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Abstract: Volume change and large deformation occur in different solid and semi-solid foods dur-
ing processing, e.g., shrinkage of fruits and vegetables during drying and of meat during cooking,
swelling of grains during hydration, and expansion of dough during baking and of snacks during
extrusion and puffing. In addition, food is broken down during oral processing. Such phenomena
are the result of complex and dynamic relationships between composition and structure of foods, and
driving forces established by processes and operating conditions. In particular, water plays a key role
as plasticizer, strongly influencing the state of amorphous materials via the glass transition and, thus,
their mechanical properties. Therefore, it is important to improve the understanding about these com-
plex phenomena and to develop useful prediction tools. For this aim, different modelling approaches
have been applied in the food engineering field. The objective of this article is to provide a general
(non-systematic) review of recent (2005–2021) and relevant works regarding the modelling and
simulation of volume change and large deformation in various food products/processes. Empirical-
and physics-based models are considered, as well as different driving forces for deformation, in order
to identify common bottlenecks and challenges in food engineering applications.

Keywords: cellular solids; hyperelastic material; mechanical modelling; multiphysics; multiscale
modelling; porosity; solid mechanics; texture; virtualization; viscoelastic material

1. Introduction

In many processes involving solid and semi-solid foods, significant volume change
and large deformation occur in the products. Some typical examples include the following:
shrinkage of fruits and vegetables during convective drying and of meat products during
cooking, dough/bread expansion during proofing and baking, expansion in extrusion and
puffing to produce snacks and breakfast cereals, and swelling during soaking of pulses.
In some cases, these phenomena are positive and indeed a characteristic feature of the
product/process, like expansion in baking and extrusion. On the other hand, they can
represent undesired changes in other situations, e.g., excessive shrinkage during drying
and cooking. However, in any case, for a wide range of processes, operating conditions, and
food materials, significant volume change and deformation are part of the processes and,
thus, are inevitable. Therefore, there is a need for better understanding the fundamental
mechanisms of these phenomena in the context of food engineering, that is, to develop
scientific knowledge and useful tools to describe and predict the relationships between
processing conditions and behavior of food materials. The main goal is then to steer such
phenomena towards the design of food products/processes that achieve multiple objectives
involving food safety and quality (nutritional and sensory), as well as process efficiency.
In this sense, modelling and numerical simulation can play an important role, providing
adequate frameworks and quantitative tools for a systematic and robust analysis [1].

The occurrence and development of volume change and deformation in foods during
processing can be explained by considering both material properties and driving forces
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established by a given process and operating conditions, like in other transport phenomena.
On the one hand, most of solid and semi-solid foods are recognized as very complex
biomaterials [2]; they can be described either as multiphase mixed dispersed systems or
as multiphase capillary–porous media with a deformable, hygroscopic, and amorphous
matrix or skeleton made of biopolymers (e.g., polysaccharides and proteins), also contain-
ing small molecular species (e.g., salts and sugars) and water [3,4]. The microstructural
organization of the different phases and their physical state, and the presence of water,
which is the main plasticizer, largely determine the mechanical properties and rheologi-
cal behavior of foods [4,5]. On the other hand, a certain process establishes the driving
forces, e.g., temperature, moisture, pressure, and/or mechanical stress gradients, while
operating conditions regulate their intensity. Considering the non-equilibrium or dynamic
nature of food processing, the role of water as plasticizer is essential, since, together with
temperature, they determine the state of amorphous materials via the glass transition (Tg)
concept [6]. In general, at low temperature and/or low water content, foods are in a solid-
like brittle state, the so-called glassy state. However, an increase in temperature above the
Tg range (or an increase in water content) produces the glass transition: Foods change their
state to rubbery (liquid-like) and now behave as soft viscoelastic materials [7,8]. Another
important transition is denaturation of proteins; in the case of meat cooking, denaturation
of proteins induced by heat plays a key role in structural changes [9]. So, volume change
and deformation in foods are the result of complex and dynamic relationships between
composition and structure of foods, and driving forces given by processes and operat-
ing conditions. Different mechanisms of deformation are discussed later for typical food
products/processes.

Creation and transformation of structures or structuring of materials has a significant
impact on different properties of foods, i.e., physical, transport, sensory, and also nutritional
properties [10]. Volume change and deformation, in addition to changes in moisture content
and temperature during processing, can generate variations in porosity and (apparent) density
of foods, thus modifying the transport and mechanical properties of the materials [8,11]. In
this sense, texture profile analysis (TPA), which can be thought as an imitation of mastication
or chewing process, is often used to relate mechanical measurements to subjective sensation
(sensory attributes), thus making food texture characteristics more predictable [12]. For
instance, the Young’s modulus, a mechanical property of materials, is considered an important
measure or proxy for texture. A few efforts have been made to associate process conditions
and transport phenomena with mechanical properties and finally texture of food products,
by using this mechanical property [13–15]. Furthermore, structural modifications due to
different processing methods and pathways certainly influence the oral processing and
overall digestion process of foods [16–18]. Besides sensory aspects, the structure and, thus,
texture of foods can influence oral processing behavior, helping to moderate eating rate and
energy intake [19]. On the other hand, volume change and deformation imply the variation of
food geometry and also movement of solid skeleton, and thus need to be taken into account
when modelling transport processes for a correct calculation of gradients, fluxes and average
values of dependent variables [20]. This represents an additional challenge for modelling
and simulation of food processes, besides the availability of thermophysical properties and
experimental validation of numerical predictions [21].

So far, it is evident the underlying complexity of modelling and simulating volume
change and deformation of foods during processing, but at the same time, the importance
and thus the need to address this intricate problem. Actually, the development of the next
generation of food process models, i.e., digital twins (virtual replica of the real process),
certainly requires the inclusion of the previously described aspects, towards a holistic
and comprehensive approach for food product/process design, considering the current
and future challenges of agri-food industry [22]. Therefore, the objective of this article
is to provide a general review of the more recent (2005–2021) and relevant works that
have addressed the modelling and simulation of volume change and large deformation
in different food products/processes, from a food engineering perspective. That is, it is
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not intended to be an extensive and detailed or systematic review of all models and/or
numerical methods reported in the literature, but an overview of significant contributions
in different applications with focus on large deformation of solid-like materials, which can
be taken as reference for further studies and developments. By taking this transversal and
comprehensive perspective, we aim at condensing the common bottlenecks and challenges
shared by main applications, since most of available review articles are rather focused either
on a single product/process or on a specific modelling approach. The review is organized
as follows: In Section 2, different modelling approaches are described upon an ad hoc
classification, including both empirical- and physics-based, as well as hybrid formulations;
in Section 3, the mechanisms and modelling of volume change and deformation of different
common products/processes are discussed; in Section 4, conclusions and perspectives are
given to finalize.

2. Modelling Approaches

As it was discussed in the Introduction section, deformation of solid-like food mate-
rials is not an isolated phenomenon, but it is definitely coupled with heat and/or mass
transport processes, which establish the driving forces for deformation during processing.
In other words, in most food engineering applications, deformation of a material does
not involve a pure solid mechanics problem, but there is a physics coupling, i.e., it is
generally a multiphysics problem. An exception could be the simulation of a texture/TPA
or mechanical test, or modelling a “dry” oral breakdown or mastication process. So, in
general terms, modelling of deformation is naturally related to modelling of heat and/or
mass transfer, or the corresponding transport phenomena for a given process. Nevertheless,
since this review is focused on volume change and deformation, only essential discussions
regarding modelling of other phenomena during food processing are included, together
with relevant references.

Considering that more than one phenomenon or transport process can occur, and
thus be modelled and simulated for a given product/process, classification of modelling
approaches is not straightforward, since different types of assumptions, simplifications
and solutions have been proposed by many authors for several applications. Based on the
performed literature analysis, we propose to divide the modelling approaches into two
main groups, depending on the complexity involved and the degree of detail provided;
within each group, different kinds of modelling approaches are included, from empirical-
based to physics-based:

1. Empirical, phenomenological, and simple theoretical models: Overall, these models
are relatively simple, in terms of formulation and implementation, and their outputs
are average or bulk values. Some models of this group can help in providing local
or detailed information, in combination with physics-based models, although using
simplifications in the formulation and/or implementation (i.e., hybrid models from
the second group).

2. Physics-based and hybrid models: In general terms, these are transport models formu-
lated from physical or fundamental laws, which may involve different and multiple
scales. These models provide information about local values (e.g., spatiotemporal
profiles), and average values as well. In some cases, complexity is reduced by using
some simplifications (hybrid models).

Following, we present the description and more relevant details of each group of
models, prior to discussing a series of application examples in Section 3. Figure 1 depicts a
summary of modelling approaches and overall perspective of this review article.
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Figure 1. Graphical summary of the review article, including general perspective and modelling approaches, according to
the proposed classification.

2.1. Empirical, Phenomenological, and Simple Theoretical Models

Firstly, empirical modelling approach aims at finding a direct relationship between
experimental inputs and outputs (data), without the premise of describing the underlying
mechanisms that explain such connection. In this sense, these models are often referred
as black-box or data-driven models. Such direct relationship can be established by using
different numerical tools, e.g., regression models, response surface methodology, and also
more complex methods like artificial neural networks [23]. In our case, inputs would be
some product characteristics and processing conditions, while outputs would be different
variables or properties associated with food deformation, e.g., ratio of volume change
(shrinkage/expansion), density, porosity, etc. The main advantage of this approach is the
low–medium difficulty in terms of mathematical modelling, which makes it more easily
implementable. This is of particular interest for industrial applications, especially for SMEs
(small- and medium-sized enterprises), which may not have access to more sophisticated
or complex tools [24]. On the other hand, the major limitation of this approach is probably
the lack of a physical meaning of the established relationship, and thus the impossibility of
explaining the occurring phenomena. In addition, this approach generally needs a large
amount of data for fitting/training and validation, covering a wide range of conditions, in
order to provide reliable tools.

