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Abstract

The correction of attenuation effects in Positron Emis-
sion Tomography (PET) imaging is fundamental to ob-
tain a correct radiotracer distribution. However direct
measurement of this attenuation map is not error-free
and normally results in additional ionization radiation
dose to the patient. Here, we explore the task of whole
body attenuation map generation using 3D deep neural
networks. We analyze the advantages that an adversar-
ial training can provide to such models. The networks
are trained to learn the mapping from non attenuation
corrected [18F ]-fluorodeoxyglucose PET images to a
synthetic Computerized Tomography (sCT) and also
to label the input voxel tissue. Then the sCT image
is further refined using an adversarial training scheme
to recover higher frequency details and lost structures
using context information. This work is trained and
tested on public available datasets, containing several
PET images from different scanners with different ra-
diotracer administration and reconstruction modalities.
The network is trained with 108 samples and validated
on 10 samples. The sCT generation was tested on 133
samples from 8 distinct datasets. The resulting mean
absolute error of the tested networks is 96± 20 HU

and 103± 18 HU with a peak signal to noise ratio of
19.3± 1.7 dB and 18.6± 1.5 dB, for the base model
and adversarial model respectively. The attenuation
correction is tested by means of attenuation sinograms,
obtaining a line of response attenuation mean error
lower than 1% with a standard deviation lower than
8%. The proposed deep learning topologies are capa-
ble of generating whole body attenuation maps from
uncorrected PET image data. Moreover, the accuracy
of both methods holds in the presence of data from
multiple sources and modalities and are trained on
publicly available datasets. Finally, while the adversar-
ial layer enhances visual appearance of the produced

samples, the 3D U-Net achieves higher metric perfor-
mance.

Keywords: Attenuation Correction, Deep Learning,
Generative Models, Positron Emission Tomography.

Resumen

La corrección de los efectos de la atenuación en las
imágenes de Tomografı́a por Emisión de Positrones
(PET) es fundamental para obtener la correcta dis-
tribución del radio trazador. Sin embargo la medición
directa del mapa de atenuación no está libre de er-
rores y normalmente resulta en la absorción de una
dosis superior de radiación ionizante por parte del pa-
ciente. Aquı́, exploramos la tarea de la generación
del mapa de atenuación de cuerpo completo usando
resdes neuronales profundas 3D. Se analizan las venta-
jas que un entrenamiento adversario puede proveer
a estos modelos. Las redes son entrenadas para
aprender la conversión desde una imagen de [18F ]-
fluorodeoxyglucosa PET sin corrección de atenuación
a una imagen sintética de Tomografı́a Computada
(sCT) y además obtener una etiqueta del tipo de tejido
en los voxeles de la imagen. Luego la imagen de sCT
es refinada usando un entrenamiento de tipo adver-
sario para recobrar detalles de alta frecuencia y estruc-
turas perdidas usando información contextual. Este tra-
bajo es entrenado y probado sobre conjuntos de datos
públicos, conteniendo distintas imágenes PET de difer-
entes tomógrafos, distintos modos de administración
de dosis y modos de reconstrucción. La red es entre-
nada con 108 muestras y validada con 10 muestras. La
generación del sCT fue probada con 133 muestras de
8 conjuntos de datos independientes. El error medio
absoluto de las redes es de 96±20 HU y 103±18 HU

con una relación señal ruido pico de 103± 18 HU y
18.6±1.5 dB para el modelo base y el modelo adver-
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sario respectivamente. La corrección de atenuación
es probada por medio de sinogramas, obteniendo un
error medio en la atenuación de las lineas de respuesta
menor al 1% con un desvı́o estándar menor al 8%. Las
topologı́as de aprendizaje profundo propuestas son ca-
paces de generar mapas de atenuación de cuerpo com-
pleto a partir de imágenes PET sin corregir. Además,
la exactitud de los métodos se sostiene en presencia
de datos de múltiples fuentes y modalidades y son en-
trenadas en conjuntos de datos públicos. Finalmente,
mientras se observa que el entrenamiento adversario
mejora la apariencia visual de los mapas generados, la
topologa 3D U-Net obtiene mejor rendimiento en las
métricas.

Palabras claves: Corrección de atenuación, Apren-
dizaje profundo, Modelos generativos, Tomografı́a por
Emisión de Positrones.

