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Abstract. The size of commercial wind turbines has increased dramatically in the last 25 years from approximately a 
rated power of 50kW and a rotor diameter of 10–15m up to today’s commercially available 5MW machines with a 
rotor diameter of more than 120 m. This development has forced the development of reliable numerical tools which 
enable the prediction of steady and unsteady aerodynamic loads not only in the wind turbine blades but also in the 
entire wind turbine construction, including tower, drive train, rotor and control system. 
Within this context, this paper presents a steady-state panel method formulation based code for aerodynamic load 
prediction in wind turbine blades. The formulation is fully three-dimensional accounting for wake and rotational 
angular speed effects. A 2MW wind turbine blade has been taken as a study case to demonstrate the code capabilities. 
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1 INTRODUCTION 

Since the demand for energy, more specifically electricity, has increased dramatically over the last 100 years, it has now 
become important to consider the environmental impacts of energy production. An increase reliance on the energy from 
the wind for instance, will decrease the chance of environmental impacts such as global warming, since this renewable 
energy resource does not emit greenhouse gasses and obviously produce no nuclear waste compared to most 
conventional sources of energy. Within this context, this paper focuses on the development of a blade design tool for 
horizontal axis wind turbines with variable geometry. The design tool consists of an in-house MATLAB program based 
on the Glauert Blade Element Theory, including blade pitching and blade twisting effects. The program enables 
predictions of aerodynamic power and forces acting on the wind turbine blades for a given operating condition. 
Numerical results in terms of aerodynamic performance are presented for a 2 MW wind turbine. 

The aerodynamic model for the wind turbine blades presented in this work is based on the Glauert Blade Element 
Theory. In this method the blade is divided into a number of independent sections along the length. At each section a 
force balance is applied involving 2D section lift and drag. At the same time a balance of axial and angular momentum 
is applied. This produces a set of non-linear equations that can be solved by iteration for each blade section. This theory 
does not include secondary effects such as 3-D flow velocities power and forces. Therefore, this work is going to 
present the Doublet Lattice Method to generate them for a wind turbine blade. 

The purpose of most wind turbine is extracting the most quantity of energy from wind. Therefore, each component of 
this turbine should be optimized for that purpose. 

mailto:s_lugones@hotmail.com�
mailto:donadon@ita.br�
mailto:scarabino@ing.unlp.edu.ar�


21st International Congress of Mechanical Engineering 
October, 24-28, Natal – RN Brazil 

 

It’s usual to consider that the turbine induces a velocity variation to the free stream velocity. The stream-wise induced 
component will be defined as −𝑎𝑈∞ and for now on, 𝒂 will be known as the ‘axial flow induction factor’ or inflow 
factor. 

The flow entering the actuator disc has no rotational motion at all. The flow exiting the disc does have rotation and that 
rotation remains constant as the fluid progresses down the wake. The transfer of rotational motion to the air takes place 
entirely across the thickness of the disc (see Figure 1.1). The change in tangential velocity is expressed in terms of a 
tangential flow induction factor (𝒂′). 
 

 
Figure 1.1. Tangential Velocity Grows Across the Disc Thickness [1] 

All of the data generated with the ‘blade element theory’ will be used as the input data to the numerical construction 
based on the panels method. 

The application of numerical techniques allows the treatment of more realistic geometries when compare with the 
analytical techniques. The doublet lattice method description presented here is based on the surface distribution of 
singularity elements, which is a logical extension of the analytical method found in the open literature. Since the 
solution is to reduce finding the strength of the singularity elements distributed along the body’s surface. This approach 
seems to be more economical, from the computational point of view, than the method that solve for the flowfield in the 
whole fluid volume (e.g., finite-difference method). Of course this comparison holds for inviscid incompressible flows 
only, whereas numerical methods such as finite-differences were basically developed to solve more complex flowfields 
where compressibility and viscous effects are not negligible. 

2 BLADE ELEMENT THEORY 

It is assumed that the forces on a blade element can be calculated by means of two-dimensional aerofoil characteristics 
using an angle of attack determined from the incident resultant velocity in the cross-sectional plane of the element; the 
velocity component in the span-wise direction is ignored. Three-dimensional effects are also ignored. 

The velocity components at a radial position of the blade expressed in terms of the wind speed, the flow factors and the 
rotational speed of the rotor will determine the angle of attack. Having information about how the aerofoil characteristic 
coefficients Cl and Cd vary with the angle of attack the forces on the blades for given values of 𝒂 and 𝒂′. can be 
determined. 

