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Abstract-The effect of uncompensated ceil resistance on current-potential curves obtained with the 
potential sweep method is presented for simple electrochemical reactions in conditions of a constant 
ionic activity and with the product entirely adsorbed on the electrode surface under either quasi- 
equilibrium or Tafel conditions. First and second order processes are considered. Results obtained for 
the latter are referred to the electrochemical reduction of platinum oxide film in 1N sulphuric acid 
at room temperature. 

INTRODUCTION 

The theory of the potential sweep method has been 
developed for electrochemical processes of different 
type, such as, Nernstian charge transfer with wte 
diffusion control, for slow charge transfer, for dimeiisa- 
tion and polymerisation processes[l-151. When a 
faradaic current flows through the working electrode, 
the cell resistance provokes the following distortion 
of the voltagram: (i) the current peak potentials are 
shifted toward larger values; (ii) the height of the 
current peaks is lowered, and (iii) the peak widths are 
broader. The magnitude of these effects increases with 
the cell resistance, the electrode area, the potential 
sweep rate and depolariser concentration. Therefore, 
the distortion of the voltagrams by uncompensated 
cell resistance and the dependence of this effect on 
potential sweep rate and depolariser concentration, 
indicate the convenience of establishing mathematical 
relationships describing the voltammetric current- 
potentialcurves, in order to determine kinetic measure- 
ments aimed for mechanistic conclusions. 

The effect of ohmic drop is of particular significance 
in three limiting cases: (i) when high potential sweep 
rates are used; (ii) when the reaction occurs in a system 
of relatively low conductance, as often happens when 
non-aqueous electrolyte solutions are studied, and 
(iii) when the reaction product yielded by the electro- 
chemical reaction is a non-conducting species which 
accumulates on the electrode surface, as often occur in 
phenomena related to passivity. 

The present paper is mainly devoted to study the 
possible effect of the uncompensated ohmic resistance 
on linear sweep voltammograms without, taking into 
account the double layer charging current, for simple 
electrochemical reactions in conditions where the 

activity of the ionic species is constant and the 
product is entirely adsorbed on the electrode surface. 

THEORETICAL DERIVATION 

Let us consider that a simple electron transfer 
reaction of the type: 

X-+X+e (1) 

occurs at the electrode, involving the formation of the 
adsorbed species X. It is assumed that reaction (1) 
in both directions is under activation control and 
species X, within the potential range to be considered, 
can be removed only by the ionisation process from 
the electrode surface. The concentration of the ionic 
species is considered as a constant from the outer 
Helmholtz plane throughout the bulk of the solution. 
Diffuse double layer effects are neglected. Then, the 
potential drop across the Helmholtz layer will differ 
from the potential applied between the working elec- 
trode and the reference electrode only by a constant 
term. 

1. Reaction (1) under quasi-equilibrium 

When an anodic potential sweep is applied to a 
system where reaction (1) occurs under quasi- 
equilibrium conditions, the anodic faradaic current is 
given by: 

i, = k,(l - B)a,- exp 

- k-,0 exp - (’ iyv), (2) 
( 
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where k, and k_, are the specific rate constants in the 
forward and backward directions when the potential 
difference, V, at the metal-solution interface is nil], 
and 0 is the degree of surface coverage of the electrode 
by species X. When a linear potential sweep is applied 
both V and 0 certainly change with time. The 
expressions for the potential dependence of both the 
adsorption pseudo-capacitance and degree of surface 
coverage for reaction (1) under a linear potential sweep 
were derived, in the absence of ohmic polarjsation, 
by different authors[7-10, 131. The conditions for this 
case are expressed as: 

iF < !~a,-(1 - 6) exp (3) 

and 

(4) 

Taking into account (3) and (4) with (2): 

kI(l - B)u,~ exp “R’,” 
( 1 

- k_#3 exp -(l ,9”“) =O. (5) 
( 

From (5) the adsorption isotherm is obtained: 

Ge = K,a,- exp & , 
( 1 

where K, = kJk_ 1. Hence, the degree of surface 
coverage is derived from equation (6): 