1 Introduction

The correct estimation of attenuation correction maps
of positron emission tomography (PET) images is fun-
damental to their correct reconstruction, but direct
measurement of this map means additional ionization
radiation dose to the patient. Another approach to ob-
tain this information is to use image analysis methods.
These methods create an attenuation structure from
other image modality, such as Magnetic Resonance
Imaging (MRI) studies or the Non Attenuation Cor-
rected PET (NAC-PET) image. This image translation
is specially difficult in whole-body NAC-PET images,
since the information it presents is incomplete. In
this scenario, where the translation process also needs
to fill information blanks, the generative adversarial
networks (GANs) are specially powerful.

The application of deep neural models in image to
image translation tasks has been successfully exploited
in many medical imaging domains, including PET
attenuation map synthesizing. However, most meth-
ods of attenuation map generation analyze the MRI to
CT translation using convolutional networks [1] and
GANs with paired [2] and unpaired data [3], requiring
a co-registered MRI image wich contains anatomical
information that is not present in NAC-PET images.
The PET (and NAC-PET) to Computed Tomography
(CT) image transalation remains as one of the less
explored domains, specially in whole body scans [4].
The studies in this particular domain focus on PET-
CT image translation of corrected images on head
scans. Liu [5] proposes the use of a 2D U-Net architec-
ture to translate NAC-PET head scans to CT, showing
promising results in head region scans. Armanious [2]
proposes a general GAN application composed of a
cascaded 2D U-Net generator and a discriminator used
to evaluate the perceptual loss and style of the gener-
ated image. They show the capability of the topology
to translate PET scans to CT, using only axial slices
and, again, only for head region scans. Both, Liu [5]

and Armanious [2], provide no information on their
capability for whole-body image translation which
is a harder problem to solve, given that the possible
modes in the attenuation structures is larger, including
more tissue types (specially soft tissue) and shapes.
The whole-body image translation was explored by
Dong [6] using a GAN trained with cycle consistency
and by Armanious [7] using a 2D GAN based on a cas-
caded U-Net, however they trained and tested their
studies only on state-of-the-art PET scanners with
Time of Flight (ToF) cappabilities. The reconstruc-
tion of the attenuation map was also studied using
maximum-likelihood reconstruction of attenuation and
activity (MLAA) methods [8], showing promise in
PET scanners with ToF capabilities only when com-
bined with neural networks [9]. However without
using a post-processing step MLAA outputs noisy at-
tenuation maps, with or without ToF information [10].
Solving the problem of generating an attenuation map
directly from image data can enable non-ToF scanners
to use synthetic attenuation maps.

Here we analyze the aptitude of two methods to gen-
erate high quality whole body attenuation sinograms
by means of artificial CT images from NAC-PET im-
ages, a 3D U-Net and a fully 3D GAN topology with
mixed loss. Given that, the dimensionality of the 3D
volumes is comparable to the generation of high resolu-
tion 2D images. Therefore we perform a two step train-
ing, starting with supervised training of labels and then
we add an adversarial loss block to enhance the image
resolution. Our models are trained on a public avail-
able data-set from the Cancer Image Archive [11], the
data-set contains series of co-registered (adquired with
PET-CT scans) CT, PET and NAC-PET whole body
scans of Head and Neck Scamorous Cell Carcinoma
(HNSCC) [12], acquired with Discovery ST/STE/RX
General Electric scanners. We use 8 different datasets
for the testing process, containing 5 different types
of carcinomas and multiple scanners models: Discov-
ery ST/STE/RX/LS/IQ/610/690, from General Electric
and Biograph from Siemens. Only the Discovery 690
possess ToF capabilities.

2 Material, methods and theory

2.1 Topology Description

Two different architectures are tested in this work.
First a baseline 3D U-Net topology, trained in a fully
supervised manner. Second, a GAN whose generator
is composed of the baseline 3D U-Net with additional
layers trained in adversarial manner against a convolu-
tional critic (or discriminator). In order to reduce the
adversarial training instability, the adversarial gradient
flow in the generator does not flow into the baseline
3D U-Net.
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2.1.1 Generator:

The model representation can be seen in Fig. 1. The
initial section of the generator is a 3D U-Net topol-
ogy [13] (the 3D U-Net block). The U-Net network
posses 5 resolution levels, each of them composed of
two convolutional layers with filter shape of 3×3×3
and Rectified Linear Unit (ReLU) activation. Each
resolution level posses a skip connection between the
down-sample and up-sample path. Instead of con-
volutional resampling the resolution changes are per-
formed using trilinear up- or down-sampling. After
each convolutional layer we apply a voxel normaliza-
tion along feature maps, dividing each voxel value byq

