta, Bustos, & Colla, 2019) where the two main contributors to the overall value, the Net
Present Value (NPV) and the Option Price Value (OPV) are established as dependent variables of several
independent variables defined by the industry and organizational context as well as the decisions taken
and results obtained during the project execution, being the sum of both values named the extended net
present value of the project (eNPV) The resulting cause-effect model used represent independent varia-
bles defined by the organization outside the scope to manage from within the project whilst other organi-
zational factors are represented by some assumed distribution and finally with intermediate variables with
some systemic relation with the rest to express, understand, simulate and extract conclusions from the
systemic overall behavior into the dependent variables of interest.

From that approach, the main interest is to evaluate mainly factors that erode the total value of the pro-
ject, which, in turn, is represented by the net present value defined by cash flows involved on it plus the
option values introduced by the agile methodology itself. The details of the analysis can be obtained in
the referenced bibliography and won’t be reproduced here due to of lack of space. But, as a summary,
when projects with typical organizational values and intermediate variables distributions deemed as rea-
sonable or supported by the bibliography are evaluated, some conclusions can be obtained as a further
insight on the factors involved in the value erosion.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 231

Figure 2 Sensitivity of total value with manageable factors and influence of main contributors ((Ruiz
de Mendarozqueta, Bustos, & Colla, 2019)

From the identified contributors to the project extended net present value on agile projects, the most

relevant is the CoPQ followed by some expression of the Phase Containment of Errors (PCE) which
measures how much of the quality issues of one sprint is carried to the incoming as “technical debt”. This

effect can be rationalized considering the defects a value waste and the carry-over to be affected by a cost
increase factor (K), as part of the value added nature of activities on subsequent sprints and thus repre-
senting to the project net productivity hit if that happens. Agile methodologies do introduce additional
sources of value, which creates buffers to manage deviations probably better than other methodologies;
this can be seen as a qualitative confirmation on the reason why organizations prefer agile over other
methods.

However, at the same time a conclusion is that if no attention is paid to structural process variables
such as the ones traditionally watched by Software Engineering disciplines, eventually, the value is erod-
ed to a point that, even with the added value of agile methodologies, the results turn against the organiza-
tion. The conclusions of prior work suggest that CoPQ can be in the neighbor of 18% as the upper ac-
ceptable limit, and 80% as the lower limit for PCE for this effect to be noticeable. It comes as no surprise
that these values are in the neighbor of those achieved by organizations in their early effort of applying
structured methodologies traditionally recommended by traditional Software Engineering sources and
matched values reported by the bibliography (Sandu & Salceanu, 2018) as obtained on successful typical
agile projects; therefore, even minimal deviations might push the project beyond profitability, evidencing
a link, somewhat hidden in the bibliography, between agile methodologies and Software Engineering
practices not referenced in the bibliography. The results of the simulation, although preliminary, seem to
be in line with some of the flow items of software value streams, namely defects and debt, identified by
Kersten (Kersten, 2018)

5 Best practices and lessons learned

The results shown by the previous analysis at the conceptual, bibliographic and systemic dimensions,
although preliminary, seem to be pretty consistent with the practical experience of the authors in real-
world projects of different sizes and complexities where, more often than not, the projects where old fash-
ioned Software Engineering fundamentals are not enforced, the technical debt increases with the succes-
sive sprints eroding customer trust in the new features incrementally delivered, generating schedule over-
runs at a product level, and forcing to add extra effort, and hence cost, in the form of additional sprints
whose backlog is mainly composed of defect-correction stories. Very little is included in the agile meth-
odologies corpus reinforcing the need to take special care for these technical aspects. This kind of situa-
tion is against some of the Agile principles, first and foremost the one that states that “Our highest priority

is to satisfy the customer through early and continuous delivery of valuable software”. The value of the
software is put then in question and could actually be destroyed if the project deviates from its goals be-
yond acceptable thresholds. More often than not, the actual investment the software project enables is
highly leveraged with a much bigger investment return, and therefore, the entire investment is jeopard-

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

eN
P

V
[%

]

Factor within range for dependent variable outcome

eNPV=f(CoPQ,PCE)