Consider a turbine with N blades of tip radius R each with chord c and set pitch angle 𝛽 measured between the aerofoil 
zero lift line and the plane of the disc. Both the chord length and the pitch angle may vary along the blade span. Let the 
blades be rotating at angular velocity Ω and let the wind speed be 𝑈∞. The tangential velocity (𝛺𝑟) of the blade element 
shown in Figure 2.1 combined with the tangential velocity of the wake (𝑎′𝛺𝑟)  means that the net tangential flow 
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velocity experienced by the blade element is (1 + 𝑎′)𝛺𝑟. Figure 2.2 shows all the velocities and forces relative to the 
blade chord line at radius r. 

 
Figure 2.1. A blade element sweep out an angular ring [1] 

From Figure 2.2 the resultant relative velocity at the blade is, 

𝑊 = �𝑈∞2(1 − 𝑎)2 + 𝛺2𝑟2(1 + 𝑎′)2 
2.1 

  
This equation will provide the velocity magnitude input data to the doublet lattice method (Figure 2.3)  

The resultant relative velocity (𝑊) acts at an induction flow angle 𝜙 to the plane of rotation (used as an input data too), 
such that, 

𝑠𝑖𝑛𝜙 =
𝑈∞(1 − 𝑎)

𝑊
 e 𝑐𝑜𝑠𝜙 =

Ω𝑟(1 + 𝑎′)
𝑊

 
2.2 

The angle of attack 𝛼 (being 𝛽 the pitch angle) is then given by: 

𝛼 = 𝜙 − 𝛽 2.3 

 
Figure 2.2. Blade Section forces and loads [1] 

2.1 Blade geometry design 

A turbine operating at a variable speed can maintain the constant tip speed ratio (𝜆), who is defined by 𝜆 = Ω𝑅
𝑈∞� , 

required for the maximum power coefficient to be developed regardless of the wind speed. To develop the maximum 
possible power coefficient it’s required suitable blade geometry; these conditions will now be derived. 

The flow induction factors for optimal operation will be defined by: 

𝑎 ≔
1
3

 e 𝑎′ =
𝑎(1 − 𝑎)
𝜆2𝜇2

 
2.4 

To determinate the chord of the blade along the span, 
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𝑁
2𝜋

𝑐
𝑅
λ𝐶𝑙 =

4λ2𝜇2𝑎′

�(1 − 𝑎)2 + (𝑎′𝜆𝜇)2
 

2.5 

Where we define 𝜇 = 𝑟
𝑅� , 𝐶𝑙 as the lift coefficient and 𝑁 as the number of blades. 

Combining equations 2.4 and 2.6 we get, 

𝑐(𝜇) =
8
9

��1 − 1
3�

2
+ 𝜆2𝜇2 �1 + 2

9(𝜆2𝜇2)�
2

2𝜋
𝑁

𝑅
𝐶𝑙λ

 
2.6 

The local inflow angle 𝜙 at each blade station also varies along the blade span as shown in Equation 2.7 and Figure 2.4. 
This angle is defined by: 

𝑡𝑎𝑛𝜙 =
(1 − 𝑎)

𝜆𝜇(1 + 𝑎′)
 

2.7 

 
Figure 2.3. Velocity variation along the span 

Close to the blade root the inflow angle is large which could cause the blade to stall in that region. If the lift coefficient 
is to be held constant such that drag is minimized everywhere then the angle of attack 𝛼 also needs to be uniform at the 
appropriate value. For a prescribed angle of attack variation the design pitch angle (𝛽 = 𝜙 − 𝛼, in Figure 2.4 a (Optimal 
Twist Angle)) of the blade must vary accordingly. 

2.2 A practical blade design 

The blade design of Figure 2.4 b (Optimal Required Chord) is efficient but complex to build, and therefore costly. 
Suppose that the planform was prescribed to have a uniform taper such that the outer part of the blade corresponds 
closely to Figure 2.4 b (Practical Chord). A straight line drawn through the 70 percent and 90 percent span points as 
shown that figure not only simplifies the planform but removes a lot of material close to the root. 