Secondly, phenomenological models are based on hypotheses derived from exper-
imental observations about a certain phenomenon or behavior of interest, and attempt
to describe the involved mechanisms by relating some key variables and/or parameters.
The difference between this approach and the empirical one relies on the degree of funda-
mental knowledge involved. Pure empirical modelling is basically a data-fitting problem,
while phenomenological models can be seen as a first step towards a physics-based or
fundamental model, or as a simplified version of it. For instance, strictly speaking, the
classical transport phenomena “laws” like Fourier’s law and Fick’s law, among others,
are phenomenological relationships. Afterwards, when a phenomenological model is
proved to be valid for a wide range of materials/conditions, or it can be derived from
theory under certain conditions, it acquires a physical law status, mostly in an engineering
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context. Phenomenological models are also called as semi-empirical or semi-theoretical
models. In general, the empirical aspect of these relationships is lumped into a (effective)
coefficient or property, which depends on the material and main variables of the process
(e.g., temperature and water content).

Thirdly, it may be possible to derive simple models from fundamental concepts and
principles, i.e., from theory. For instance, by taking certain assumptions, mass balances can
be used to obtain a simple model either to predict overall volume change or to compute
the local velocity of deformation (some examples are covered in the next section). Such
assumptions make possible to obtain these so-called simple theoretical models, which can
be also helpful to reduce the complexity of physics-based models, as we discuss later.

Overall, the common characteristic of these three types of models is that they are not
mechanics-based models. That is, volume change and deformation are not predicted by
solving the solid momentum balance equation and using mechanical properties of the
material, but certain aspects of these phenomena are described in an indirect or simplified
way. In addition, the degree of empiricism can be significant. Nevertheless, it is worth
recalling that mathematical models are essentially tools, which may have different ob-
jectives. In other words, from a pragmatic viewpoint, these simple models can still be
useful for the design, control, and optimization of processes, besides the mentioned use
in combination with more complex physics-based formulations. However, the models
of this first group have a limited capacity of describing the underlying mechanisms that
explain the behavior of the products/processes. Furthermore, empirical-based models are
constrained to specific conditions (products/processes) from which empirical parameters
were estimated, i.e., new parameters will be needed if new conditions have to be incorpo-
rated into the existing model [1]. In this sense, extrapolation or generalization in terms of
both behavior or mechanisms and numerical predictions should be avoided without an
appropriate experimental verification.

2.2. Physics-Based and Hybrid Models

Physics-based or mechanistic modelling approach is based on the use of fundamental
physics concepts and laws to describe the physical mechanisms involved in a process. The
starting point for physics-based models is the formulation of the problem, i.e., establishing
a set of hypotheses regarding the (supposed) underlying physics of a process and develop-
ing their mathematical representation via the corresponding physical laws. Mathematical
formulation comprises governing equations, typically partial differential equations, with
their respective boundary and initial conditions. Governing equations involve balances or
conservation laws of mass, energy and momentum, and the corresponding constitutive
equations or transport phenomena laws or expressions, according to established hypothe-
ses, e.g., Fick’s law of molecular diffusion, Fourier’s law of heat conduction, Hooke’s
law of elasticity, etc. As it was mentioned before, these transport phenomena “laws” are
phenomenological, but they have been extensively utilized and are considered of general
application. Nevertheless, special attention is needed in food process modelling: The
complex structure and composition of foods may generate significant deviations from the
ideal behavior of simple or ideal media/materials (e.g., metals and ideal gases). Finally,
the model is completed with thermophysical properties, transport coefficients and other
parameters. In most cases, material properties are not constant values, but depend on
state variables, e.g., water content, temperature, and also porosity in deformable porous
materials. For instance, if a physics-based model is oversimplified by neglecting significant
mechanisms and/or using effective properties to lump complex behavior, the model is
indeed a phenomenological or semi-empirical one, as described above.

Bearing in mind the focus of this review, the objective of a physics-based model is to
describe and predict the deformation behavior and associated variables like velocity of
solid and spatiotemporal evolution of porosity. However, as it was already mentioned,
driving forces for deformation are usually originated by heat and mass transport processes,
so physics-based models need to account for all phenomena involved. This generates a
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coupled system of equations for which numerical implementation is not straightforward
(analytical solutions are not possible). Fortunately, due to advance in computing power
and the availability of specialized software, solution of these models is feasible nowadays
(although not obvious). After model solution, numerical results need to be validated
against experimental data, i.e., hypotheses of the model have to be tested properly by using
data from the real process. Afterwards, the model hypotheses can be modified to better
describe the real behavior and thus to obtain a more accurate model.

To illustrate this approach, let us consider the poromechanics-based modelling frame-
work for the coupled physics of transport and large deformation in food materials, developed
by Dhall and Datta [20], based on extended Biot’s theory of poromechanics. In order to
provide a concise description, we focus on essential aspects and equations related to large or
finite deformation. Firstly, food is considered as a multiphase porous material where all the
phases are in the continuum (macroscale approach), and the solid skeleton is an incompress-
ible hyperelastic (or Green elastic) material. This nonlinear constitutive theory is suitable to
describe a wide range of physical phenomena in which deformation may be large or finite [25].
Secondly, the macroscopic total stress tensor (σ) can be written as a sum of averages in the
individual phase volumes of the material, leading to the following expression:

σ = σ′ − pf I (1)

where σ′ is the effective stress on the solid skeleton, and the second term represents the
pore or fluids pressure, p f (I is the identity tensor). Thirdly, the solid momentum balance
can be simplified by assuming quasi-steady state for deformation (no acceleration) and no
external forces being applied:

∇·σ = 0 (2)

By combining both equations, we obtain the relationship between effective stress on
solid skeleton and driving forces (pressure in the pore):

∇·σ′ = ∇pf (3)

For instance, if the pores contain liquid water and gases (e.g., air–water vapor mixture
and carbon dioxide produced by yeasts), the governing equations become the following:

∇·σ′ = ∇pg −∇(Sw pc) (4)

On the right-hand side, the first term is the gas pressure (pg) gradient and the second
term involves capillary pressure (pc; Sw is liquid water saturation), which can be related
to water potential via Kelvin’s law. Capillary pressure (or water potential) is generally a
function of water content and temperature (although temperature dependency is commonly
neglected).

In summary, Equation (4) indicates that effective stress on solid skeleton is due to driv-
ing forces established by a given heat and mass transfer process. In addition, Equation (4) is
related to strains and displacements of solid matrix via constitutive equation of the material
(e.g., hyperelastic material). So, Equation (4) establishes that deformation behavior (strains,
solid displacements) depends on mechanical properties of the material and driving forces.
Considering that mechanical properties can also depend on state variables (e.g., water
content and temperature), the multiphysics problem becomes highly coupled. Note that
other constitutive equations for the material can be used, but Equation (4) is still valid, since
it represents the governing equation for momentum transport. For more details about this
general formulation, the reader is referred to Reference [20], and solid mechanics textbooks
(e.g., Reference [25]).

In general terms, physics-based modelling approach presents some advantages over
the empirical-based modelling [26]:

• Variables, functions, and parameters have physical meaning, so results can be inter-
preted and explained with certain logic;
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• The number of experimental tests is usually reduced, which decreases time and
resources involved;

• Great insight into the process is provided due to possibility of performing virtual
experimentation and useful studies like sensitivity analysis and “what-if” scenarios;

• Design, prediction, control, and optimization capabilities of products/processes are
improved.

Because of these advantages, physics-based models are considered as a key element
for the development of digital twins and virtualization of food industry or Industry 4.0 [22].
The drawbacks of this approach are mainly associated with the implementation of physics-
based models in food processing. The main bottleneck is probably the lack of data about
thermophysical and mechanical properties for a wide range of products and processes [21].
More work is needed in this essential aspect, supported by adequate experimental methods
and also by physics-based models, which can be used as estimation tools via inverse
methodology. Moreover, the development and implementation of these complex models
can be a difficult task, especially in the industrial environment, so more specific or adapted
modelling frameworks and software, as well as education and training, are necessary to
expand their use in food processing applications [1,24]. For example, advanced numerical
methods involving moving meshes are generally required.

So far, previous description is quite general and with focus on the main modelling
framework used in food engineering, i.e., continuum or macroscale approach. Briefly,
macroscale approach is based on the continuum hypothesis and averaging methods, where
a representative elementary volume (REV) is used to describe a “point” of a structureless
continuum domain and to define local macroscopic variables, such as macroscopic total
stress tensor in Equation (1). More details about this classical modelling framework can
be found elsewhere (e.g., References [27–29]). Besides, the finite element method (FEM)
is probably the most used numerical technique to solve equations of these macroscale
models [30]. On the other hand, in the last 10–15 years, novel and promising physics-based
modelling paradigms have been applied in the food engineering field: microscale and mul-
tiscale approaches. For the sake of simplicity, we use the term “microscale” throughout this
work to describe different fine scales, e.g., microscale, mesoscale, and nanoscale. Overall,
the microscale approach aims at describing the behavior of microstructures like colloids,
cells, polymers, composites, interfaces and molecular arrangements. These complex mi-
crostructures are actually the components of the structureless continuum material of the
macroscale approach. So, the idea is to model the physicochemical and mechanical changes
occurring at these fine scales.

Multiscale models are defined as a hierarchy of interconnected sub-models which
describe the material behavior at different spatial scales [28]. This is an interesting approach
since biomaterials actually have a hierarchical structure [31]. In this sense, multiscale
modelling can provide a solution to the mentioned bottleneck of macroscale modelling
regarding physical properties. For instance, a microscale model can be used either to
calculate a transport property due to microscopic dynamics to feed a macroscale model or
to understand macroscopic responses through variations at microscale. The most important
asset of this paradigm is probably the explicit incorporation of microstructure details on the
physics-based model. This feature certainly increases the abovementioned possibilities and
capabilities of mechanistic models. For example, it may be possible to design a food product
with a target texture or mechanical behavior (structure engineering) by using a physics-
based multiscale model [8]. This is of great importance for mimicking and/or reformulation
purposes in R&D (research and development) applications, e.g., plant-based analogues of
dairy and meat products. For more details about this modelling framework, the reader is
referred to the excellent review of Ho et al. [28]. An interesting alternative framework for
multiscale modelling is provided by hybrid mixture theory (HMT), which has a continuum
mechanics basis; this approach has been applied to different food products/processes [32].
With the same objective of incorporating microscale information into macroscale models,
application of soft matter approaches can also help to obtain a better understanding and
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useful insights about the relationships between structure and composition, and properties
and macroscopic behavior of foods [33].