PCE

CoPQ

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 232

9
ized. In addition to that, the effort consumed by sprints devoted to defect correction stories is essentially
waste, contradicting therefore the Agile principle that states that “Simplicity – the art of maximizing the
amount of work not done, is essential”. Author´s experience shows that in order to fulfill at product level
the Agile principle that “working software is the primary measure of progress”, certain practices and met-
rics borrowed from the plan-driven software engineering processes may be relevant to be exercised.
In terms of instruments, ways, and means to protect value, what the experience shows and the results of
the simulation preliminary confirm is that, by large, the Cost of Poor Quality is the main driver in terms
of value erosion all along the development cycle of actual software products, especially considering that a
typical development cycle normally takes a significant number of sprints. This result is aligned with the
classical principle that states that the cost of fixing a bug increases exponentially through the development
process (Boehm & Basili, Software Defect Reduction Top 10 List, 2001). Attention needs to be paid
about the importance of the capability to detect and correct errors in the sprint where they were intro-
duced, which is measured by the PCE metric, as defects escaped from one sprint to the following ones
erode value with greater speed because of the value added nature of the activities of subsequent sprints.
An immediate conclusion is the need to create a stronger awareness about the foundation nature of the
Software Engineering practices, and the need to blend them in the day to day agile activities. Map how
the different major goals correlates to agile activities needs to be done and understood by the team, met-
rics collection on subjects other than velocity and crump down related evolutions needs to be introduced
as well. The authors believe that the definition of practices and collection of these metrics shall be as agile
as the rest of the process, for example identifying the stories where defects from previous sprints need to
be corrected and deriving PCE from them, and considering the story points of the backlog devoted to
defect correction stories as a measure of CoPQ. In the same manner, as a burn down chart is kept and
used as a measure of progress, curves of planned vs actuals of PCE and CoPQ could be kept and used as
key elements for product release decisions and for appropriate planning of successive sprints.

6 Future work

Further work is needed to develop ideas toward a framework following the line of work of the I+D effort
this paper is part of, including the identification of prototype projects where factual data can be extracted
for further validation of the premises, as well as to collect metrics enabling the comparison of defect and
phase containment behavior consistent with the ones captured from the bibliography. The results, in terms
of product defects and development costs, could then be compared with those of similar projects that have
not introduced these practices. Also further characterization the emergent trend to apply hybrid approach-
es to software development in terms of mixtures between agile and Software Engineering process models
is needed. Particularly for projects at some larger scale, where the importance of uncover, understand and
effectively applying the links between these two approaches will be increasingly important for practical
purposes and, as such, a topic for further relevant research work.

7 Bibliography

Agile Alliance. (2020, 08 12). Agile Practices Timeline. Retrieved from Agile Practices:

https://www.agilealliance.org/agile101/practices-timeline/
Akbar, R. (2019). Tailoring Agile-Based Software Development Processes. IEEE Access, 2019.
Alegrìa, J. H., & Bastarrica, M. (2007). Implementing CMMI using combination of Agile methods.

V9(N1).
Appleton, B., Berczuk, S., & Cowham, R. (2005). The Agile Difference for SCM. Retrieved from

CrsossRoads: https://www.cmcrossroads.com/article/agile-difference-scm
Banerjee, A., Narasimhan, B., & Kanakalata, C. (2011). Experience of Executing Fixed Price Off-shored

Agile Projects. Proceedings of the 4th India Software Engineering Conference. ACM.
Beck, K., & Boehm, B. (2003). Agility through Discipline: a debate. June 2003.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 233

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., . . . Thomas, D.
(2001). Principles behind the Agile Manifesto. Retrieved from
http://agilemanifesto.org/principles.html

Bhasin, S. (2012). Quality Assurance in Agile –A study towards achieving excellence. pp. pp 64-67.
Bick, S., Spohrer, K., Hoda, R., Scheerer, A., & Heinzl, A. (2018). Coordination Challenges in Large-

Scale Software Development: A Case Study of Planning Misalignment in Hybrid Settings. IEEE
Transactions on Software Engineering, Year: 2018, Volume: 44, Issue: 10.

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The Journal of
Political Economy, V81(N3), pp. pp 637-654.

Boehm, B. (1987). Improving Software Productivity. IEEE Software.
Boehm, B., & Basili, V. R. (2001). Software Defect Reduction Top 10 List. IEEE Computer, January

2001.
Boehm, B., & Turner, R. (2005). Management Challenges to Implementing Agile Processes in Traditional

Development Organizations.
Brealey, R., & Myers, S. (2016). Principles of Corporate Finance 12th Edition. McGraw-Hill, 6th

Edition.
Bustard, D., Wilikie, G., & Greer, D. (2013). The Maturation of Agile Software Development Principles

and Practice: Observations on Successive Industrial Studies in 2010 and 2012. 20th Annual
IEEE International Conference and Workshops on the Engineering of Computer Based Systems
(ECBS).

Caballero, E., Calvo-Manzano, J., & Feliu, T. S. (2011). Introducing Scrum in a Very Small Enterprise: A
Productivity and Quality Analysis. pp. pp. 215-224.