The expression for the new planform is, 

𝑐𝑢
𝑅

=
8

9𝜆0.8
�2 −

𝜆𝜇
0.8𝜆

�
2𝜋
𝐶𝑙𝜆𝑁

 
2.8 

The 0.8 in equation 2.8 refers to the 80 percent point, midway between the target points. 
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Equations 2.6 and 2.8 can be combined to give the required span-wise variation of 𝐶𝑙  for optimal operation. 

𝐶𝑙 =
8
9

1

𝑁𝑐𝑢𝜆
2𝜋 ��1 − 1

3�
2

+ 𝜆2𝜇2 �1 + 2
9(𝜆2𝜇2)�

2
 

2.9 

 
Figure 2.4. Optimum Blade Design for Three Blades and 𝝀 = 𝟔, a) Twist angle, b) Chord  

The lift coefficient can be written as a function of the angle of attack by the following way: 

𝐶𝑙 = 𝐶𝑙α𝛼 + 𝐶𝑙α0 2.10 

Therefore, the angle of attack can be written by: 

𝛼 =
𝐶𝑙 − 𝐶𝑙α0
𝐶𝑙α

 
2.11 

Where 𝐶𝑙α0  is the lift coefficient at zero angle of attack, 𝐶𝑙α is the slope of the 𝐶𝑙- 𝛼 curve. All of these dates can be 
provided by simple two-dimensional airfoil parameters curve. 

3 NUMERICAL EVALUATION USING THE DOUBLET LATICE METHOD  

3.1 Numerical evaluation routine 

To get a numerical solution for the potential flow problem, it’s necessary to establish a work sequence defined by the 
follows steps: 
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o Selection of the singularity element. It’s the first and one of the most important decisions. The selection of the 
source, doublet or vortex representation and the method of discretizing these distributions will vary with the 
analyzed type of problem  

o Grid and geometry discrezation. Once the basic solution element is selected, the geometry of problem has to 
be subdivided to implement them. In this grid generating process, the elements’ corner and collocation points 
are defined 

o Influence coefficient. In this phase, for each of this element, an algebraic equation is derived at the collocation 
point. To generate the coefficients in an automatic manner, a unit singularity strength is assumed and the 
element influence routine is called at each collocation points. 

o Establish RHS. The right-hand side of the matrix equation is the known portion of the free stream velocity and 
requires mainly the computation of geometrics quantities (e.g. −𝑄∞𝛼) 

o Solve linear set of equations. The set of equations is solved by standard matrix techniques. In this work, the 
Gaussian elimination is employed 

o Secondary calculations: load, velocity, etc. the solution of the matrix equation results in the singularity 
strengths providing the secondary calculations. 

3.1.1 Selection of the singularity element 

To define the panel, in this paper, we are going to make use of a quadrilateral geometry and the singularities will be 
taken as with constant intensity. 

Quadrilateral source 

Consider a surface element with a constant-strength source distribution 𝜎 per area bounded by four straight lines as 
describes in Figure 3.1. The element corner points are designated as, (𝑥1,𝑦1, 𝑧1),..., (𝑥4,𝑦4, 𝑧4), 

 
Figure 3.1. Quadrilateral constant strength source element [4] 

The velocity components getting for this constant strength source distribution, based on the Hess & Smith results, will 
be, 

𝑢 =
𝜎

4𝜋
�
(𝑦2 − 𝑦1)

𝑑12
ln
𝑟1 + 𝑟2 − 𝑑12
𝑟1 + 𝑟2 + 𝑑12

+
(𝑦3 − 𝑦2)

𝑑23
ln
𝑟2 + 𝑟3 − 𝑑23
𝑟2 + 𝑟3 + 𝑑23

+
(𝑦4 − 𝑦3)

𝑑34
ln
𝑟3 + 𝑟4 − 𝑑34
𝑟3 + 𝑟4 + 𝑑34

+
(𝑦1 − 𝑦4)

𝑑41
ln
𝑟4 + 𝑟1 − 𝑑41
𝑟4 + 𝑟1 + 𝑑41

� 

3.1 

𝑣 =
𝜎

4𝜋
�
(𝑥1 − 𝑥2)

𝑑12
ln
𝑟1 + 𝑟2 − 𝑑12
𝑟1 + 𝑟2 + 𝑑12

+
(𝑥2 − 𝑥3)

𝑑23
ln
𝑟2 + 𝑟3 − 𝑑23
𝑟2 + 𝑟3 + 𝑑23

+
(𝑥3 − 𝑥4)