In summary, the essential characteristic of physics-based or mechanistic models is
that volume change and deformation of the material are described in a direct and explicit
manner. This modelling approach is mechanics-based, i.e., the solid momentum balance
is used to predict the behavior of the product, based on the mechanical properties of the
material and on driving forces established by the process. So, this framework is considered
here as the best possible solution towards the global objective of developing scientific
knowledge and useful tools to describe and predict the relationships between processing
conditions and behavior of food materials.

Despite of the mentioned advantages, formulation and implementation of these
models can be a difficult task. Therefore, a common solution to reduce the complexity of
these formulations is to avoid the resolution of the mechanical part of the multiphysics
problem. That is, deformation of the solid is not calculated through the corresponding
momentum balance and mechanical properties, but it is obtained by an alternative way,
e.g., by using empirical, phenomenological, and simple theoretical models. In such case,
the model is catalogued here as a hybrid model, since the mechanical problem is not solved,
but heat and mass transport equations are still considered (Figure 1). In other words,
hybrid models are a simplified version of physics-based models. Depending on the degree
of simplification and/or empiricism involved, the capabilities of the hybrid model will be
reduced in comparison with a full or pure physics-based model.

Finally, it is worth to mention an important aspect of physics-based (and hybrid)
models: geometric modelling of food materials at different scales, i.e., the process of
creating a digital or virtual representation of the structure/geometry of a real product [34].
After a model is formulated, a virtual domain has to be defined to solve the corresponding
equations. For the case of modelling realistic geometries, different imaging techniques
are available to perform data acquisition. Ho et al. [28] recommended the use of methods
that provide 3D images which can be then converted into 3D solid models, in order to
capture all possible information about geometry and structure of materials. In particular,
3D models are able to describe full connectivity of porous materials, which is not possible
in 2D models. Such imaging techniques include X-ray computed tomography, optical
methods and magnetic resonance imaging. In this regard, Wang et al. [35] indicated that
X-ray micro-computed tomography (micro-CT) provides the unique ability to capture
intact 3D internal microstructure data without significant preparation of the sample and in
a non-destructive way. These authors concluded that geometric models will be significantly
improved by using micro-CT data, which will lead to more realistic simulations and more
accurate solutions to transport equations.

3. Applications in Various Products/Processes

Different driving forces established during processing can cause volume change and
deformation of food materials, e.g., removal of water in drying and cooking; water uptake
in hydration/soaking; internal pressure or gas-induced expansion in baking, extrusion,
and puffing; and mechanical stresses in oral breakdown. The objective of this section is to
discuss the mechanisms and the applications of modelling approaches of volume change
and deformation in typical food products/processes. The revision of examples is based on
the following criteria:

• Food engineering perspective: The goal is to provide an overview about significant
contributions, with a focus on physical mechanisms and modelling approaches; details
about mathematical formulation and numerical implementation are partially covered.

• More recent and relevant works of the last 10–15 years are included (2005–2021,
Scopus database); significant review articles are cited, if available, which may cover
older articles.

• Focus on solid and semi-solid (raw) materials.
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In this way, we expect to provide an essential review that can be taken as reference or
starting point for further research and applications in food product/process engineering.
Furthermore, by taking a transversal and comprehensive perspective, we aim at condensing
common bottlenecks and challenges shared by different applications, since most of available
review articles are focused either on a single product/process or on a specific modelling
approach. Finally, since some products/processes have been studied for longer time and by
more authors than others, we expect that this study also helps to increase feedback between
different applications, in order to improve modelling works in food product/process
engineering in a global sense.

The section is organized by unit operations, which in general are associated with a
limited range of materials and products. For each case, basic principles of the process and
details about structure of corresponding material are given, in order to better understand
the mechanisms of deformation during processing. Afterwards, main contributions to
modelling are presented, taking as reference the ad hoc classification of models previously
discussed. As a reference guide, Table 1 presents a summary of the covered applications,
including basic information.

Table 1. Summary of applications discussed in Section 3, as a reference guide.

Process Product(s) Type(s) of
Deformation

Driving Force(s) for
Deformation

Recommended
References

Drying
Fruits and vegetables
(also mushrooms and

meat products)
Shrinkage

Dehydration causing
loss of turgor pressure

in cells
[20,36–39]

Hydration (or soaking) Grains (legumes and
cereals) Swelling Water absorption by

biopolymers [40–44]

Cooking Meat products Shrinkage
Proteins denaturation

increasing the swelling
pressure

[9,45–48]

Baking Bread, cakes Expansion Gas pressure rise inside
of pores of dough [49–53]

Extrusion and Puffing Snacks, breakfast
cereals Expansion Pressure rise due to

water vaporization [54–58]

Oral processing Solid foods Compression and
fracture Mechanical stress [18,59–62]

3.1. Drying

Drying or dehydration is one of the most common and oldest unit operations in food
processing. The main objective is to remove water to a certain moisture content, in order
to reduce water activity and thus increase shelf life. Water remotion (or dewatering) can
be done by different methods, so there is a wide and still increasing variety of drying
techniques and related equipment, from ancient solar and traditional convective hot-
air drying, to modern methods like electrohydrodynamic and infrared- and microwave-
assisted drying. Overall, fruits and vegetables are the typical food materials subjected to
drying for preservation; other examples include grains, mushrooms and meat. We focus
then on plant-based materials, due to similarity in structure and thus mechanisms implied
in deformation. Fruits and vegetables are mainly composed of water, that is contained in
the parenchyma tissue. Parenchyma cells are polyhedral, with thin walls, and they are
densely packed together. In this sense, plant-based materials can be thought as pressurized,
liquid-filled, closed-cell foams [31]. Briefly, microstructure consists of intracellular and
intercellular spaces, and cells walls. Intercellular space is formed by pores and capillaries
between cells, that contain a small amount of free water, air and some solutes. Intracellular
space refers to the interior of the cells, where the major part of water is located and
defined as loosely bound water. Finally, cell walls, made of biopolymers, also contain
water (strongly bound water). Drying primarily consists of removal of intracellular water,
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which can migrate by three pathways: cell to cell, cell to pores, or by cell-wall rupture (to
pores) [63,64]. Afterwards, liquid water is evaporated and transferred to surroundings.

Dehydration causes shrinkage and deformation of plant-based materials: Removal of
water (usually assisted/accelerated by heating) produces a loss of turgor pressure, thermal-
and hygro-stresses, and the collapse of cells, with a consequent loss of shape and structure
of tissue. Therefore, shrinkage has a negative effect on the quality of dried products.
Besides macroscopic changes in shape and volume, hardness of material is increased,
surface cracking may occur and rehydration capability of product can be diminished,
mainly due to unbalanced stresses and structural collapse as a result of a defective or
non-uniform process [36]. Although significant shrinkage is produced by most drying
methods (e.g., freeze-drying and use of vacuum can cause less shrinkage and collapse), it
is important to understand the mechanisms leading to the mentioned structural changes
in order to better steer the process and to obtain products of better quality. For this aim,
mathematical modelling can be very useful; however, the task is not straightforward.
Drying presents a “multi-cubed” nature: Multiphase transport processes occur at multiple
scales, where multiple physical processes are involved [65]. Next, we discuss different
modelling approaches aiming at describe shrinkage and associated changes during drying
of plant-based materials. It is worth noting that mushrooms and meat products are
also high-moisture, cellular-based, porous, and soft materials, so the general concepts
introduced here are also applicable to these food products (e.g., References [66–69]).

Probably the most common and simplest modelling approach applied in drying
involves the empirical correlation between a measure of shrinkage and the average moisture
content values of the product. Shrinkage is often expressed by using a relative or reduced
dimensional change of volume, area or thickness. A summary of these linear and non-linear
empirical correlations can be found in Reference [36]. The following equation is a typical
example of this approach:

V
V0

= b + a
X
X0

(5)

where V is the volume of sample with average moisture content X (dry basis), a and b are
fitting parameters, and subscript 0 indicates initial time. This relationship represents the
hypothesis that volume reduction of samples is only due to removal of water, which is
known as ideal or linear shrinkage. That is, it is assumed that the material is composed by
a deformable or soft solid structure whose pores are filled only by water [70]. In practice,
deviations from linear shrinkage have been observed for a wide range of materials and
operating conditions. Numerous factors have been indicated as responsible for the non-
linear shrinkage behavior: drying conditions, sample shape, structural and mechanical
characteristics of material, case hardening, glass transition, and presence and concentration
of starch in the food matrix [71]. Some of these factors have been incorporated into the
empirical correlations in order to improve fitting results and description of shrinkage
phenomenon [36].

Due to (non-ideal) shrinkage and structural modifications, porosity of the material
can change during drying, affecting transport processes and quality attributes. In this
regard, several models have been developed to predict overall porosity evolution as a
function of average moisture content [72,73]. For instance, Khalloufi et al. [74] proposed a
phenomenological model considering also the initial air content, besides average moisture
content, and two possible phenomena for porosity formation: shrinkage and collapse.
Madiouli et al. [75] reported a simple semi-empirical model to calculate the bulk porosity of
a material during drying, based on three properties (solid density, liquid density, and initial
bulk density) and experimental data of the reduced moisture content (X/X0) vs. the volume
shrinkage (V/V0). More recently, Joardder and Karim [76] developed a phenomenological
model for porosity prediction by using a heat and mass transfer model for drying and
the so-called “shrinkage velocity”, which depends on effective moisture diffusivity and
glass transition temperature. On the other hand, it is possible to develop simple theoretical
models to relate bulk or average values of moisture content, shrinkage, density and porosity
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of the material, based on mass balances, density and porosity definitions [77]. In most cases,
such models are built upon the assumption of additivity of the volumes of the different
phases of the system [36]. Overall, these simple theoretical models are easy implementable
and do not require empirical fitting of parameters.