1
N ∑

N−1
i=0 (vxi

j)
2 + e, where N is the number of chan-

nels in the feature map, vxi
j is the voxel value of the

ith channel of the jth voxel and e = 1.0× 10−8. We
also apply at each convolutional layer, a scaling fac-
tor to the filter kernel based on He’s [14] scaled ini-
tialization of weights. After the 3D U-Net block the
network forks into two branches, inside the Auxiliary
Task block. The first branch is used for segmentation,
it is composed of three convolutional layers and ends
in a softmax layer. The second branch is responsible
for the synthetic CT (sCT) generation, it is composed
of a convolutional layer with an hyperbolic tangent
activation. Finally, the outputs of the 3D U-Net are
merged and processed by the GAN layers in the GAN
Refinement block. This last block, a collection of 5
convolutional layers with 8 filters each, is used during
the adversarial training. All convolutional operations
use a filter of size 3× 3× 3 except the output layer
which use a 1×1×1 filter.

2.1.2 Critic:

The critic or discriminator network is a convolutional
network with ReLU activation in all layers, only the
last layer has no activation. The input of this network
is a two channel volume composed of the NAC-PET
volume and the real or sCT image. The output of the
network is a value proportional to quality value of
the generated image. The network is conformed by
4 resolution levels with two convolutional layers per
level. Each convolution has a filter size of 3× 3× 3
and ReLU activation. No batch or pixel normalization
is applied. The last two layers of the critic are a flatten
operation followed by a single dense layer with linear
output.

2.2 Training Scheme

The training of the network is divided into two stages:
first the generator network is trained in a supervised
manner using a composed loss. The segmentation
branch of the network applies a 3D-DICE as shown in
Eq. 1,

LD =
1

Nc

Nc

∑
c=0

2∑
Nv
i pi,cgi,c

∑
Nv
i p2

i,c +∑
Nv
i g2

i,c

, (1)

where Nc is the number of objective classes, Nv the
number of voxels in the volume, gi,c are the voxels of
the ground truth and pi,c the values of the softmaxed
output of the network. The dice loss ranges from 0
to 1. It produces its maximum value when all voxels
of the ground truth (gi,c) have the same value as the
softmaxed output voxels (pi,c). Since the output is soft-
maxed the denominator of Eq. 1 is always larger than
its numerator except when gi,c and pi,c are identical.
In the case of a multi-class problem (Nc > 1) the final
value is divided by the number of classes.

The CT synthetization branch, up to the GAN lay-
ers, is trained using as loss function the euclidean
distance between the sCT and the objective CT image,
L2 = ||s,r||2, where s is the sCT and r is the real CT
volume. We chose the L2 over other metrics such as
the L1 metric (which is known to provide a sharper
output images) since the L2 severely penalizes the data
outliers. In the case of CT images these outliers cor-
respond to high attenuation structures such as specific
parts of the bone tissue. Since for the same percentage
variation the L2 produces larger values when compared
to the L1, the L2 metric is assigning more importance
to higher attenuation zones which is desirable in this
specific problem.
The loss for the supervised training stage is shown in
Eq. 2,

Lsup.
gen = (1−LD)+KeL2, (2)

where Ke is a coupling constant. After the initial
training, the adversarial training starts. The adver-
sarial training uses the Wasserstein-GAN (W-GAN)
strategy [15], resulting in a generator loss as shown in
Eq. 3,

LW =− fc( fg(x)), (3)

where fc is the critic network function, fg is the
generator network function and x is the input NAC-
PET image. During the adversarial training the GAN
layers become active and are trained using the W-GAN
loss. The gradient of the GAN does not flow into the
3D U-Net layers. The critic is trained using a coupled
pairs of NAC-PET and CT images, real or fake. It is
trained using the wasserstein loss shown in Eq. 4,

LGAN
crit. = fc(r)− fc( fg(x))+λGp(s,r), (4)

where Gp is the gradient penalty [16] and λ = 10.0.
The critic is trained for 5 steps for each generator
step. At the initial step of the GAN training stage
the critic is optimally trained before starting the GAN
training loop. The generators are trained using an
Adaptive Moment Estimation (ADAM) optimizer with
parameters β1 = 0.0, β2 = 0.99 and ε = 1.0×108 and
learning rate lr = 0.0001. The discriminator uses a
RMSprop optimizer with learning rate lr = 0.0005.
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Figure 1: Generator network topology based on the 3D U-Net. Top branch in the auxiliary task block is used for
label segmentation and bottom branch for artificial CT generation. The output of the GAN refinement block is the
synthetic CT refined by the GAN layers and built from the auxiliary task block outputs.