K,’ exp FT 

l9= ( 1 

I+ K,‘exp(g) =exp(-g) +K,” (7) 

with K,’ = K, . ax-. The expression for 0 allows a 
different expression for the net faradaic current; it 
would be convenient to visual& the behaviour of the 
latter during the transient. Thus, 

d@ 
iF=k-, 

dt 

where k corresponds to the charge required to obtain 
a monolayer of adsorbed intermediates according to 
reaction (1). Equation (8) involves the rate of change 
of the degree of surface coverage, the latter depending 
on the applied potential, which is a function of time. 
The potential V at time t is expressed by: 

V=v+ut-ii,R,, (9) 

where v is the initial potential, in V; IJ the potential 
sweep rate in V/s and R, is the ohmic drop across the 
cell, in R x cm’. Hence, the “true potential sweep 
rate,” II,, is given by: 

dv v,=--=I:-d”R _ 
dt dt ai (9’) 

Combining equations (7), (8), (9) and (9’) one obtains: 

x exp[ (-g)(n -zRa)j. (10) 

Taking into account equation (10) with (8), the net 
faradaic current is: 

~exp[(-~)(~-~R.)1. (11) 

Equation (11) can be written as follows: 

diF v 

dt- R, 

(12) 

and taking into account (9): 

diF v 

dt=R,- 

(13) 

This equation can be solved by applying a numerical 
method, such as the Runge-Kutta procedure, only if 
R, # 0. The program was fed to a Hewlett-Packard 
calculator, the results being available from an X-Y 
plotter (Fig. 1) for a particular set of fixed conditions, 
as indicated in Table 1. Equation (13) implies the 
current peak potential shifts with potential as indicated 
in Fig. 2. 

Equation (13) has, as a limiting case when R, + 0 
(R, # 0), the kinetic equations derived by Srinivasan 
and Gileadi for the same type of process[7]. For the 
quasi-reversible case, when R, = 0, the current peak 
height changes linearly with the potential sweep rate 
and the potential at the current peak is independent 
of the potential sweep rate. 

2. Reaction (1) under irreversible conditions 

Let us consider the possibility that this reaction is 
highly irreversible so that the reverse reaction can be 
neglected. Then the rate of the faradaic process is 
nearly equal to the rate of the forward reaction. 
Under these conditions, theappliedpotential is far from 
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Table 1. Data used to calculate E/f curves for reaction (I) under quasi-equilibrium conditions. 
A = v/R,‘; Z = BIkK,R,‘; B = RT/fiF; K, = 7G685 x 10m4; k = 1356 mC/cm2; t,, = 

[(ir),=s Area R,‘/u]; T = 473°K; B = 41.3525 mV; Electrode Area: 1 cm’ 

BU’ ” A 2 At (if),= 0 t0 

R mV/s S mA/cm’ S 

5 10 2+0 8.6293 x 10’ 2.5 x 1om4 2.318 x 1O-3 1.159 x 10-j 
50 10 5.0 x 10-r 8.6293 x 10’ 2.5 x 1o-3 2.318 x 1O-3 1.159 x 1o-2 

100 10 1.0 x 1o-2 43146 x 10’ 5 x 10-j 2.318 x 1O-3 2.318 x lo-’ 
200 10 5.0 x 1o-2 2.1573 x 10’ 1 x 1o-2 2.318 x 1O-3 4.636 x 1O-2 
300 10 333 x lo-* 1.4382 x 10’ 1.5 x lo-* 2.318 x 1O-3 6.954 x 1o-2 

I I I 

Potentid, V 

Fig. 1. Anodic current--potential curves obtained from equa- 
tion (13) with data assembled in Table 1. R,’ = 5 R (1); 

50 R (2); 100 R (3); 200 R (4); 300 R (5); 500 R (6). 

> I I I I I 

Fig. 2. Shift of the potential at peak current with ohmic 
resistance. The shifts are referred to the potential at 

R’+* J-l , 

current peak for R,’ = 0 CL 

iF v/IF iF k,’ 

di, RT 
k exp gT (q + ut - i,R,) 

I 1 -= 
dt 

l+i R g 

. (20) 

F “RT 

the equilibrium potential and a Tafel relationship 
between V and iF is fitted: 

i F = k a -(l - 8)exp 1 x . (14) 

Taking into account (9), the rate equation in the 
differential form is: 

diF 
- = k,‘(l - 0) $ 
dt 

= k,‘(l - B)exp(g)&(u-2R.j 

where k,’ = kIaXm. From (15) one obtains: 