To finalize with the first group of models, it is worth mentioning that artificial
intelligence- or machine learning-based modelling has also been applied to predict differ-
ent aspects of food drying, including prediction of porosity and shrinkage [78,79]. Such
models are based on artificial neural networks (ANN) and related algorithms, so they are
considered as empirical-based or black-box models. In general terms, an advantage of these
ANN methods is the capability of predicting complex non-linear relationships, without
using a physics-based model. On the other hand, a large dataset is required for training
and validation, and ANN models lack of physical meaning.

Regarding physics-based models, let us first consider the continuum or macroscale
approach, which is still the main framework modelling in the food engineering literature.
According to the proposed classification in previous section, these models are mechanics-
based, i.e., the solid momentum balance and mechanical properties of the material are
used to describe deformation during processing. In this regard, the poromechanics-based
modelling framework developed by Dhall and Datta [20] is taken as reference work. The
authors proposed a comprehensive modelling approach where solid momentum balance is
used to relate deformation with driving forces and mechanical properties of the material
(e.g., Equation (4)); mechanical, moisture, and thermal strains are considered in the general
formulation. Besides, an interesting discussion is given about the importance of the state of
the material on modelling shrinkage related phenomena. While the material is in a soft
rubbery state, it remains saturated and the gas phase does not enter the pores (water evap-
oration occurs at surface); this is favored by a non-intensive drying-rate to avoid surface
cracking. Then, volume change of food is equal to volume of removed water and free
shrinkage assumption can be considered as valid. Under this condition, the solid momen-
tum balance is not required to calculate solid velocity and the multiphysics problem can be
simplified by using other methods previously discussed, e.g., mass balances. However, as
soft material is dehydrated, the transition to the rigid glassy state occurs, together with
shrinkage of pores and increase of bulk modulus. In this case, free shrinkage assumption is
no longer valid. Finally, Dhall and Datta [20] highlighted that the main advantage of a solid
mechanics analysis is predicting such deviations from ideal or free shrinkage, which allows
the prediction of other important aspects, e.g., porosity development, case hardening, and
surface cracking.

By using such poromechanics-based modelling framework, Gulati and Datta [37]
performed a benchmark study about convective drying of food materials. The physics-
based formulation includes the influence of glass transition on mechanical properties of the
product (potato). The developed model is able to describe the case hardening phenomenon
during drying, as well as to predict various product quality aspects. The authors concluded
that deviations from free shrinkage and case hardening are caused by high drying rates,
which induce the rubbery/glass state transition and a decrease in the Poisson’s ratio of
the material. A similar modelling approach was used by Gulati et al. [80] to understand
large deformation during microwave drying. In this case, the model includes Maxwell’s
equations for electromagnetics and stresses are caused by pressure gradients. As well as in
the two previous cited works, a modified Neo-Hookean constitutive model (hyperelastic
material) was chosen to characterize large deformation of food during processing. In
addition, all three works utilized the same approach to compute the volume change due
to moisture loss: Firstly, according to large deformation (finite strain) analysis [25], a
multiplicative decomposition is used to separate the total deformation gradient (F) into a
purely mechanical or elastic contribution (Fel) and a contribution due to moisture effects
(FM), F = Fel FM. The elastic deformation gradient depends on mechanical properties and
behavior or constitutive model of the material, e.g., Neo-Hookean model. The deformation
gradient due to moisture loss depends on the corresponding Jacobian JM, or volume
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change due to moisture loss: FM = JM I. Secondly, by assuming free or ideal shrinkage, JM is
calculated as a function of volume fraction of water (φw), based on a simple mass balance:

JM =
V
V0

=
1− φw,0

1− φw
(6)

Likewise, porosity can be defined as a function of (total) Jacobian J to compute the
evolution of material porosity due to deformation [20]. A similar mechanics-based mod-
elling approach was proposed by Aregawi et al. [38] to predict coupled water transport
and large deformation of apple tissue during dehydration. In this case, the total strain (ε) is
defined as the sum of the mechanical or elastic strain (εel) and the shrinkage or moisture
strain (εM):

ε = εel + εM (7)

The shrinkage strain is expressed as a function of water content (X) gradient or
difference to a reference state (e.g., initial state X0):

εM = β(X− X0) (8)

where β is the volumetric shrinkage coefficient, defined as follows:

β =
1
V

∂V
∂X

(9)

The value of β can be obtained from experimental data of V vs. X; note that Equation (9)
is related to Equation (5). Aregawi et al. [38] analyzed different mechanical models for
apple tissue deformation behavior during drying: They made a comparison between linear
elastic, linear viscoelastic, and nonlinear viscoelastic models. The authors concluded that
nonlinear models (Mooney–Rivlin and Yeoh hyperelastic materials) better predict hygro-
mechanical behavior, in comparison with linear elastic and viscoelastic models, which are
better suited for small deformation (or infinitesimal strain) analysis. It is worth noting that
for the case of nonlinear viscoelastic models, the authors also utilized the multiplicative
decomposition of deformation gradient, according to large deformation analysis, and the
Jacobian due to shrinkage was computed as follows:

JM = (1 + εM)3 (10)

On the other hand, Curcio and Aversa [81] assumed elastoplastic behavior and small
deformation for the case of convective drying of potato cylinders. So, the formulation of
the mechanical problem was based on Equation (7), and shrinkage strain was defined in a
similar manner as in Equation (8). The authors determined experimentally the shrinkage
coefficient by considering changes in axial and radial directions, in order to account
for anisotropic shrinkage. However, they found similar behavior in both directions, so
an average shrinkage coefficient was finally used, corresponding to isotropic shrinkage
condition. Besides, mechanical properties depended on local moisture content. Recently,
Mahiuddin et al. [82] reported a very useful review about different models used in the
literature to describe mechanical behavior of food materials. Mechanical properties and
the influence of main aspects of drying on shrinkage were also revised by the authors.

As pointed out by Dhall and Datta [20], a physics-based model can be simplified by
avoiding the solution of the mechanical problem; instead, the solid velocity may be calcu-
lated by using some of the models of the first group of our classification. These so-called
hybrid models are generally used to predict hygrothermal behavior of products, while
using a proper formulation that takes into account shrinkage of the material. Since there are
many ways of including shrinkage via simple models (e.g., see References [36,70,83]), only a
few reference works are mentioned here. For convective drying, Hassini et al. [84] assumed
ideal shrinkage and incorporated volume change in a heat-mass transport model via a
volumetric hydro-contraction coefficient, which is defined by an expression similar to Equa-
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tion (5). This volumetric shrinkage coefficient can be related to a linear hydro-contraction
coefficient by assuming isotropic volume change. Then, the linear shrinkage coefficient was
used to compute hydro-strains in a decoupled mechanical model considering linear elastic
behavior. That is, the authors proposed a sequential solution strategy where heat-mass
transfer model was not solved simultaneously with the mechanical problem. A similar
formulation regarding shrinkage modelling was reported by Hassini et al. [85], also for con-
vective drying, although a viscoelastic model was used and the heat-mass and mechanical
models were solved simultaneously. Another hybrid modelling approach was proposed
for the case of intermittent microwave–convective drying [86]: The volumetric deformation
due to dehydration was calculated by using a phenomenological model for shrinkage
velocity, similar to the one proposed in Reference [76]. Then, porosity of the material was
related to shrinkage velocity in order to couple deformation with heat and mass transport.
A different phenomenological solution to compute solid velocity due to shrinkage during
isothermal convective drying was recently applied by Adrover et al. [87,88]: Based on an
analogy with swelling of rubbery polymers, a local shrinkage velocity (v) was defined as
proportional (and opposite in sign) to the diffusive flux of water (Jw):

v = −α(φw) Jw (11)

where α is a shrinkage factor that depends on local water volume fraction (φw). This
shrinkage factor can be obtained either from experimental data, by using the same idea of
Equation (5), or it can be assumed a priori, e.g., α = 1 for ideal shrinkage. This approach
was also applied to model continuous and intermittent convective drying of pears under
non-isothermal conditions [89]. On the other hand, a CFD–DEM model (computer fluid
dynamics for gas flow, and discrete element method for solid phase) was developed to
describe fluidized bed drying of grains, where particle shrinkage due to dehydration was
incorporated via an empirical equation similar to Equation (5) [90].

To complete this mini-review dedicated to drying, we herein focus on advanced
physics-based modelling approaches. For example, Fanta et al. [91] developed a 2D mi-
croscale model to predict water transport and large deformation in pear cortex tissue
during dehydration under high relative humidity (more than 97%), e.g., water loss during
storage of fruits and vegetables. The model considers transport of water in the intercellular
space, the cell-wall network and cytoplasm (intracellular space), by using the chemical
potential as driving force for water exchange. Regarding deformation, the micromechanics
model assumes that turgor loss of the individual cells due to water transport is responsible
for shrinkage. The cell wall is modelled as a set of springs and the shrinkage mechanics is
described by the Newton’s law. Besides the prediction of microscale dynamics of water
transport and mechanical deformation considering a realistic microstructure, the model
is able to estimate the apparent water conductivity of the tissue, which can be used in
a macroscale model. In this regard, as a continuation of this microscale study, Aregawi
et al. [39] developed a multiscale model where the described water transport and mechan-
ical model at microscale was used to estimate apparent properties to feed a macroscale
model. In this case, the authors utilized apple tissue as material, subjected also to mild
dehydration conditions. At the continuum or macroscopic scale, the mechanics model
consists of two parts: nonlinear behavior described by Yeoh strain energy functions, and
viscoelastic behavior following Maxwell’s model. A homogenization procedure was used
to calculate apparent water diffusion and mechanical properties at macroscale, from simu-
lations with microscale models. As it was mentioned earlier, this is one of the interesting
and promising aspects of multiscale modelling approaches, i.e., estimation of macroscale
properties from microscale physics-based models. Furthermore, the multiscale approach
provides insights about how microstructure of the material affects macroscale behavior.
For recent and good reviews about multiscale modelling approach in the context of food
drying, the reader is referred to References [63,64,92].