2.3 Train Dataset Description

The HNSCC dataset is composed of a series of co-
registered CT and NAC-PET scans of head and neck
squamous cell carcinoma, acquired with PET-CT scan-
ners. However some samples are incomplete or con-
tain only fragments of the body. The selected sam-
ples of the dataset consist of whole-body studies. The
dataset is first stripped of all samples that do not con-
tain NAC-PET and CT matched samples. Then the
matched samples are tested for FoV overlapping and
cropped to contain only axial slices with information
from all the image types. After the dataset cleaning
process is finished, the image size is normalized to
a 128× 128× 256 voxels FoV, with a voxel size of
5.46×5.46×5.08 mm3. The final dataset contains 118
images from 71 different patients, from which 7 pa-
tients (10 images) were separated as validation dataset.
Before feeding each sample to the network, the vol-
ume is randomly sliced into a 128×128×32 volume
and all the input NAC-PET voxels values are added
the same random value of ±10% of full scale and
re-normalized.

2.3.1 Objective CT normalization:

The objective CT must be free of the couch structures
in order to train a NN that is independent of the scanner
model. A specific couch can be added later to the
generated CT when it is used for correction in a given
scanner model. The removal of the couch is performed
using a method based on the voxel variance along
the axial axis [17]. Then the image dynamic range
is clipped between −125 and 1300 Housfield Units

(HU) and normalized between 0 and 1, to maximize
the distance between soft and bone tissue.

2.3.2 Label Generation:

Four labels classes are extracted from the non-
normalized couch stripped CT image using a voxel
value threshold. The Air-Lung mask values ranges
from −1000 HU to −125 HU, the Fluids-Fat mask
ranges from −125 HU to 10 HU, the soft-tissue mask
ranges from 10 HU to 90 HU and the Bone mask ranges
from 90 HU to 1300 HU.

2.4 Test Dataset Description

The test datasets are series of public dataset, also from
TCIA, including different types of lesions, patients and
scanner technologies. The dataset is composed of 133
test samples: 73 from the Non-Small Cell Lung Cancer
(NSCLC) [18] dataset, 25 from The Cancer Genome
Atlas - Head-Neck Squamous Cell Carcinoma (TCGA-
HNSC) [19], 20 from The Cancer Genome Atlas
Lung Adenocarcinoma (TCGA-LUAD) [20], 1 from
The Cancer Genome Atlas - Thyroid Cancer (TCGA-
THCA) [21], 4 from Clinical Proteomic Tumor Anal-
ysis Consortium - Lung Adenocarcinoma (CPTAC-
LUAD) [22], 1 from Clinical Proteomic Tumor Analy-
sis Consortium - Pancreatic Ductal Adenocarcinoma
(CPTAC-PDA) [23], 3 from Clinical Proteomic Tumor
Analysis Consortium - Uterine Corpus Endometrial
Carcinoma (CPTAC-UCEC) [24] and 6 from Clinical
Proteomic Tumor Analysis Consortium - Lung Squa-
mous Cell Carcinoma (CPTAC-LSCC)[25]. These
datasets were cleaned from non-matching samples and
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re-normalized to fit voxel size expected by the network.
During the testing procedure the NAC-PET is fed to
the model in consecutive slices of 128×128×32 vox-
els. The intensity is re-scaled to [0,1] for each slice
(no other intensity normalization is applied). Since the
output of the network is not a full FoV, the consecu-
tive outputs of the network are composed into a single
volume. This composition is done by multiplying the
current slice with a Gaussian bell along the z-axis. The
Gaussian bell is centered in the middle of the current
slice and has a σ = 4 voxels. After, the weighted
slice is added to the full FoV at its corresponding loca-
tion. Finally the FoV is divided voxelwise by the sum
of the weights of slices that provided information to
each voxel, in order to obtain the weighted mean voxel
value.