𝑑34
ln
𝑟3 + 𝑟4 − 𝑑34
𝑟3 + 𝑟4 + 𝑑34

+
(𝑥4 − 𝑥1)

𝑑41
ln
𝑟4 + 𝑟1 − 𝑑41
𝑟4 + 𝑟1 + 𝑑41

� 

3.2 
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𝑤 =
𝜎

4𝜋
�tan−1 �

𝑚12𝑒1 − ℎ1
𝑧𝑟1

� − tan−1 �
𝑚12𝑒2 − ℎ2

𝑧𝑟2
� + tan−1 �

𝑚23𝑒2 − ℎ2
𝑧𝑟2

�

− tan−1 �
𝑚23𝑒3 − ℎ3

𝑧𝑟3
� + tan−1 �

𝑚34𝑒3 − ℎ3
𝑧𝑟3

� − tan−1 �
𝑚34𝑒4 − ℎ4

𝑧𝑟4
�

+ tan−1 �
𝑚41𝑒4 − ℎ4

𝑧𝑟4
� − tan−1 �

𝑚41𝑒1 − ℎ1
𝑧𝑟1

�� 

3.3 

Quadrilateral doublet 

Consider a surface element with a constant-strength doublet distribution 𝜇 per area bounded by four straight lines as 
describes in Figure 3.2. 

 
Figura 3.2. Quadrilateral constant strength doublet element and vortex ring equivalent [4]. 

Using the doublet element witch points in the z direction and following the Hess & Smith results, the velocity 
component will be, 

𝑢 =
𝜇

4𝜋
�

𝑧(𝑦1 − 𝑦2)(𝑟1 + 𝑟2)
𝑟1𝑟2{𝑟1𝑟2 − [(𝑥 − 𝑥1)(𝑥 − 𝑥2) + (𝑦 − 𝑦1)(𝑦 − 𝑦2) + 𝑧2]}

+
𝑧(𝑦2 − 𝑦3)(𝑟2 + 𝑟3)

𝑟2𝑟3{𝑟2𝑟3 − [(𝑥 − 𝑥2)(𝑥 − 𝑥3) + (𝑦 − 𝑦2)(𝑦 − 𝑦3) + 𝑧2]}

+
𝑧(𝑦3 − 𝑦4)(𝑟3 + 𝑟4)

𝑟3𝑟4{𝑟3𝑟4 − [(𝑥 − 𝑥3)(𝑥 − 𝑥4) + (𝑦 − 𝑦3)(𝑦 − 𝑦4) + 𝑧2]}

+
𝑧(𝑦4 − 𝑦1)(𝑟4 + 𝑟1)

𝑟4𝑟1{𝑟4𝑟1 − [(𝑥 − 𝑥4)(𝑥 − 𝑥1) + (𝑦 − 𝑦4)(𝑦 − 𝑦1) + 𝑧2]}� 

3.4 

𝑣 =
𝜇

4𝜋
�

𝑧(𝑥2 − 𝑥1)(𝑟1 + 𝑟2)
𝑟1𝑟2{𝑟1𝑟2 − [(𝑥 − 𝑥1)(𝑥 − 𝑥2) + (𝑦 − 𝑦1)(𝑦 − 𝑦2) + 𝑧2]}

+
𝑧(𝑥3 − 𝑥2)(𝑟2 + 𝑟3)

𝑟2𝑟3{𝑟2𝑟3 − [(𝑥 − 𝑥2)(𝑥 − 𝑥3) + (𝑦 − 𝑦2)(𝑦 − 𝑦3) + 𝑧2]}

+
𝑧(𝑥4 − 𝑥3)(𝑟3 + 𝑟4)

𝑟3𝑟4{𝑟3𝑟4 − [(𝑥 − 𝑥3)(𝑥 − 𝑥4) + (𝑦 − 𝑦3)(𝑦 − 𝑦4) + 𝑧2]}

+
𝑧(𝑥1 − 𝑥4)(𝑟4 + 𝑟1)

𝑟4𝑟1{𝑟4𝑟1 − [(𝑥 − 𝑥4)(𝑥 − 𝑥1) + (𝑦 − 𝑦4)(𝑦 − 𝑦1) + 𝑧2]}� 

3.5 

𝑤 =
𝜇

4𝜋
�

[(𝑥 − 𝑥2)(𝑦 − 𝑦1) − (𝑥 − 𝑥1)(𝑦 − 𝑦2)](𝑟1 + 𝑟2)
𝑟1𝑟2{𝑟1𝑟2 − [(𝑥 − 𝑥1)(𝑥 − 𝑥2) + (𝑦 − 𝑦1)(𝑦 − 𝑦2) + 𝑧2]}