Chora, M., Springer, T., Kozik, R., López, L., Martínez-Fernandez, S., Ram, P., . . . Franch, X. (2020).
Measuring and Improving Agile Processes in a Small-size SoftwareDevelopment Company.
IEEE Access (Volume: 8), 2020.

Clark, B. (2000). Quantifying the effects of Process Improvement on Effort. IEEE Software. Nov 2000.
Cockburn, A. (2007). Agile Software Development. , Addison-Wesley.
Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People Factor. IEEE Computer

Year: 2001, Volume: 34.
Cohen, D., Lindvall, M., & Costa, P. (2004). An Introduction to Agile Methods. ADVANCES IN

COMPUTERS, VOL. 62.
Cohn, M. (2010). Succeding with Agile. Addison Wesley.
Cohn, M. (2012). Essential Scrum. Adisson Wesley.
Coleman, D. (2015). El cerebro y la inteligencia emocional: Nuevos descubrimientos. Penguin Random

House Grupo Editorial España.
Colla, P. (2012). Marco para evaluar el valor en metodología SCRUM. La Plata-Argentina.: 13th

Argentine Symposium on Software Engineering.
Colla, P. (2016). Uso de opciones reales para evaluar la contribución de metodologías KANBAN en

desarrollo de software. Tres de febrero: SADIO ISSN: 2451-7593.
Davis, A. (1994). FIFTEEN PRINCIPLES OF SOFTWARE ENGINEERING. IEEE.
Davis, A., Bersoff, E., & Comer, E. (1988). A Strategy for Comparing Alternative Software Development

Life Cycle Models. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO.
IO,.

Deemer, P., Benefield, G., Larman, C., & Vodde, B. (2012). Scrum Primer. Retrieved 05 31, 2020, from
https://scrumprimer.org/

DeMarco, T., & Lister, T. (1987). Peopleware. Dorset House.
Dingsøyr, T., Fægri, T. E., Dybå, T., Haugset, B., & Lindsjørn, Y. (2016). Team Performance in Software

Development Research Results versus Agile Principles. IEEE Software (Volume: 33 , Issue: 4 ,
July-Aug. 2016).

Duncan, S. (2019). Understanding Agile Values & Principles. C4Media, InfoQ.com.
Ebert, C., & Paasivaara, M. (2017). Scaling Agile. IEEE Software (Volume: 34 , Issue: 6 ,

November/December 2017).
Endres, A., & Rombach, D. (2003). A Handbook of Software and Systems Engineering. Pearson Addison

Wesley.
Fairley, R., & Bourque, P. (2014). SWEBOK v 3.0 Guide to the Software Engineering Body of

Knowledge. IEEE Computer Society.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 234

11
Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G., Subiaco, P., & D’Amore, C. (2010). Peaceful

Coexistence: Agile Developer Perspectives on Soft-ware Architecture. IEEE Software Year:
2010, Volume: 27, Issue: 2.

Fritzche, M., & P.Keil. (2007). Agile Methods and CMMI: Compatibility or Conflict ?
Gilb, T. (1988). Principles of Software Engineering Management. Addison-Wesley.
Glass, R. (2002). Facts and Fallacies of Software Engineering. Addison Wesley.
Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or agile: why not embrace

both! SEI TECHNICAL NOTE.
Goldenson, D., A.Liu, & Jianping, Q. (2006). CMMI-Based Process Improvement: How and When Does

Success Happen? CMMI Technology Conference: Software Engineering Institute.
Good, J. M. (2003). A Pragmatic Approach to the Implementation of Agile Software Development

Methodologies in Plan-Driven Organisations (MSc Thesis). Lincoln University.
Hallowell, D.L. (2003). Six Sigma Software Metrics Maturity. Retrieved 2019, from iSixSigma:

https://www.isixsigma.com/industries/software-it/exploring-defect-containment-metrics-agile/
Harvie, D., & Agah, A. (2016). Targeted Scrum: Applying Mission Command to Agile Software

Development. IEEE Transactions on Software Engineering (Volume: 42 , Issue: 5 , May 1 2016
).

Hoda, R., Salleh, N., & Grundy, J. (2018). THE RISE AND EVOLUTION OF AGILE SOFTWARE
DEVELOPMENT. IEEE Software (Volume: 35 , Issue: 5 , September/October 2018).