2.5 Attenuation Correction Metrics

Since the sinogram data of the used datasets is not
available, direct reconstruction of the corrected PET
activity using the proposed model is not possible. As
a quantitative assessment of the attenuation correc-
tion performance we compared the Line of Response
(LoR) attenuation using the provided CT and the gener-
ated sCT. The LoR attenuation was constructed using
attenuation sinograms with size (180× 180) and an
axial step of 5 mm. Each CT and sCT was first con-
verted from Hounsfield Unit scale to linear attenuation
[1/cm2], at 120 keV. Then the linear attenuation was
scaled to the PET energy, 511 keV. Using the real CT
and the sCT, a pair of attenuation sinograms was cre-
ated. For each of the LoRs in the sinograms, the atten-
uation coefficient was calculated as Ati = e−

R
AM(si)dsi ,

where si represents the ith LoR of the sinogram. Us-
ing the provided CT as ground truth, the differences
in the attenuation sinograms was measured using the
mean difference and standard deviation of the sino-
gram values. This was applied in four samples, the
HNSCC-01-0148 sample from the validation dataset,
sample AMC-009 from NSCLC Radiogenomics, C3N-
00957 from CPTAC-PDA and TCGA-BB-7863 from
TCGA-HNSC.

2.6 Image Quality Metrics

The generated sCT image quality was tested against
the ground truth CT using three different metrics, Peak
Signal to Noise Ratio (PSNR), Mean Absolute Error
(MAE) and Normalized Cross Correlation (NCC).

2.7 Ablation Tests

In order to assess the importance of the components in
the presented methods, an ablation test is performed.
Specifically, the presence of the segmentation branch
and the restriction of the GAN gradient are analyzed.
The test is applied on the image quality metrics for:
a 3D U-Net GAN trained using only the traditional

loss, described in Eq. 3 and without restricting the
gradient flow, named Base GAN; a 3D U-Net with no
segmentation operation, named No Seg. U-Net; a 3D
U-Net GAN with no segmentation information, named
No Seg. GAN. The ablation tests results are shown
along the metrics of the U-Net and GAN networks. All
networks were trained for the same number of steps.

2.8 Reconstruction Tests

A reconstruction quantitative test of the correction ca-
pabilities of the sCT was constructed by projecting the
corrected activity image provided in the dataset. This
process is done by taking an attenuation corrected sam-
ple and its corresponding attenuation map and perform-
ing a large number of randomly sampled 3D projec-
tion operations (more than 1×1010 LoRs). Then the
projections are reconstructed using a Back-Projection
Filtered (BPF) algorithm. The algorithm was chosen
to avoid storing a large number of projections. It is
worth noting that this reconstruction process produces
lower quality samples when compared to fully iterative
processes such as Maximum Likelihood Expectation
Maximization (MLEM). This test was applied to two
samples: the AMC-009 sample from the NSCLC Ra-
diogenomics test dataset and the C3N-00957 from the
CPTAC-PDA test dataset.

3 Results

3.1 Attenuation Correction

The resulting metrics of the attenuation sinograms are
summarized in table 1. A central ring attenuation sino-
gram of the reference CT and the sCT are displayed
in Fig. 2 for the validation sample HNSCC-01-0148
and in Fig. 3 for the AMC-009 sample from NSCLC
Radiogenomics dataset. The sinograms are displayed
along the histogram of the difference values for all the
sinograms in the FoV, showing the shape of the error
distribution presented in table 1.

3.2 Image Quality

The PSNR, MAE and NCC metrics of the generated
sCT to the ground truth CT are presented in the Fig. 4,
each of the box plots corresponds to the metrics of
the 3D U-Net and GAN on the different test sets. The
datasets are presented by source since the number of
samples of the individual datasets is too small in some
cases. The scores for the whole validation and test
dataset are summarized in table 2.

Three samples from the test datasets can be seen in
Fig. 5, Fig. 6, and Fig. 7, two with the patients arms
elevated over the head (arms up) and other with the pa-
tients arms positioned at the side (arms down). These
images correspond to the NSCLC Radiogenomics,
CPTAC-PDA and TCGA-HNSC datasets respectively.
In these figures the sCT images, generated using only
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Table 1: Mean and standard deviation of the difference between reference CT attenuation and sCT attenuation, in
percentage of the reference value, for a validation sample and three test samples. A good metric will be close to
zero and have a low standard deviation.