(15) 

(16) 

(17) 

Considering equations (14) and (17) the net faradaic 
current is given by the expression: 

iF = 
di, k,’ 
-s + -i- IF exp 

From (18) the explicit differential expression is: 

diF 
-= 
dt 

l+iR p * 
(19) 

’ “RT 

This equation, replacing the expression for x from (9) 
becomes : 
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To solve equation (201, the numerical procedure for thiocyanate. Results are shown in Fig. 3, as given by 
the evaluation of equation (13) was again used. Solu- the X-Y plotter. 
tions for any value of R,, including R, = 0, can be If the current maximum is iF, m,x and the correspond- 
obtained. The kinetic parameters used are assembled ing potential is V,,, thecondition (di,/dt) = 0 implies : 
in Table 2; they correspond to parathiocyanogen 
formation on platinum at 190°C in molten potassium /IFv kl’ 

-=kexp RT (21) 

Table 2. Data used to calculate E/I 
curves for reaction (1) under irrevers- 
ible conditions. M = (RI-//W) x 
(k,/ku); k, = 1,532 x lo-l5 A/cm2; 
k = 28.98 mC/cm’; Electrode area: 
0.102 cm’. Numerical data taken from 
ref. [18]. 
t, = [(i)r=O Area R,‘/v]; (i)*=,, = k,; 
u = 15 mV/s; M = 7.01 x lo- l4 

4’ At to 
a s s 

0 5 x 1o-2 
10 2 x 1o-2 
56 2 x 10-L 

100 2 x 1o-z 
150 1 x 1o-L 
220 1 x 10-Z 
330 1 x lo-” 
470 1 x 1o-3 

1 x 1o-3 
1 x 1o-3 

1.042 : IO- I3 
5.834 x lo-l3 

1.0213 x lo- I2 
1532 x lo- l2 

2.2469 x lo- I2 
3.4725 x lo- I2 
4.9024 x IO- I2 
1.0213 x lo-” 
2.0427 x lo- I’ 

6- 

6- 

,4 - 

2- 

Therefore : 

V,,, = E In F h + z In v + I,,, R,’ 
/3F RT k,’ j?F 

(22) 

According to (22) the potential at the peak current, 
at a constant R,’ value, increases linearly with the 
logarithm of the potential sweep rate (Fig. 4). R,,’ is 
the ohmic drop across the cell in s2. The ohmic drop 
appears as a term which depends on v, as the 
maximum current does. Consequently a V,,, us In v 
plot does not give a straight line if the quantity of R,’ 
is appreciable. Equation (22), when R,’ = 0, produces 
the equation derived by Gileadi and Srinivasan[7]. 

3. A second order electrochemical process under 
irreversible conditions 

Let us consider a second order electrochemical 
reaction under activation control represented by: 

2MX + ne+Xzn- + 2M (23) 

I I I I I t I I I I 

0. I 0.2 0.3 0.4 0.5 O-6 0.7 0.8 0.9 1.c 

Polenlial, V 

Fig. 3. Anodic current-potential curves obtained from equation (20), with data assembled in Table 2. 
R,’ = 0 R (1): 10 Q (2); 56 R (3); IDO R (4); 150 R (5); 220 R (6); 330 Q (7); 470 R (8); 1000 R (9): 

2000 R (IO). 
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This reaction implies the desorption and electro- 
chemical reduction of the species X, which is initially 
adsorbed on the electrode surface, the step involving 
the simultaneous transfer of n charges. As in case (2). 
at potentials far from equilibrium the rate of the 
faradaic process in the forward direction under 
stationary conditions is: 

iF= --R,B’erp(-F). 

Taking into account the equation for the applied 
potential: 

I’= y - UC+ ifR,, (25) 

one obtains: 

iF = _k2 82 exp -03 “C ,I;“J”““I I (26) 

L 

and differentiation yields: 

dir 

dt 

(K + ut - iF R,)a, nF 
___ 

=- 
2 k2112 (V + UT ---&&)a2 nF] iF3,2 exp 

I 

+&(D-!&Ru, 

(Y + a - bJL)a, nF 1 

The condition for the current peak, (di,/dr) = 0, is 
fulfilled when : 

2k2”2 .I,2 exp & + VT - LxRuh n 

I 

a2 nFv 
~ hlax 

_ 
k 2RT 

. 