Hohmann, L. (1997). Journey of the Software Professional . Prentice Hall.
Hummel, O., & Burger, S. (2013). A pragmatic means of measuring the complexity of source code

ensembles.
Humphrey, W. S. (1989). Managing the Software Process. Addison-Wesley.
Hung, M., & So, L. (2010). The Role of Uncertainty in Real Option Analysis.
Institute, S. (n.d.). Scrum Institute. Retrieved 06 08, 2020, from https://www.scrum-institute.org/inspect-

and-adapt-scrum-framework.php
ISACA. (2018). COBIT 5 Framework. In ISACA.
Ismail, N. (2016). UK wasting 37 billion a year on failed agile IT projects. Retrieved from

https://www.information-age.com/uk-wasting-37-billion-year-failed-agile-it-projects-
123466089/

ISO. (2020, 06 08). ISO 9000:2015. Retrieved from https://www.iso.org/obp/ui/es/#iso:std:iso:9000:ed-
4:v1:es

Johnson, H., & Sims, C. (2012). Scrum: a Breathtakingly Brief and Agile Introduction. Dymaxicon.
Jorgensen, K. M. (2003). A review of software surveys on software effort estimation. Proceedings ISESE

2003. , (pp. pp-223-230). Rome, Italy.
Jorgensen, M. (2019). Relationships Between Project Size, Agile Practices, and Successful Software

Development Results and Analysis. IEEE Software Year: 2019 Volume: 36, Issue: 2.
Karlstrom, R. (2005). Combining agile methods with stage-gate project management. IEEE Software,

Year: 2005, Volume: 22, Issue: 3.
Kersten, M. (2018). What Flows through a Software Value Stream? IEEE Software Year: 2018, Volume:

35, Issue: 4.
Knox, S. (1993). Modeling the Cost of Software Quality. pp. pp 9-16.
Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., McCaffery, F., . . . Prause, C. R. (2019).

Hybrid Software Development Approaches in Practice: A European Perspective. IEEE Software
(Volume: 36 , Issue: 4 , July-Aug. 2019).

Kunz, M., Dumke, R. R., & Zenker, N. (2008). Software Metrics for Agile Software Development. pp.
pp. 673-678 .

Lan, C., & Balasubramaniam, R. (2007). Agile Software Development: Ad Hoc Practices or Sound
Principles. April 2007.

Lawlis, P. K., M., F. R., & B., T. J. (1995). A Correlational Study of the CMM and Software
Development Performance. pp. pp. 21-25.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 235

Lee, G., & Xia, W. (2010). TOWARD AGILE: AN INTEGRATED ANALYSIS OF QUANTITATIVE
AND QUALITATIVE FIELD DATA ON SOFTWARE DEVELOPMENT AGILITY. pp. pp
87-114.

Liebert, F. (2019). BARRIERS TO SUCCESSFUL REALIZATION OF NEW PRODUCT
DEVELOPMENT PROJECTS IN THE IT INDUSTRY. Silesian University of Technology,
Faculty of Organization and Management.

M. Staples, M. R. (2007). An exploratory study of why organizations do not adopt CMMI. The Journal of
Systems and Software 80 , p.p. 883–895.

Mahnic, V. (2012). A Capstone Course on Agile Software Development using SCRUM. IEEE
TRANSACTIONS ON EDUCATION, VOL. 55, NO. 1, FEBRUARY 2012.

Maller, P., C.Ochoa, & Silva, J. (2004). Lightening the software production process in a CMM level 5
framework. IEEE Latin American Transactions, V3(N1)(pp 15-22).

Mantovani Fontana, R., Reinehr, S., & Malucelli, A. (2015). Agile Compass: A Tool for Identifying
Maturity in Agile Software Development Teams. IEEE Software (Volume: 32 , Issue: 6 , Nov.-
Dec. 2015).

Marcal, A., DeFreitas, B., Furtado, F., & Belchior, A. (2008). Blending SCRUM practices and CMMI
Project Management Process Areas. Innovation System Software(pp 18-29).

Martin, R. (2012). Código limpio: Manual de estilo para desarrollo ágil de software. Anaya.
Martin, R. (2019). Clean Agile: Back to Basics. Prentice Hall.
Matson, J., Barrett, B., & Mellichamp, J. (1994). Software development cost estimation using function

points. 20.4, pp. 275-287.
McConnell, S. (1993). Code Complete. Microsoft Press.
McConnell, S. (1996). Rapid Development. Microsoft Press.
McConnell, S. (2019). More Effective Agile: A Roadmap for Software Leaders. Construx Press.
McMahon, P. (2010). Integrating CMMI and Agile Development. Addison-Wesley Professional;.
Meadows, D. (2008). Thining in Systems: a primer. Chelsea Green.
Mendarozqueta, A. R., & Andriano, N. (2014). Un enfoque para la mejora continua basado en los

principios ágiles.
Miller, G. (2013). Agile problems, challenges, & failures. PMI® Global Congress 2013, pp. pp.1-8.
Mohan, K., Ramesh, B., & Sugumaran, V. (2010). Integrating Software Product Line Engineering and