+
[(𝑥 − 𝑥3)(𝑦 − 𝑦2) − (𝑥 − 𝑥2)(𝑦 − 𝑦3)](𝑟2 + 𝑟3)

𝑟2𝑟3{𝑟2𝑟3 − [(𝑥 − 𝑥2)(𝑥 − 𝑥3) + (𝑦 − 𝑦2)(𝑦 − 𝑦3) + 𝑧2]}

+
[(𝑥 − 𝑥4)(𝑦 − 𝑦3) − (𝑥 − 𝑥3)(𝑦 − 𝑦4)](𝑟3 + 𝑟4)

𝑟3𝑟4{𝑟3𝑟4 − [(𝑥 − 𝑥3)(𝑥 − 𝑥4) + (𝑦 − 𝑦3)(𝑦 − 𝑦4) + 𝑧2]}

+
[(𝑥 − 𝑥1)(𝑦 − 𝑦4) − (𝑥 − 𝑥4)(𝑦 − 𝑦1)](𝑟4 + 𝑟1)

𝑟4𝑟1{𝑟4𝑟1 − [(𝑥 − 𝑥4)(𝑥 − 𝑥1) + (𝑦 − 𝑦4)(𝑦 − 𝑦1) + 𝑧2]}� 

3.6 
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3.1.2 Grid and geometry discretization 

At this phase the surface is divided in N panels. N singularity elements will be placed at the center of each panel and the 
zero normal flow boundary condition will be imposed in it. Figure 3.3 shows the three-dimensional blade geometry 
discretization whit the collocation points. 

 
Figure 3.3. Discretization of the wind turbine blade geometry with the collocation points  

3.1.3 Influence coefficients 

The boundary conditions will be analyzed at this phase. Because it has not a unique solution of the problem, we must 
choose a source-doublet combination. The most frequently used resource is, 

𝜎𝑘 = 𝒏𝒌 ∙ 𝑸∞ 3.7 

Resulting in a unique set of equation with the doublet intensities as the only unknowns. 

Wake panels will be expressed as trailing edge panels as show in Figure 3.4. 

 
Figure 3.4 A typical wake panel shed by the trailing edge upper and lower panels [4] 

The set of equation to solve has the following form, 

�

𝑎11 𝑎12
𝑎21 𝑎22 ⋯

𝑎1𝑁
𝑎2𝑁

⋮ ⋱ ⋮
𝑎𝑁1 𝑎𝑁2 ⋯ 𝑎𝑁𝑁

��

𝜇1
𝜇2
⋮
𝜇𝑁

� = −�

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑁
𝑏2𝑁

⋮ ⋱ ⋮
𝑏𝑁1 𝑏𝑁2 ⋯ 𝑏𝑁𝑁

��

𝜎1
𝜎2
⋮
𝜎𝑁

� 

3.8 

 

3.1.4 Establish the RHS: 

The main purpose of this work is to apply the panel method to a wind turbine blade to study its optimal performance. 
For that, we must take into account the blade rotation and, is in this point that we are going to include this effect. The 
way to simulate the rotation consists to set the free stream velocity around the surface. The parameters obtained in 
section two (eq. 2.1, 2.6 or 2.8, 2.7 and 2.11), will be the input to solve the RHS as shown in Figure 3.5. 
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Figure 3.5. Free stream velocity varying along the span blade 

Therefore the Right Hand Side of equation 3.8, describing the intensity source (eq. 3.7) by section will be, 

�

𝑅𝐻𝑆1
𝑅𝐻𝑆2
⋮

𝑅𝐻𝑆𝑁

� = −�

𝑏11 𝑏12
𝑏21 𝑏22

⋯ 𝑏1𝑁
𝑏2𝑁

⋮ ⋱ ⋮
𝑏𝑁1 𝑏𝑁2 ⋯ 𝑏𝑁𝑁

�

⎝

⎛

𝑛𝑥1 ∙ 𝑄𝑥1 + 𝑛𝑦1 ∙ 𝑄𝑦1 + 𝑛𝑧1 ∙ 𝑄𝑧1
𝑛𝑥2 ∙ 𝑄𝑥2 + 𝑛𝑦2 ∙ 𝑄𝑦2 + 𝑛𝑧2 ∙ 𝑄𝑧2

⋮
𝑛𝑥𝑁 ∙ 𝑄𝑥𝑁 + 𝑛𝑦𝑁 ∙ 𝑄𝑦𝑁 + 𝑛𝑧𝑁 ∙ 𝑄𝑧𝑁⎠

⎞ 

3.9 

3.1.5 Solution of linear equations 

The system is ready to be solved by implementation of the Gaussian elimination. The equations 3.8 and 3.9 give, 