Two more modelling frameworks are worth of mentioning. Firstly, let us consider
microscale and multiscale modelling by using meshfree methods, instead of conventional
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or classical grid-based techniques like finite element method (FEM) and finite difference
method (FDM). For instance, Karunasena et al. [93] developed a 2D meshfree particle-based
model to predict extreme deformations of cellular structure during drying. In this model,
smoothed particle hydrodynamics (SPH) was used to model cell protoplasm as a high
viscosity incompressible Newtonian fluid, while discrete element method (DEM) was
utilized to model the cell wall as a viscoelastic solid material. The authors also developed
a tissue model to describe interactions between cells. Drying was simulated by varying
the moisture content, the turgor pressure and cell wall contraction effects, i.e., a moisture
content-domain simulation method was proposed, instead of time-domain, due to com-
putational requirements of the method. This microscale meshfree model was then used
to analyze the morphological changes of plant-based materials (apple, potato, carrot, and
grapes) as a function of cellular properties: cell size, wall thickness, cell wall stiffness, cell
wall contractions during drying, turgor pressure, and pectin layer dimensions and stiff-
ness [94]. Recently, the same research group proposed a coarse-grained multiscale model
to describe macroscale behavior based on microscale dynamics by using also meshfree
methods, based on previous works [95].

Secondly, we briefly introduce a multiscale modelling approach for swelling biopoly-
mers based on the hybrid mixture theory (HMT). This approach considers three spatial
scales (micro, meso, and macro), and a continuum thermodynamics-based formulation to
describe macroscale behavior based on phenomena occurring at all three scales [96]. At
microscale (microns), the solid biopolymers and vicinal fluid (solvent, e.g., water) exist as
separate phases; at mesoscale (millimeters), solid biopolymers and vicinal fluid form a ho-
mogenous mixture, and coexist as a separate phase with two bulk fluids (e.g., water and oil);
at macroscale (centimeters), a homogeneous mixture of different phases is considered. The
main advantage of this approach is the possibility of predicting non-Fickian/non-Darcian
fluid transport in the vicinity of glass transition. Since rubbery/glassy state transition
is common in food materials during drying, this theory from polymer science appears
as interesting and well-suited. For example, this approach was applied to predict water
transport and stress development in corn kernels during drying, assuming viscoelastic
behavior for the material [97,98]. Recently, the same multiscale framework was proposed
to model moisture transport in strawberries and carrots during drying; the HMT-based
fluid transport equation was coupled with product quality and nutritional attributes for
a comprehensive description of the effects of drying on overall product quality [99]. It is
worth to note that uniform (no variation in shape) and also ideal shrinkage was generally
assumed in these works, together with viscoelastic behavior.

So far, it is evident the wide spectrum of modelling approaches that have been applied
to predict volume change and deformation of food materials during drying. In this sense,
this traditional and (still) important process can be considered as a benchmark problem in
food engineering, and it may help us to follow the evolution of modelling approaches. We
have attempted to provide a comprehensive overview in this regard: from simple empirical
and theoretical models aiming at predicting overall shrinkage to physics-based models,
which, in turn, have also evolved from classical continuum or macroscale framework to
microscale and multiscale approaches, also involving modern meshfree methods like SPH
and DEM. Furthermore, interesting and well-suited concepts and techniques from other
fields, e.g., soft matter, polymer science, and particle technology, have been used to develop
more accurate models, capable of explaining complex phenomena at different spatial scales.
In consequence, and for sake of simplicity, we take this subsection as a reference for the
following applications.

As a partial conclusion, we understand that there are still some bottlenecks to deal
with, especially regarding physics-based models. As we have already mentioned, an impor-
tant problem to tackle is the availability of transport and mechanical properties of materials
for an appropriate range of operating conditions, including temperature variation. In this
sense, an interesting research was recently published by Khan et al. [100]: Nanoindentation
experiments were performed to study the relationships between mechanical properties
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and moisture content of plant-based materials during drying. Another bottleneck is experi-
mental validation of simulation results. In this case, X-ray micro-computed tomography
appears as a very powerful tool, which can be used also to estimate structure related prop-
erties. For example, Prawiranto et al. [101] utilized this imaging technique to characterize
and quantify the changes of the microstructure of apple tissue during drying under natural
convective, forced convective and coupled irradiation–convective drying. More work in
this direction will certainly help to improve physics-based models, in order to obtain a
more accurate prediction of mechanical behavior of materials during drying.

3.2. Hydration/Soaking

Contrary to drying, hydration is the process of increasing the water content of a
material. This operation is an essential step in several processes involving grains (cereals
and legumes), which are generally harvested dry. Soaking generates positive effects on
the physicochemical and nutritional aspects of grains, and it is required for subsequent
industrial operations, such as cooking, extraction, fermentation, germination and malting.
For instance, hydration helps to reduce the cooking time of grains (e.g., beans and rice), and
facilitates the homogeneous gelatinization of starch and denaturation of proteins during
cooking, besides improving the inactivation of anti-nutritional factors [40]. From the
transport phenomena perspective, hydration is a mass transfer process driven by difference
in water activity and depends on structure and state of the material. In general terms, grains
present a complex and heterogeneous structure with different tissues and components, so
diffusion may not be the only water transport mechanism, e.g., capillary flow through pores
and channels plays an important role during hydration [40]. Furthermore, considering
starch-rich materials, diffusion can be classified into three categories, depending on the
value of n in the relation xw ∝ tn, where xw is the fraction of water taken by solid matrix
and t is the diffusion time [41]: (i) n = 0.5, Fickian diffusion in rubbery state; (ii) n ≥ 1,
diffusion in glassy state; and (iii) 0.5 < n < 1, non-Fickian diffusion near glass transition.

Water absorption results in a significant expansion of the material, i.e., swelling [42].
This phenomenon is produced at microscale due to incorporation of water into the grain
microstructure formed by biopolymers like proteins and starch, and it is macroscopically
observed by changes in volume/shape of grains, together with variations in texture (soften-
ing). At the same time, swelling of biopolymers can affect water transport due to changes
in mechanical behavior. In this regard, when hydration is carried out at high tempera-
tures (>50–60 ◦C), starch gelatinization and protein denaturation may occur, increasing
the complexity of the process [41]. Due to its industrial relevance, it is important to model
the hydration of grains, in order to better design, optimize and control the process. In this
sense, different approaches have been applied, considering the swelling phenomenon, and
are discussed next.

Firstly, let us consider empirical models aiming at predicting the evolution of overall
swelling of grains during hydration processes. For instance, empirical-based relationships
commonly used to predict water uptake during soaking have been applied to follow di-
mensional changes of grains. Yadav and Jindal [102] tested two relationships for modelling
the expansion of rice kernels during excess water cooking as a function of time, e.g., ex-
ponential equation and Peleg’s equation, but finally proposed a power-type model to
predict relative expansion due to amount of water uptake. The authors found that swelling
was not uniform, i.e., more expansion was registered in lateral direction in comparison
with longitudinal direction, and reported that higher expansion occurred in high amylose
rice varieties. That is, swelling was not isotropic and depended on structure aspects of
rice kernels. Likewise, Hu et al. [103] evaluated five models to fit expansion ratio of rice
grains as a function of soaking time, at different temperatures (25–70 ◦C): Peleg’s equation,
solution of diffusion equation (exponential function), Weibull model, and two different
sigmoidal equations. Overall, good fitting results were obtained in all cases, but models
lack of physical meaning and parameters depend on specific experimental conditions.
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On the other hand, Sayar et al. [43] utilized two approaches to model the linear
(length, width, and thickness) and volumetric expansion of chickpea seeds as a function of
water uptake during soaking at different temperatures (20–100 ◦C). The first approach was
based on the experimental correlation between volume variation and water absorption of
chickpeas during soaking, expressed as follows:

V −V0 = λ
(M−M0)

ρw
(12)

where V is the volume of chickpea at time t, and V0 its initial volume; M is the weight
of chickpea at time t, while M0 its initial weight; ρw is the density of water, and λ is
the volumetric expansion coefficient. If λ = 1, the volume increase is equal to volume of
absorbed water, i.e., ideal swelling or volume additivity assumption (similar to ideal or free
shrinkage previously discussed). However, all values found were smaller than 1, e.g., 0.73–
0.95 for different temperatures. The second approach involved solving Equation (9),
previously introduced to define the volumetric shrinkage coefficient. In this case, different
values of the expansion coefficient (β) were obtained by using volume, length, width
and thickness variation of chickpeas, indicating anisotropic swelling. Furthermore, Sayar
et al. [43] analyzed the variation of different expansion coefficients with temperature:
Overall, all coefficients decreased linearly in the range of 20–50 ◦C, and then remained
constant for 70–100 ◦C. The authors indicated that starch gelatinization occurring at around
60 ◦C would explain this behavior in swelling of chickpeas.

Secondly, we summarize physics-based and hybrid models applied to predicting
swelling of grains. Considering macroscale or continuum framework, some researchers
have applied a formulation similar to the one described by Aregawi et al. [38] for modelling
coupled water transport and small deformation during dehydration, i.e., Equations (7)–(9).
For instance, Perez et al. [104] utilized a realistic 3D geometry of rice obtained from tomo-
graphic images to simulate hygroscopic swelling during soaking at different temperatures.
Hooke’s law (linear elasticity) was used to model elastic strain of material, and Fick’s law
to describe water transport. The authors aimed at better understanding the development
of internal stresses due to swelling that leads to cracking and breakage of grains during
soaking [44]. Through the proposed model, it would be possible to optimize the soaking
process in order avoid breakage, which may result in loss of texture and thus of quality of
rice. A similar formulation was also used to model water uptake of yellow peas during
the steeping (soaking) step of a malting process, with the objective of selecting optimal
time–temperature conditions of this critical stage [105]. In this case, it was assumed that
the pea remains spherical during hydration (uniform expansion) and behaves as an elastic
material, i.e., Hooke’s law was utilized for the stress–strain relationship. Another example
involving the mentioned formulation was reported to model water uptake and hygroscopic
swelling of dehulled barley grains during cooking of canned porridge [106]. Again, linear
elastic behavior was assumed, but mechanical properties were considered as functions of
glass transition temperature. As we mentioned above, these models did not utilize a large
deformation framework, but considered small deformation of grains.