Agile Development. IEEE Software (Volume: 27 , Issue: 3 , May-June 2010).
Morse, L. (2012). 3 Paradigm Shifts of Agile. Retrieved 05 04, 2019, from Solutions IQ:

https://www.solutionsiq.com/resource/blog-post/3-paradigm-shifts-of-agile/
Mukker, A., Mishra, A. K., & Singh, L. (2014). Enhancing Quality in Scrum Software Projects. pp. pp

682-688.
Mun, J. (2002). Real Options Analysis, Tools and Techniques for Valuing Strategic Investment and

Decisions. Hoboken, New Jersey: John Wiley & Sons.
O’Regan, G. (2017). Concise Guide to Software Engineering. Springer.
Paulk, M. C. (2002). Agile Methodologies and Process Discipline. Institute for Software Research. Paper

3.
Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Addison

Wesley.
Rafaela Mantovani Fontana, S. R. (n.d.).
Rico, D. F. (2008). What is the ROI of Agile vs. Traditional Methods? pp. pp. 9–18.
Ruiz de Mendarozqueta, A., Bustos, F., & Colla, P. (2019). Agile in practice, a systemic approach. Paper

accepted for 48 JAIIO-ASSE 2019, to be published in 49 JAIIO-ASSE 2020.
SAFe. (n.d.). Retrieved 06 08, 2020, from https://www.scaledagileframework.com/agile-architecture/
Sandu, I., & Salceanu, A. (2018). New approach to agile cycles containment effectiveness metrics in

automotive software development. pp. pp. 3-8.
Sargent, R. (2009). Verification and validation of simulation models. Proceedings of the 2009 Winter

Simulation Conference, ed. M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G.
Ingalls,.

Sauer, J. (2005). Agile Practices in Offshore outsourcing- An analysis of published experiences. ECSCW
2005.

Schwaber , K., & Sutherland, J. (2017). Scrum.org. Retrieved 06 31, 2020, from The home of Scrum:
https://www.scrum.org/resources/scrum-guide

Schwaber, K. (2005). A CIO’s Playbook for Adopting the Scrum Method of Achieving Software Agility.
Srum Alliance.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 236

13
Schwaber, K., & Sutherland, J. (2017). The Scrum Guide. Retrieved from Scrum.org
SCRUMstudy. (2013). A Guide to the SCRUM BODY OF KNOWLEDGE. Retrieved 05 31, 2020, from

https://www.scrumstudy.com/: https://www.scrumstudy.com/
Shore, J., & Warden, S. (2008). The Art of Agile Development. O’Reilly.
Shuterland, J., Jakobsen, C., & K.Johnson. (2008). Scrum and CMMI L5 The magic potion for the code

warriors. V(N).
Sommerville, I. (2015). SOFTWARE ENGINEERING 10th Edition. Pearson.
Stellman, A. (2014). Learning Agile: Understanding Scrum, XP, Lean, and Kanban. O’Reilly.
Team, C. P. (2010). CMMI for Development, version 1.3. Pittsburgh, Pennsylvania, USA: Software

Engineering Institute (SEI), November 2010.CMU/SEI-2010-TR-033.
Telemaco, U., Oliveira, T., Alencar, P., & Cowan, D. (2020). A Catalogue of Agile Smells for Agility

Assessment. IEEE Access, Year: 2020, Volume: 8.
Turner, R., & Jain, A. (2002). Agile meets CMMI: Culture clash or common cause. XP/Agile Universe

LNCS 2418.
Vallon, R., Strobl, S., Bernhart, M., Prikladnicki, R., & Grechenig, T. (2016). ADAPT A Framework for

Agile Distributed Software Development. IEEE Software (Volume: 33 , Issue: 6 , Nov.Dec.
2016).

Vijay, D., & Ganapathy, G. (2014). Guidelines to minimize the cost of software quality in agile SCRUM
process. Vol.5, No.3, pp. pp 61-69.

Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of Software Development Methodologies – Do
Project, Team and Organizational Characteristics Matter? IEEE Software (Volume: 33 , Issue: 5
, Sept.-Oct. 2016).

Vishal, S., & Kishen, I. (2007). Will Agile Methodologies work in offshore outsourcing? San Diego,
USA: SWDSI07.

Weinberg, G. (1992). Quality Software Management (Vol 1 Systems Thinking). Dorset House.

ASSE, Simposio Argentino de Ingeniería de Software

49JAIIO - ASSE - ISSN: 2451-7593 - Página 237