�

𝜇1
𝜇2
⋮
𝜇𝑁

� = �

𝑎11 𝑎12
𝑎21 𝑎22 ⋯

𝑎1𝑁
𝑎2𝑁

⋮ ⋱ ⋮
𝑎𝑁1 𝑎𝑁2 ⋯ 𝑎𝑁𝑁

�

−1

�

𝑅𝐻𝑆1
𝑅𝐻𝑆2
⋮

𝑅𝐻𝑆𝑁

� 

3.10 

3.1.6 Secondary calculations 

One of the most important advantages of the potential flow formulation is that the computation of the surface velocity 
components and pressures is determinable by the local properties of the solution. These perturbation velocity 
components on the surface panel can be obtained by: 

𝑞𝑙 =
1

2∆𝑙
(𝜇𝑙+1 − 𝜇𝑙−1) 𝑞𝑚 =

1
2∆𝑚

(𝜇𝑚+1 − 𝜇𝑚−1) 𝑞𝑛 = 𝜎𝑛 3.11 

Where 𝑞𝑙, 𝑞𝑚   and 𝑞𝑛 are the velocity component in the longitudinal (x direction), transversal (y direction) and normal 
direction (z direction) and they are already differentiated by the central differences method. ∆𝑙 and ∆𝑚 are the panel 
length in those direction (Figure 3.6). 

 
Figure 3.6. Nomenclature used for the differentiation of the velocity potential for local tangential velocity calculations [4] 

The total velocity for each panel will be, 

𝑣𝑖 = �𝑞𝑙𝑖
2 + 𝑞𝑚𝑖

2 + 𝑞𝑛𝑖
2 

3.12 
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The pressure coefficients for each rotational blade panel will be thinking by the following form, 

𝐶𝑝𝑖 = 1 −
𝑣𝑖2

𝑄∞𝑖
2 

3.13 

Note that for this equation, the free stream velocity 𝑄∞𝑖 , vary for each section along the span (see Figure 3.5). 

The i-th panel contribution for aerodynamic loads components, ∆𝐹𝑘, will be, 

∆𝑭𝑘𝑖 = −𝐶𝑝𝑖 �
1
2
𝜌𝑄∞𝑖

2� ∆𝑆𝑖𝑛𝑘𝑖  
3.14 

Note that the i subscript represents the analyzed panel while the k subscript represent the direction (l, m, n) of the force 
component. The sum of the panels’ contribution to the total force is done by the following form; first we have to sum 
the 𝒊 panels’ contribution of the same section (Figure 3.7). 

𝑭𝑗 = ��∆𝑭𝑖

𝑁

𝑖=1

�
𝑠𝑒çã𝑜 𝑗

 
3.15 

Where 𝐹𝑗 is the Total force vector of j section. 

 
Figure 3.7. Sum by section of the forces contributions necessaries to find the torque 

The torque developed for each j section can be expressed by the cross product between the vector blade radio and the 
force vector. 

𝑻𝑗 = �
𝑖 𝑗 𝑘
0 𝑅𝑗 0
𝐹𝑥𝑗 𝐹𝑦𝑗 𝐹𝑧𝑗

� 
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The total torque will be the sum of all 𝒋 torques, 

𝑻 = �∆𝑻𝑗

𝑁

𝑗=1

 
3.17 
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The Power (𝑷) can be written as the torque generated by the blade and the rotational velocity (𝝎). Considerer that 𝝎 
will be act in z direction only. 