Other researchers have applied more complex concepts and approaches to model and
better understand the swelling of materials. For instance, a two-scale thermomechanical
theory for unsaturated swellable porous material was developed by considering large
deformation and viscoelastic behavior of the solid matrix [107]. Then, this theory was
applied to model boiling of pasta, i.e., soaking at boiling temperature [108]. Another
interesting approach was developed by van der Sman [109]: A novel Lattice–Boltzmann
method with a deforming lattice was used to model one-dimensional swelling of gel-
like materials; the model assumed that volume changes are only due to loss/gain of
water. The author aimed at providing an adequate description of the swelling of cell wall
material for a further development of a multiscale simulation framework for hydration of
porous foods. Besides, a good introduction to the Lattice–Boltzmann method is given in
Reference [109]. The last example of these complex physics-based approaches involves the
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use of a soft condensed matter perspective to model hydration kinetics of navy beans [110].
The Flory–Huggins equation was employed to describe the osmotic pressure produced
by the polymer–solvent mixture (i.e., protein–water), and the swelling was modelled as a
moving boundary problem by assuming volume additivity. It is worth noting that the last
two examples can be considered as hybrid models in this work, since volume change was
not described by using a mechanical model. Nevertheless, we think that these advanced
concepts and frameworks, which are mainly applied in other fields, can be an inspiration
to developed physics-based models in food engineering.

Finally, let us consider macroscale hybrid models for swelling of grains. Overall,
the following examples have assumed water transport by Fick’s law, using an effective
moisture diffusivity, and volume change was modelled in a simplified way, without a
mechanical formulation. For simplicity, we focus on how the authors proposed to solve the
modelling of volume change. For the case of excess water boiling of rice, and considering
an ellipse as geometry, an empirical-based linear relationship between dimensions and
moisture content of grain was proposed by Bakalis et al. [111]. This relationship was
used to update the simulation domain at each time step, according to water uptake. A
similar solution was used by Nicolin et al. [112,113], although the empirical relationship
involved radius of sphere and time of hydration. In this sense, Pramiu et al. [114] proposed
a physically consistent simple expression for variation of average grain diameter with
soaking time, considering values at initial and equilibrium times of hydration. On the
other hand, uniform swelling and volume additivity were assumed to generate an equation
for the variation of sphere radius with time to model soaking of rice [42,115]. Similar
assumptions were established by Briffaz et al. [116] to relate Eulerian and Lagrangian
frames to calculate solid velocity due to swelling. Finally, Nicolin et al. [117] also used
a mass balance to derive a differential equation for radius variation with time, but they
included the expression of diffusive flux evaluated at surface to account for all mass
accumulation inside the grain.

In summary, we found that there are some gaps to fill in the modelling of hydra-
tion/soaking of grains, especially considering physics-based models at macroscale. More
research is needed considering the following aspects: large deformation analysis and
nonlinear mechanical models; non-ideal and anisotropic or non-uniform swelling; and
influence of glass transition and composition on mechanical properties of grains. It is worth
recalling the importance of developing accurate models to better design and optimize this
process, since it is applied to staple foods like rice and plant-based protein-rich products
such as legumes.

3.3. Cooking/Roasting

Cooking is a general term referring to the transformation of a raw material into
a ready-to-eat food, mainly by application of heat. Any cooked product needs to be
microbiologically safe and acceptable regarding sensory features, e.g., texture, color, and
flavor. Although several foods are subjected to cooking in a general sense, we focus here
on the cooking/roasting of meat products, since other food materials are covered in other
subsections, e.g., vegetables in drying (Section 3.1.), grains in hydration (Section 3.2.),
bakery products in baking (Section 3.4.), and snacks in extrusion and puffing (Section 3.5.).

In particular, cooking of meat is essential to obtain a safe and appealing product.
Meat products are approximately composed of 20% of proteins that represent the main
constituent making up the structure of a meat product. During the cooking process, the
proteins undergo substantial structural changes affecting the quality of the final meat
product [118]. Particularly, meat proteins denature and cause structural changes, such as
the shrinkage of muscle fibers and connective tissue [119]. Changes in muscle fibers during
cooking in the 45–90 ◦C range occur in two phases: At about 45–60 ◦C, the shrinkage
is primarily transversal to the fiber axis, and at 60–90 ◦C, mainly parallel. At a higher
temperature of about 121 ◦C, there may be a third shrinkage of meat which is transversal
to the fiber axis [118]. The structural changes affect the water holding capacity of the meat:
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The mechanical force exerted by the contracting protein network on the interstitial fluid,
denoted swelling pressure, leads to the expulsion of the water from the meat [9]. Darcy’s
law was used to associate the hydraulic pressure with the moisture transport [120]. As the
temperature increases during cooking, a pressure gradient builds up and induces fluid
motion, deformation, and, consequently, shrinkage of the solid matrix. The shrinkage
of meat is one of the most important physical changes occurring during the cooking
processes [121]. Besides the mentioned relationship between structural modifications
of proteins during cooking and quality of final products, shrinkage is also important for
calculation of cooking times, due to changes in volume and shape affecting the computation
of concentration and temperature gradients. Overall, it is important to understand the
mechanisms underlying deformation during cooking and their relationship with other
phenomena. Next, we provide an overview of mathematical approaches proposed to deal
with this relevant problem in food engineering.

The shrinkage during meat cooking can be taken into account by considering that
the change of dimensions is proportional to the moisture content [66,70,121,122], or by
considering shrinkage as the integrated result of temperature-dependent and volumetri-
cally distributed shrinking [123]. For instance, Clemente et al. [66] determined shrinkage
evolution for pork meat during drying and reported a good linear relationship between the
V/V0 ratio and the moisture content. This relationship was found to be independent on
the size of the samples, their salt content, or drying conditions. In general terms, the water
losses are reported as the main responsible for shrinkage. Wang et al. [122] evaluated the
shrinkage of chicken nuggets during deep-fat frying: Linear fitting of volumetric shrinkage
vs. moisture loss gave values of the coefficient of determination (R2) between 0.90 and 0.94.
Du and Sun [121] investigated possible correlations between shrinkage and water content
of pork ham by using computer vison data. They found that the total volume shrinkage
was highly and negatively correlated with water content (r = 0.98). It is worth noting the
similarity between these empirical approaches to model shrinkage of meat during cooking
with the ones discussed for volume changes during drying and hydration.

Concerning the physics-based modelling of meat cooking process, the underlying
physical phenomena involve the coupling of heat and moisture transfer in a deforming
porous medium [3]. A quite limited number of models were developed about meat cook-
ing/roasting and two different approaches were investigated to describe mass transfer
inside meat; the first one considering only diffusion [124–127], and the second one de-
scribing the moisture transport by the Flory–Rehner theory [45,119,120,128,129]. However,
little information has been provided on modelling meat deformation during cooking. Con-
sidering mechanics-based models, we should mention again the poromechanics-based
modelling framework developed by Dhall and Datta [20]: Contact heating of a hamburger
patty was taken as an example of application of the general modelling approach. Briefly,
large deformation analysis was performed (multiplicative decomposition of deformation
gradient), meat was assumed to behave as an hyperelastic material (Neo-Hookean model),
and free shrinkage was considered to calculate the Jacobian due to moisture loss, e.g., Equa-
tion (6). This approach was recently used by Moya et al. [46] to develop and validate a
numerical model able to simulate the double-sided pan cooking of beef. The proposed
model takes into account the heat flow from the pan to the meat and the moisture transfer
simultaneously with the meat deformation. The model considers the swelling pressure
gradient caused by the shrinkage of the meat fibers and connective tissue, due to the
denaturation of proteins and the loss of the water holding capacity during cooking.

In addition, some authors have proposed hybrid models, i.e., shrinkage was solved in
a simplified way. For instance, Zorrilla and Singh [130] developed a mathematical model
to predict temperature profiles in meat patties during double-sided cooking, assuming a
2D cylindrical geometry where the radial shrinkage changed with temperature. To account
for shrinkage, two reductions in the patty diameter were evaluated, e.g., 13% and 18%.
Considering the oven roasting of meat, Feyissa et al. [47] proposed a 2D mathematical
model of coupled heat and mass transfer. Regarding shrinkage, the authors formulated an
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expression based on a simple mass balance to relate the volume of water removed (Vw)
with shrinkage of meat, represented by volume, V:

V = V0 − β Vw (13)

where β was used to describe the effect of the formation of pores during roasting, and it
can vary between 0 (the volume of water lost is entirely replaced by air and no deformation
occurs) and 1 (the volume of water removed is equal to the volume deformation, i.e., ideal
shrinkage). Finally, Blikra et al. [48] studied the shrinkage of cod filets and loins during
oven heating at high relative humidity. Shrinkage was modelled by using a semi-empirical
approach: Volume reduction was assumed to be due to cook loss, i.e., liquid exudate
dripping from the fish during heating, which was obtained empirically.

So far, we can say that drying of fruits and vegetables, hydration of grains, and cooking
of meat products have been treated similarly regarding modelling of volume change and
deformation, considering all modelling approaches: Overall, shrinkage or swelling is
assumed to be due to water loss or gain, respectively. This behavior has been supported by
different experimental studies, including materials and process conditions. The reason for
this conclusion relies on the structure of materials: Cellular solids made of biopolymers
are filled (or to be filled) with a large amount of water. In addition, hygrothermal changes
generate important transitions that affect mechanical behavior and heat-mass transport:
Glass transition, starch gelatinization, and protein denaturation. These remarks can be
considered as positive towards a common modelling framework and transversal solutions.
However, as we mentioned before, more work is needed regarding specific mechanical
properties of materials under real process conditions.