Topology HNSCC-01-0148 AMC-009 C3N-00957 TCGA-BB-7863
U-Net −0.43±4.0% −0.53±5.5% 0.34±6.3% −0.49±3.6%
GAN −0.71±4.2% −0.65±5.8% 0.41±7.7% −0.66±3.9%

(a) 3D-Unet (b) Reference (c) GAN

(d) 3D-Unet (e) GAN

Figure 2: Central ring from the attenuation sinograms
from the 3D-Unet sCT (a), reference CT (b) and the
GAN sCT (c) of the HNSCC-01-0148 sample from
the validation dataset. Below, the histograms (d,e) of
the LoR attenuation value differences, of the 3D-Unet
sCT and the 3D GAN sCT respectively.

(a) 3D-Unet (b) Reference (c) 3D-Unet

(d) 3D-Unet (e) GAN

Figure 3: Central ring from the attenuation sinograms
from the 3D-Unet sCT (a), reference CT (b) and the
GAN sCT (c) of the AMC-009 sample from NSCLC
Radiogenomics dataset. Below, the histograms (d,e) of
the LoR attenuation value differences, of the 3D-Unet
sCT and the 3D GAN sCT respectively.

Table 2: Validation (10 samples) and testing (133
samples) scores for the proposed 3D U-Net and GAN
topology (bold font). The ablation test results are also
included, the No Seg. prefix means that the segmenta-
tion operation was not implemented.

Data PSNR [dB] MAE [HU] NCC [−]
No Seg. Val 17.9±1.8 120±25 0.743±0.060
U-Net Test 17.7±1.6 124±23 0.610±0.095

U-Net
Val. 21.0±1.4 80±13 0.802±0.050
Test 19.3±1.7 96±20 0.760±0.060

Base Val 18.3±1.3 121±20 0.640±0.080
GAN Test 17.3±1.5 133±22 0.600±0.070

No Seg. Val 18.6±1.6 118±25 0.63±0.11
GAN Test 17.5±1.4 128±20 0.585±0.085

GAN
Val. 19.9±1.3 89±10 0.760±0.050
Test 18.6±1.5 103±18 0.720±0.060

the supervised loss shown in Eq. 2, and the sCT im-
ages, generated using the adversarial loss shown in
Eq. 3, are compared against the reference CT. Also
these figures present the 3D views of the skeletal tissue
generated by each network topology and the reference
structure.

3.3 Reconstruction Tests

The resulting tracer distribution obtained using the
real CT and each sCT are shown in Fig. 8 for the test
sample AMC-009 from the NSCLC Radiogenomics
dataset and in Fig. 10 for the test sample C3N-00957
from CPTAC-PDA dataset. In Figs. 9 and 11 the ac-
tivity profiles along three different zones (marked by
a dashed line in Figs. 8 and 10) are shown for the
AMC-009 and C3N-00957 sample respectively.

4 Discussion

The attenuation correction capability of the networks
were tested using a series of attenuation sinograms
and comparing the sCT sinograms to the real CT. This
metric achieved a mean error lower than 1% and a
standard deviation below 8% in the worst case, as seen
in Table 1, which can be improved using a larger and
more uniform datasets (in terms of anatomical cover-
age). While the addition of GAN layers improves the
visual appearance of the sCT, an improvement in the
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Figure 4: Boxplot of PSNR (a,d), MAE (b,e) and NCC (c,f) for each test data source and validation dataset.
The figures (a,b,c) and (d,e,f) are corresponding to the 3D U-Net and to the network with adversarial refinement,
respectively.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 5: Input NAC-PET (a,g), 3D-Unet sCT (b,e,h), 3D GAN sCT (c,f,i) and reference CT (d,j,k) coronal (a,b,c,d),
sagittal (g,h,i,j) and 3D renders of bone tissue (e,f,k) of AMC-009 from NSCLC Radiogenomics. The improvement
of the GAN can be seen in the enhancement of higher frequency details between images (b, c) and (h, i). In the 3D
render, the GAN network (f) is able to generate further details than the 3D U-Net (e) , when compared to the ground
truth (k).