𝑃 = �𝑇𝑥,𝑇𝑦 ,𝑇𝑧� ∙ (0,0,𝜔) 3.18 
The power coefficient (𝐶𝑃𝑜𝑡) that represent the blade power extraction and the power offered by the wind, can be 
written as, 

𝐶𝑃𝑜𝑡 =
𝑃

1
2𝜌𝑈∞

3𝜋𝑅2
 

3.19 

4 NUMERICAL SIMULATIONS 

The theory presented in the previous sections was used to predict the aerodynamic performance of a 2 MW wind turbine 
and the firsts result of this simulation were gotten in section two (Figure 2.4 and Figure 2.3). The total free stream 
rotational velocity 𝑊(𝑟) (then called 𝑄∞), the induction flow angle, the optimal twist angle and the required chord are 
going to be the input data to the numerical panels method 

The wind turbine program part has been thought to have three blades equally spaced along the circumferential direction, 
but the blade simulation program part has only one blade to be calculated. This is one of the limitations of the program 
for now. Although we are going to get only the power of one blade, the results are very encouraging to keep working. 

For the present work, the aerodynamic characteristic curves in terms of lift coefficient versus angle of attack and drag 
coefficient versus angle of attack of a NACA 4412 airfoil was taken into account. The adopted criterion for choosing 
the best airfoil for the wind turbine blade is based on how much aerodynamic power the airfoil can effectively generate 
and transfer to the wind turbine shaft for a given operating condition. 

This procedure obviously requires an iterative process. Figure 4.1 shows a typical blade geometry obtained using the 
procedure described in section two (Figure 2.4). 

 
Figure 4.1. Blade Geometry (Practical Chord) 

The pressure coefficients of the blade take into account that the free stream 𝑄∞ is now variable along the span, as shown 
in Figure 4.2. 
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Upper Surface  

Lower Surface 
Figure 4.2. Pressure Coeficients 

The total local velocity for each panel is represented in Figure 4.3. 

 
Upper Surface 

 
Lower Surface 

Figure 4.3. Local total velocity 

The local forces are placed at the collocation points. The program uses the collocation points to create the geometry and 
places the forces on them as shown in Figure 4.4. 

 
Figure 4.4. Local forces 

For this case, the calculated power coefficient for one blade will be, 
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𝑪𝑷𝒐𝒕 =
𝑃

𝑞𝑄∞𝜋𝑅2
= 𝟎.𝟏𝟎𝟓 

And for this single blade configuration, the development power will be: 𝑷 = 𝟎.𝟔 𝑴𝑾 for 𝝀 = 𝟓.𝟖. 

A very important parameter in wind turbine design is the 𝑪𝑷𝒐𝒕 vs. 𝝀 curve. This program is enables to find this curve 
and, for this case, the results are shown in Figure 4.5. Note that in this figure the maximum power coefficient is found at 
𝝀 = 𝟓. This means that one more iteration has to be done. 

We have the possibility to work with the ‘Optimal required Chord’ from Figure 2.4 giving the blade geometry presented 
in Figure 4.6. For this case the power coefficient obtained is 𝑪𝑷𝒐𝒕 = 𝟎.𝟏𝟐 and the power is 𝑷 = 𝟎.𝟕 𝑴𝑾. The 
difference from the previous case is not significant in respect to the power, so it's not worth adding material at the root. 

 
Figure 4.5. Power coefficient (𝑪𝑷𝒐𝒕) vs. relação de velocidade de ponta (𝝀) 

 
Blade geometry 

 
Power coefficient. 

Figure 4.6. Optimal required chord blade design 
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5 CONCLUSIONS 

A consistent aerodynamic model for wind turbines with variable geometry was presented and discussed in this work. 
Details about the numerical implementation were also presented and discussed. The proposed formulation is based on 
the Glauert Blade Element Theory to get the input data like resultant relative velocity, required optimal and practical 
chord, inflow and twist angles, etc. Three-dimensional doublet lattice method was applied to calculate power and others 
important blade parameters. This work does not take into account tip and rotational wake losses yet. Because the 
doublet lattice method is based in potential flow theory, there is not turbulent and detachment flow effects, but it 
includes the total tridimensional pressure coefficient which indicates possible detachment points or turbulence origins. 
That means we can design the blade to avoid these effects. 

A study case in terms of aerodynamic performance was presented for a 2 MW wind turbine. The first program part 
(section two) enables the calculation of design parameters for three blades, but the second one can only calculate 
aerodynamics parameters for one blade. 

The results have proven to be very consistent but have not been validated yet. This will be done soon with a commercial 
computational fluid-dynamics programs package. 

The potential flow formulation has some advantages and disadvantages with relation to the finite element method. 
Between the advantages, the most importants are the computational velocity and the inter-relationship that can be 
achieved with structural packages, which is what we are looking for. 
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