3.4. Baking

Baking is the final and most important step in the production of bakery products
such as breads, cakes and biscuits. During the baking process, simultaneous and coupled
physical, chemical, and biochemical changes occur in the products, which are responsible
for their final overall quality [131]. Inside the oven, heat and mass transport generates
variations in temperature and moisture content of a product, that are responsible for physic-
ochemical and biological transformations such as browning reactions, evaporation of water,
crust formation, volume expansion, gelatinization of starch and denaturation of proteins,
which make baking a complex process [132–134]. A rapid increase in overall volume at the
beginning of baking (so-called oven rise) was reported in several experimental studies [135].
Increase in gas pressure is the driving force to explain expansion [136]. Bakery dough
initially includes unconnected gas bubbles mainly filled with carbon dioxide generated by
yeast (or chemical leavening agents). When the bubbles grow with the release of CO2 and
the temperature increases, they come into contact and gas transfer becomes possible. Bread
swelling induces an increase of porosity. Rheological properties have a significant effect on
the deformation; gelatinization happens at about 60 ◦C and the dough turns into crumb.
With the appearance of the dehydrated crust at surface, the deformation is constrained
due to the outer solid/rigid structure, especially in traditional bread making (e.g., French
bread).

Considering the importance of mechanical/rheological properties for the deforma-
tion phenomena in bakery products, Guessasma et al. [8] elaborated a review about the
mechanical modelling of cereal solid foods. The authors stated that it is possible to predict
material properties from the accurate knowledge of its structure. Mechanical behavior of
a solid cereal food is mainly affected by the water content (water is the plasticizer that
governs the glass transition and also starch gelatinization, together with temperature)
and by the structural characteristics (micro-structural and meso-structural levels). Besides
water content and structure, density and porosity are the main parameters that explain the
variations of the mechanical properties of cereal foods [8]. Therefore, baking appears as a
multiphysics problem where simultaneous and coupled heat and mass transfer produces
the expansion (large deformation) of the porous structure of dough, which is driven by
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pressure gradient. In addition, state transitions of biopolymers (starch and proteins) are
part of this complex process, which determine also the final structure and texture of the
products.

In order to better understand the underlying mechanisms of baking, and thus improve
its design and the overall quality of bakery products, different modelling approaches have
been applied. In general terms, the baking models can be classified into two categories:
diffusive or phenomenological models [49,137–145], and multiphase or physics-based
models [50–53,146–154]. In the first case, only temperature and moisture content are
calculated, i.e., liquid-water and vapor-water phases are not separated, and production of
CO2 is not taken into account. Therefore, these models cannot predict variation of pressure
inside the product, and thus cannot describe expansion of porous matrix by a mechanical
or physics-based approach. Instead, volume expansion can be included by using empirical
correlations obtained from baking experiments. For instance, Purlis and Salvadori [49]
utilized a moving mesh method where velocity of deformation at boundary was described
by experimental volume change of bread during baking. A similar approach was applied
for modelling baking of sponge cake [145].

On the other hand, physics-based models take into account the mass conservation for
each phase and the gas pressure can be introduced and predicted [53,152]. Consequently,
deformation can be expressed as a function of the gas pressure change, e.g., by using the
solid momentum balance with pressure gradient as driving force, as shown previously
in Equation (4). In addition, evolution of porosity can be predicted, in order to describe
structure variation during baking. For instance, Zhang et al. [154] and Zhang and Datta [53]
first developed a multiphase heat and mass transport model for bread baking, where large
deformation was considered by using the principle of virtual work. Driving force for
deformation was assumed to be internal pressure, and bread was modelled as a viscoelastic
material (Maxwell’s model). In addition, the relaxation time (rheological property of the
viscoelastic model) was expressed as a function of temperature, in order to represent
the dough/crumb transition due to starch gelatinization at 65 ◦C. Afterwards, Nicolas
et al. [151] proposed a model taking into account the heat and mass transfer and the
phenomenon of swelling during traditional baking of French baguette bread. The model
included the conservation equations of energy and mass to evaluate the water content,
pressure, porosity and temperature of bread. A momentum conservation equation was used
to calculate the swelling velocity of the porous matrix, which was also considered in the
calculation of heat and mass fluxes (i.e., contribution due to solid movement). Particularly,
the authors considered the bread like a Newtonian fluid, applying a viscous model. Later,
this research group proposed a similar model of bread baking, but a viscoelastic model
with a Terzaghi effective stress was used to describe the swelling velocity [52,152]. Variable
elastic modulus and time relaxation as a function of the product state (dough, crumb, and
crust) were employed. Considering the gas pressure as driving force of the expansion, a
mechanical equilibrium between the product and gas pressure was imposed. It is worth
noting that these models can be considered as elaborated or adapted applications of the
general poromechanics-based modelling framework developed by Dhall and Datta [20],
which was previously discussed. Recently, a multiphase flow modelling approach was
used to describe the bread baking process in an industrial convection oven [146]. This CFD
model utilized a simplified approach to describe volume expansion: Only the middle part
of bread was allowed to be deformed (vertically upward), via the (fluids) volume additivity
assumption, and the rheological behavior of solid matrix was not considered.

Finally, a few authors have attempted to model microscale phenomena during baking,
e.g., transport at pore or bubble level. Bikard et al. [147] proposed in a first step a model to
predict the development of porous structure of dough during proofing. For this aim, the
authors considered an elementary volume of dough (ca. 1 mm3), composed by two phases:
solid matrix and gas resulting from fermentation of yeast. For simulation, it was assumed a
random distribution of initial bubbles created during mixing/kneading before the proofing
step. Then, the model consisted in conservation equations for mass and momentum for
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each phase, i.e., matrix and N number of bubbles. Evolution of 3D foaming was obtained
via simulation of the proofing stage. In a subsequent work, Bikard et al. [50] aimed to
simulate the baking process by taking the final dough structure obtained after proofing as
starting point. In addition to previous model, the authors incorporated the heat balance
equation and the thermosetting kinetics of the dough (dough/crumb transition). Likewise,
Narsimhan [150] included the diffusion of CO2 generated by fermentation, and coupled
bubble expansion dynamics to heat and mass transport. Lucas et al. [149] developed a
new multiscale formulation that accounts for evaporation–condensation–diffusion of water
while pores are closed, and for Darcy flow when pores open. Pores or bubbles opening was
assumed to depend on temperature (around 50 ◦C). At the macroscale, coupled deformation
and multiphase heat and mass transport were considered.

So far, it can be said that modelling of expansion during baking may present another
degree of complexity in comparison with moisture-induced shrinkage and swelling. In
drying, hydration, and cooking, it is possible to simplify a mechanical model without incor-
porating empirical-based shortcuts, by assuming ideal or free shrinkage or swelling, which
actually has been experimentally verified for a wide range of operating conditions and
materials. In the case of pressure-induced expansion during baking, prediction of pressure
(exerted by different gases, including CO2 from fermentation) is obviously required, as
well as solving the solid mechanics equation. In addition, different transitions and changes
related to intrinsic structure of dough have to considered, e.g., stiffening of the matrix
due to dough/crumb transformation, development of the crust (which can be thought as
another material or transition), evolution of porous structure (pore expansion, coalescence,
and opening), and profiles of porosity (especially near and in the crust). In summary, mod-
elling volume change and deformation during baking is still a great challenge, particularly
regarding microscale phenomena towards an accurate description of cellular structure
evolution during the process.

3.5. Extrusion and Puffing

A wide variety of ready-to-eat foods such as snacks and breakfast cereals are pro-
duced by expansion of starch-based matrices. Expanded products can be obtained either
by extrusion cooking (direct expansion) or by puffing operations, such as frying or mi-
crowave heating (indirect expansion). In all cases, the final products are characterized by a
low-density, cellular–porous glassy structure (solid foam), that provides specific texture
properties, e.g., crispness. On the one hand, extrusion cooking, or simply extrusion, is car-
ried out in an extruder, composed by three main elements: barrel, screw(s), and die. Briefly,
a powdery material or flour is introduced in the barrel, together with water, which is then
subjected to mechanical stresses and heat flow to cause the melting of the material, which
is transported as a highly viscous fluid towards the die exit. At the end of the extruder,
pressure in the fluid is very high (ca. 4–8 MPa); so, after passing through the die, pressure
drops and expansion occurs due to instantaneous vaporization of water [155]. Expansion
at die exit is a complex phenomenon involving phase transitions and multiphysics at micro-
and macroscales, in a very short time interval (less than 1 s): Bubble nucleation and growth,
coalescence, shrinkage, and final setting when the molten matrix becomes glassy after
cooling [156]. Water plays an essential role in the expansion mechanism by extrusion,
acting as a plasticizer for melting (glassy/rubbery transition) and as a blowing agent for
expansion [157].

On the other hand, puffing can be defined as the expansion of a pre-structured
material (pellet) or a grain (corn and rice) by application of heating, e.g., microwave
and frying. Similar to extrudate foods, the final structure of puffed products depends
on the glassy/rubbery transition of the material, expansion due to water vaporization,
and final rubbery/glassy transition for structure setting [158]. For instance, expansion of
starchy pellets during microwave heating involves the following steps: Drying/popping,
nucleation, expansion, cell opening, rupture, shrinkage, fixation, and end of heating [54].
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Due to its industrial relevance, driven by an increasing demand of healthier snacks
and breakfast cereals by consumers, expansion by extrusion and puffing has been subject of
numerous studies. The main objective is to better understand the underlying mechanisms
of these processes, i.e., the relationships between formulation, processing conditions,
and final structure and properties of the products. Next, we provide an overview about
modelling efforts regarding this aim. Please note that given the complexity of the expansion
phenomenon and space limitation of this article, only brief discussions are included. For
a further and more detailed study of this topic, the reader is referred to the following
excellent works, References [54,55,156,157,159,160].