Journal of Computer Science & Technology, Volume 21, Number 1, April 2021

- 35 -



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 6: Input NAC-PET (a,g), 3D-Unet sCT (b,e,h), 3D GAN sCT (c,f,i) and reference CT (d,j,k) coronal (a,b,c,d),
sagittal (g,h,i,j) and 3D renders of bone tissue (e,f,k) of C3N-00957 from CPTAC-PDA dataset.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 7: Input NAC-PET (a,g), 3D-Unet sCT (b,e,h), 3D GAN sCT (c,f,i) and reference CT (d,j,k) coronal (a,b,c,d),
sagittal (g,h,i,j) and 3D renders of bone tissue (e,f,k) of TCGA-BB-7863 from TCGA-HNSC dataset.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8: Reconstructed NAC-PET (a,g), PET image corrected using the reference CT (b,h), PET image corrected
using 3D-Unet sCT (c,i), difference map of PET corrected with the reference CT and the corrected with the 3D-Unet
sCT (d, j), PET image corrected using 3D GAN sCT (e,k) difference map of PET corrected with the reference CT
and the corrected with the GAN sCT (f, i), coronal cuts (a, b, c, d, e, f) and axial cuts (g, h, i, j, k, l) of sample
AMC-009 from NSCLC Radiogenomics dataset. The red dashed lines mark the locations of the profiles shown in
Fig. 9. The intensity in images (a) and (g) is out of scale in order to illustrate the difference to the corresponding
attenuation corrected images. The attenuation correction is noted in images (b, c, e) and (h, i, k) as a reduction in
the relative border to center intensity presented in images (a) and (g), respectively.

(a) (b) (c)

Figure 9: Activity profiles of the PET reconstruction profile using the reference CT (black dashed line), using the
GAN sCT (solid red line), using 3D U-Net sCT (solid green line) and without correction (dashed cyan line) along
the red dashed lines presented in Fig. 8 of sample AMC-009 from NSCLC Radiogenomics dataset. The NAC PET
profile is out of scale in order to illustrate the shape difference to the corresponding attenuation corrected profiles.
The differences observed in the left side of (a) are corresponding to respiration effects on the base of the lung. The
differences observed near the center of (b,c) are corresponding to a hip prosthesis (also observable in Fig. 5(d)).
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10: Reconstructed NAC-PET (a,g), PET image corrected using the reference CT (b,h), PET image corrected
using 3D-Unet sCT (c,i), difference map of PET corrected with the reference CT and the corrected with the 3D-Unet
sCT (d, j), PET image corrected using 3D GAN sCT (e,k) difference map of PET corrected with the reference CT
and the corrected with the GAN sCT (f, i), coronal cuts (a, b, c, d, e, f) and axial cuts (g, h, i, j, k, l) of sample
C3N-00957 from the CPTAC-PDA dataset. The red dashed lines mark the locations of the profiles shown in Fig. 11.
The intensity in images (a) and (g) is out of scale in order to illustrate the difference to the corresponding attenuation
corrected images. The attenuation correction is noted in images (b, c, e) and (h, i, k) as a reduction in the relative
border to center intensity presented in images (a) and (g), respectively.

(a) (b) (c)

Figure 11: Activity profiles of the PET reconstruction profile using the reference CT (black dashed line), using
the GAN sCT (solid red line), using 3D U-Net sCT (solid green line) and without correction (dashed cyan line)
along the red dashed lines presented in Fig. 10 of sample C3N-00957 from the CPTAC-PDA dataset. The NAC PET
profile is out of scale in order to illustrate the shape difference to the corresponding attenuation corrected profiles.
The differences observed in the center of (a) are corresponding to respiration effects on the base of the lung.
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attenuation correction is not observed. Contrary to the
expected result, the 3D U-Net model quality seems
to be more adequate. A possible explanation of this
could be found in the fact that the GAN layers are
trained using the gradient of the critic network. When
compared to a specific metric, such as the L2, the critic
responds differently. While the L2 provides a value di-
rectly associated to the difference from a ground truth
at a voxel scale, the critic provides a value that roots in
an internal representation how the real sample should
be. The critic is trained to learn an internal representa-
tion of the set of real CT images and it is conditioned
to a given input, a NAC PET in this case. The speci-
ficity of this internal representation depends largely on
the critic network capacity, how representative is the
dataset and the training state of the critic (how good is
it at detecting an sCT). Given that the capacity of the
critic (and also the generator) was constrained by the
available computing power and that the dataset cannot
be considered infinite for the size of this problem, we
believe that the representation power of the critic net-
work was sufficient to produce better looking images
but lacks specificity to internalize other aspects that
are important for the PET image correction task. It
should be possible to improve the results by increasing
the size of the critic (and generator networks) and/or
by increasing the amount of training samples.