RT 

(28) 

Therefore : 

(vi + 4nax - hn,xR, 

2RT 
=---~~-------- 

u2 nF 

I I 

0.1 0.2 

Ohmic overvoltage at peak current. V 

Fig. 4. Dependence of the potential at peak current on 
ohmic overvoltage according to (22). Data taken from 

Fig. 3. 

which can be rearranged as follows: 

Equation (30) implies a relationship between V,, and 
v which depends on i,,,,, through a linear term and 
a logarithmic term, the latter depending on the order 
of the electrode reaction. When reaction (30) is com- 
pared to the one deduced in the absence of the ohmic 
polarisation term, we obtain: 

RT 
k2 +i +p ____ 

a, nF In 4nFi,,,,, ma’ 
Rut (31) 

where, q. is the number of mole/cm* initially placed 
at the electrode surface. If k2 is the second order rate 
constant, expressed as a current density, the following 
relationship is satisfied : 

k2 = nFqo2h (32) 

Ic,, being the second order rate constant in cm2/s.mole. 
A set of theoretical voltammetric E/I curves, com- 

puted from (27), for a cathodic second order desorption 
plus electron transfer process, obtained for different 
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I I I 
-0 9 -06 -0-3 

Potential, V 

Fig. 5. Experimental cathodic current-potential curves for 
the electrochemical reduction of platinum oxide in 1N 
sulphuric acid at room temperature, at 300 mV/s. R,’ = 
0 R (1); 1947 R (2); 4000 R (3); 6312 R (4); 7937 n (5); 

and 10,000 R (6). See Tables 3 and 4. 

Table 3. Data used for computation of the 
voltammetric E/I curves with equation (27) 
for the reduction of platinum oxide in 1N 

sulphuric acid at 294.2”K 

k = 0,564 x 10-j C/cm* 
~1~ = 0.26 (from [17]) 
U = 0.3 v/s 
(RT/a, nF) = 48,72 x 1O-3 V 
W + u&lax = -0.3 V (arbitrary fixed) 
k, = (a2 nFku/RT)exp[ (6 + ut),,, a2 nF/RT] 

= 7.35 x 10 -6 A/cm’ 
(2k,“‘/k) = 0.304 cm/(s.C)1J2 
(al nFu/RT) = 6.158/s 
Electrode Area: 0.1037 cm’ 
R,‘fromORto 1OOOOR 

values of R,’ are showed in Fig. 5. The values of the 
constants used are assembled in Table 3. The CI~ n value 
for the reduction of platinum oxide was taken from 
the paper by Ohashi, Sasaki and Nagaurail’i]. 

In order to test the validity of equation (30), it 
was necessary to record new current-potential curves 
by cyclic voltammetry for the platinum oxide reduction 
in IN H,SO, at room temperature as made earlier 
by the authors mentioned above[ 171. For this purpose, 
a constant amount of oxide formed on a clean 
platinum electrode by an anodic voltammetric sweep 
under conditions of R,’ -+ 0, was reduced by a cathtidic 
voltammetric sweep. Thecathodic reaction occurred by 
inserting in the circuit, by means of a rapid switching 
operation, a resistor of prefixed value. The potential 
sweep covered the voltage range from -0.910 to 
+0,836 V. Results are assembled in Table 4, as well 
as the difference, A, between the experimental and the 
theoretical values. 

CONCLUSIONS 

The mathematical analysis of current-potential 
transients obtained by the application of the linear 
potential sweep method for a simple first order 
adsorption step and rate controlling involving charge 
transfer under Langmuir isotherm, including the effect 
ofthe ohmic resistance, yields two differential equations 
which correspond to the following limiting cases: 
(i) quasi-equilibrium conditions and (ii) Tafel approxi- 
mation. The solution of both equations gives the 
quantitative effect of the uncompensated ohmic cell 
resistance on the vohagrams. The errors involved in 
the calculations are the following: (i) for the quasi- 
reversible case, for R,’ = 300 C! and the conditions 
indicated in Table 1, the error in the current peak is 
6 x 10m5 mA. (ii) for the irreversible case, for R,’ = 
10 Cl and conditions indicated in Table 2, the error in 
the current peak amounts to 7.83 x 1O-9 mA. 