The tested models show to be resistant to multiple
reconstruction techniques and scanners technologies
when operating in the selected image resolution, as
shown by the test metrics in Fig. 4. The basic 3D
U-Net topology generates synthetic attenuation correc-
tion images with a PSNR of 19.3±1.7 dB, a MAE of
97±20 HU and NCC of 0.760±0.064. The addition
of the GAN layers achieve a PSNR of 18.6±1.4 dB,
a MAE of 103± 18 HU and NCC of 0.720± 0.059.
These scores are obtained on test samples from differ-
ent scanners, patients and lesions, showing that these
techniques can be used on multiple sources. It can
be seen that the 3D U-Net network generates images
dominated by lower frequency components whereas
the GAN trained network shows higher frequency de-
tails and borders, as shown in Fig. 5. Nevertheless
these improvements are not reflected in the perfor-
mance of the metrics. The difference between both
networks was assessed with a t-test using a signifi-
cance level of α = 0.05. The obtained p-values are:
pPSNR = 0.00015, pMAE = 0.0036, pNCC = 1.2×10−7

all below the significance level, resulting in statistically
meaningful differences.

Both, the 3D U-Net and the adversarial networks
fail to generalize the upper section of the body where
less training data were available. This is also reflected
in the variability in the arm’s postures in the dataset.
While this can be solved with additional training data,
it can also be mitigated by anatomically matching the
training data and train region specific networks. Fur-
ther improvement in this direction will be to train the

network using a full-size intermediate space to map
each anatomical section, such as the intermediate rep-
resentations presented in [26] and [27]. The current
sCT generation can also be used as prior on attenuation
reconstruction techniques such as the MLAA and sin-
gle scatter modeling [28], reducing their high computa-
tional cost. These techniques can potentially eliminate
artifacts from the generated attenuation maps, such as
the CT contrast in the stomach observed in Fig. 7(d)
that is not present in Fig 7(b) nor in Fig 7(c), however
it can be noted in the NAC PET image in Fig 7(a), as
a darkened region.

The importance of two of the main features of the
tested topologies was assessed using an ablation test.
It can be seen in table 2 that the inclusion of the seg-
mentation branch as an auxiliary task improves signif-
icantly the metric scores when trained for the same
number of steps (“No Seg. U-Net” vs “U-Net” net-
works and “No Seg. GAN” vs “GAN” networks). The
inclusion of the gradient restriction in the GAN topol-
ogy also results in an improvement (“Base GAN” vs
“GAN”), enabling the GAN to focus on improving the
the information received by the 3D U-Net layers.

The reconstruction test performed using the BPF
reconstruction showed a good correlation between the
PET image reconstructed using the reference CT and
the PET images obtained using the sCT. It can be
seen in the difference maps (Figs. 8(d), 8(f), 10(d) and
10(f)) and in the profile plots (Figs. 9(a) and 11(a))
that the method presents differences with the reference
in the lung area, probably due to the fact that the CT
is taken instantly and the PET image is averaged over
multiple respiration cylces. This is also reported in
other studies [6, 7, 29]. Also it can be seen in Fig. 8(l)
that the network fails to generate prosthesis structures
present in the reference CT (Fig. 5(d)). This is ob-
served as a negative error around the hip in Figs. 8(f),
8(d), 8(l) and 8(j). This is probably due to the lack
of samples containing prosthesis in the train dataset.
As stated before, this could be mitigated using MLAA
techniques.

The metric scores of our methods are comparable to
the method proposed by Dong [6]. Their method was
trained using a dataset composed of NAC PET and
CT co-registered samples from a ToF enabled PET-
CT scanner. Their unsupervised method achieves a
MAE of 108± 19 HU in the reconstruction of a sCT
image. Nevertheless our models are more compact
than their proposed cycle-GAN architecture, requiring
less parameters. In the case of our GAN model, we
control the adversarial gradient resulting in a more
stable training procedure. Also our work is tested on
multiple PET scanners. Moreover, most of the tested
scanners do not posses ToF capabilities, for which
other methods such as MLAA, result in lower quality
whole body attenuation maps. Finally, we consider
that it is important to posses a common dataset to
enable direct comparison of different sCT generation
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methods, in order to asses the required complexity of
the models. For this reason the code and dataset used
in this work is released 1.

5 Conclusions

We presented two deep learning approaches to the task
of attenuation map generation from uncorrected PET
image data. The methods perform with image quality
comparable to other methods and the attenuation sino-
grams difference is low, showing potential for PET
image correction. The GAN method was able generate
visually appealing images with high correlation to a
real patient anatomy, however the 3D U-Net achieved
better scores in the image quality and PET image cor-
rection metrics.
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