The ohmicdropcorrection depends also on the order 
of the electrochemical reaction, as is clearly demon- 
strated with quantitative data obtained for the electro- 
chemical reduction of platinum oxide in sulphuric acid 
at room temperature. 

In conclusion the uncompensated ohmic effect, 
together with the double layer capacity effect, may 

Table 4. Experimental and theoretical values of (v + ut),,, at different R,’ for the second order electrochemical 
reduction of platinum oxide 

[(& + ut),: -0 RT a2 nFkv 

R,’ max I 
~~~~ In ~_ _~ [(I; + t’rh: =o- 

- (1: + CJ~)R; =R;L~ Im.xRh a,nF 4RTI,,, - (1;; + v’h: =R;lIheor IAl 
n PA mV mV mV mV mV 

0 9O*s 0 0 0 
1947 64 I48 k 10 1246 16.63 141.2 , +6.8q < 10 
4ooo 57 259 k 10 228.0 22.25 250.3 I +8.41 < 10 
6312 53 370 + 10 334.5 25.96 360.5 I+9.51 < 10 
1937 46 402flO 365.1 32.86 398.0 I +4.01 < 10 

lcoocl 41 438 + 10 410.0 38.30 448.3 I - 10.31 h 10 
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produce a large distortion in the voltammetric current- 
potential curves so that kinetic data derived from 
peak currents and from the whole curve can be 
significantly erroneous. This effect is particuIarly 
notorious when large potential sweep rates are 
employed and is important for the case of Nernstian 
charge transfer process and for an electrochemical 
process, which are controlled by a charge transfer step. 
For the latter it can also be predicted that the influence 
of the uncompensated ohmic resistance term decreases 
when passing from a Langmuir to a Temkin isotherm 
condition and in this case it also decreases when the 
Temkin factor,f; increases for then the current at the 
peak becomes smallerr 181. 

Acknowledgement-This work is part of the research 
program of INIFTA, sponsored by the University of La 
Plats, the Consejo National de Investigaciones Cientlficas 
y Ticnicas and the Comisi6n de Investigaciones Cientificas 
de la Provincia de Buenos Aires. 

REFERENCES 

1. A. Sevcik, Colln. Czech. them. Commun. 13, 349 (1948). 
2. P. Delahay, New Instrumental Methods in Electro- 

chemistry, Ch. 6, Interscience, New York (1954). 

3. 

4. 

5. 
6. 

;: 
10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

H. Matsuda and Y. Ayabe, Z. Elektrochem. 59, 494 
(1955). 
R. S. Nicholson and I. Shain, Analyr. Chem. 36, 706 
(1964). 
R. S. Nicholson, Analyt. Chem. 37,667 (1965). 
W. T. DeVr.es and E. Van Dalen, J. electroanal. Chem. 
10, 183 (1965). 
S. Srinivasan and E. Gileadi, Electrochim. Acta 11, 321 
(1966). 
A. G. Voloshin, EIektrokhimiya 3, 924 (1967). 
S. Roffia, Ric. Sci. 38, 1257 (1968). 
P. Stonehart, EIecrrochim. Acta 13, 1789 (1968). 
S. Roffia and M. Lavacchieli, J. electroanal. Chem. 22, 
117 (1969). 
C. P. Andrieux, L. Nadjo and J. M. Saviant, J. 
electroanal. Chem. 26, 147 (1970). 
J. Clavilier, C. hebd. S&c. Acad. Sci., Paris 270, 1698 
(1970). 
E. Laviron, Bu[l. Sot. chim. Fr. 3717 (1967); Electrochim. 
Acta 16,409 (1971). 
J. C. Imbeaux and J. M. Savtant, J. electroanal. 
Chem. 28, 325 (1970); 31, 183 (1971). 
A. J. Arvia, A. J. Calandra and M. E. Martins, 
E/ecrrochim. Acta 17, 741 (1972). 
K. Ohashi, K. Sasaki and S. Nagaura, Bull. them. Sot. 
Japan 39, 2066 (1966). 
J. M. Hale and R. Greef, Electrochim. Acta 12, 1409 
(1967). 