Let us first consider empirical-based and phenomenological modelling approaches.
For instance, Cheng and Friis [161] utilized classical dimensional analysis (Buckingham’s
pi method) to develop a phenomenological model to correlate operating conditions of a
twin-screw extruder with product expansion. Similarly, response surface regression to-
gether with genetic algorithms were proposed to develop a design tool, so screw speed and
temperature can be related to different final product characteristics such as expansion ra-
tio [162]. For microwave puffing of rice, Dash and Das [163] developed a genetic algorithm
based on ANN modelling to investigate the effect of microwave power, puffing time, and
addition of butter and sodium bicarbonate, on the expansion ratio and puffing percentage
of products. With focus on cereal-based extruded foods, Kristiawan et al. [55] carried
out a comprehensive study to improve the understanding about the effect of extrusion
variables and material properties on the vapor-induced expansion phenomenon. After a
detailed analysis, the authors built a helpful conceptual map to describe the relationships
between input variables at the die (product temperature, moisture content, melt rheological
behavior, and die geometry), and output variables regarding the product (foam density
and anisotropy factor). Based on this work, Kristiawan et al. [56] proposed and validated
a phenomenological model of expansion to predict the volumetric and radial expansion
indices, and the anisotropy factor of extruded products (expanded maize starches), from
rheological properties of the melt and thermomechanical conditions of the extrusion pro-
cess. The model can be used for optimization purposes, or it can be coupled with a 1D
extrusion model to build a global model for the design of cereal-based extruded foods [55].

Regarding physics-based modelling at macroscale, mainly puffing has been studied.
For instance, Rakesh and Datta [164] aimed at describing puffing during microwave
heating. The authors followed the previously discussed poromechanics-based modelling
framework proposed by Dhall and Datta [20]: In this case, large deformation was driven by
excessive internal pressure due to water vaporization. Likewise, mechanical behavior of the
material (potato) was described by a hyperelastic Neo-Hookean model. However, constant
mechanical properties were used, and the glass transition was not taken into account to
model expansion. These aspects were improved in the subsequent work of Gulati and
Datta [57], where salt-assisted puffing by toasting of parboiled rice was studied. In this
improved model, it was assumed that solid skeleton undergoes large elastic and inelastic
deformations, so it was modelled as a hyperplastic-perfectly plastic solid, i.e., deformation
gradient (F) is composed by an elastic component (Fel, with hyperelastic behavior) and by
a plastic component (Fpl): F = Fel Fpl. A two-parameter Mooney–Rivlin material model
was utilized to describe such behavior. In addition, elastic modulus and Poisson’s ratio
were expressed as functions of glass transition temperature to account for rubbery/glassy
transition.

On the other hand, important and interesting efforts have been made to describe the
expansion phenomenon at microscale and to further develop multiscale models. Overall,
multiscale models for vapor-induced expansion are based on the coupling of a “cell model”
that describes bubble growth dynamics at microscale, with a continuum approach model
for transport phenomena at macroscale. Eventually, this multiscale model can be coupled
with a model describing the flow behavior inside the extruder. For instance, the cell model
developed by Schwartzberg et al. [165] has been used in various subsequent multiscale
formulations. Examples of this multiscale modelling approach include the works developed
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by Manepalli et al. [58], van der Sman and Broeze [166], and Wang et al. [167]. Likewise,
Ditudompo and Takhar [168] utilized a two-scale multiphase model based on the hybrid
mixture theory (HMT, previously described), coupled with poroviscoelasticity equations
to describe transport processes and mechanical changes in extruded products during
expansion.

In summary, the vapor-induced expansion during extrusion and puffing is a very com-
plex phenomenon, and its modelling represents a challenging problem for food engineers.
In fact, modelling approaches seem to be divided into two main groups: empirical-based
and phenomenological models, and advanced physics-based models; the so-called hybrid
models are lacking, as well as simple models to predict overall expansion (similar to the
case of baking). That is, either the problem is solved in a pragmatic way or complex models
are required. Furthermore, experimental validation of physics-based models is not an
easy task, since expansion phenomenon and structuring of products occur in a very short
time interval and under conditions which are difficult to monitor. In this regard, X-ray
microtomography (XMT) imaging has demonstrated to be extremely helpful to characterize
and quantify the 3D cellular structure of extruded and puffed materials [169–171].

3.6. Oral Processing

The ultimate transformation of a food product is its consumption, i.e., human process-
ing. In brief, consumption or eating involves two subsequent major steps: Oral processing
(oral digestion) and (gastric) digestion. Oral processing aims at producing the bolus after
a series of mechanical and enzymatic processes. Afterwards, the bolus is swallowed and
breakdown and absorption of food components occur at gastric level [172]. Oral processing
is the most important step for perception and appreciation of texture of foods; both physi-
ology aspects and intrinsic properties of food materials play a relevant role in this complex
process [59]. That is, texture is a fuzzy concept since it is a sensory perception derived
from the structure of food at different levels and interaction with digestive and cognitive
systems. Besides sensory aspects, food texture also plays an important role in controlling
food consumption (satiation) [60]. Therefore, in order to design more nutritious, healthy,
and enjoyable foods, it is essential to better understand the relationships between food
structure, patterns of oral processing, and sensory texture perception. Furthermore, such
understanding is also important to improve the design and optimization of processes, since
food structure is indeed built up by different processing steps (structuring or structure
engineering), as discussed in previous applications. In this regard, modelling approaches
and, in particular, mechanical- or physics-based modelling, can help in gaining insights on
the structure–properties–oral processing relationships.

In this last application of products/processes, we aim at giving a big picture about
modelling of oral processing and its relation with food structure and texture. It is worth to
mention that oral breakdown of solid foods involves large deformation but also fracture dy-
namics, certainly increasing the complexity of (mechanical) modelling, in comparison with
previous applications. Considering empirical-based approaches, probably the most popu-
lar methodology is texture profile analysis (TPA). TPA aims at reproducing the chewing or
indentation by using different settings; response to applied deformation is reported by pa-
rameters associated with texture, such as hardness, firmness, crunchiness, cohesiveness, etc.
Afterwards, these texture indices can be used to develop kinetic models and correlations
to include aspects of processing [12]. TPA is extensively applied in the food engineering
field, but it is not very helpful to understand the structure–properties relationship due to
the lack of well-defined physical/mechanical parameters [61]. Regarding semi-empirical
approaches, scaling law or Gibson–Ashby model is widely utilized to characterize cellular
solids [11]. This approach allows predicting mechanical properties (e.g., Young’s modulus,
E) based on the relative density, defined as the ratio between the density of the foam or
cellular solid (ρ) and the density of the solid phase (ρs):

Foam property
Solid phase property

= C
(

ρ

ρs

)n
(14)
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where C and n are empirical parameters to be fitted, which in turn can be related to
structure of the porous material. For example, this approach has been used to study the
influence of cellular structure, given by formulation and dough processing conditions, on
the mechanical properties of bread crumb [173].

On the other hand, mechanical (physics-based) modelling has demonstrated to be very
useful to develop knowledge about relations between structure and mechanical properties,
by subjecting a virtual food to a virtual standard mechanical test or a virtual oral breakdown.
With the aid of imaging methods such as X-ray microtomography (XMT or micro-CT),
realistic 3D geometric models can be obtained for simulation purposes [8]. Besides large
deformation analysis, fracture mechanics has been applied to understand the breakage of
solids under large deformation; this physics-based approach allows determining intrinsic
properties of food materials, which do not depend on test parameters or sample geometry,
e.g., Young’s modulus, fracture stress, fracture toughness, and the critical stress intensity
factor [18]. For instance, different authors have employed the finite element method (FEM)
to model mechanical tests such as compression, in order to obtain mechanical properties
of materials, e.g., References [62,174–177]. Due to limitations of FEM to simulate large
deformation and fragmentation behavior, some authors applied meshfree methods. For
example, Harrison et al. [178] developed a coupled biomechanical-smoothed particle
hydrodynamics (SPH) model of human mastication, in order to predict the mechanical
behavior and breakdown of two agar model foods. The authors reported that a further step
would be to extend this model for predicting flavor release during oral processing from
mechanical properties. Likewise, Hedjazi et al. [179] studied the fragmentation behavior of
breakfast cereals by using the discrete element method (DEM).

In summary, modelling approaches, especially physics-based models, in combination
with advanced numerical methods and powerful imaging techniques, certainly help to in-
crease the understanding about the relationships between structure, mechanical properties,
and oral processing, in order to design foods with specific characteristics. For instance,
structure can affect the digestion process [61], so such understanding is crucial to deliver
healthier food products. In this regard, it is worth making a final comment about additive
manufacturing (AM) or 3D printing, which has emerged as a promising technique for
food tailoring or customization [180]. AM can be used to perform reverse engineering,
i.e., to utilize knowledge and information about products/processes to improve or reuse
the (direct) engineering process for delivering a new product. For example, topology
optimization (optimal design of geometry) is a reverse engineering tool that can be used
in AM. So, virtual design and reverse engineering can produce tailor-made foods for dif-
ferent objectives and functionalities, e.g., specific fragmentation performance, controlled
released of active compounds, etc. [181]. Some recent works have been dedicated to study
mechanical behavior of 3D-printed foods. For instance, Jonkers et al. [182] proposed a con-
stitutive model (elasto-viscoelastic) to describe large deformation behavior of 3D-printed
starch-based foods. In an interesting article, Piovesan et al. [183] applied a computer aided
engineering (CAE) methodology to design 3D-printed foods with tunable mechanical
properties, by using Young’s modulus as texture descriptor. Finite element modelling was
used to analyze the relationship between Young’s modulus of 3D-printed cookies with a
honeycomb structure and their parameters. The authors reported that wall thickness and
cell size can be used as design parameters to customize texture based on Young’s modulus.
For sure, more works will be dedicated to AM and mechanical modelling in the near future,
to further elucidate the relations between food structure and oral processing, considering
the ultimate challenge of optimal design of foods.

4. Conclusions

A wide variety of modelling approaches have been applied to describe and predict
volume change and large deformation of food materials in various processes. A classifi-
cation of such models was proposed in this work, based on the prediction capability and
hypotheses of each approach: (i) Simple models are able to predict overall volume change
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and related properties (e.g., bulk porosity), either from empirical data or from theoretical
simplifications; (ii) physics-based models can predict local deformation and porosity evolu-
tion, and stress field and related magnitudes via mechanical modelling (mechanics-based
models). In some cases, mechanical modelling is avoided by using theoretical assumptions
or semi-empirical approaches to compute solid velocity in a simplified way (hybrid models).
Certainly, mechanics-based modelling presents relevant advantages in terms of prediction
capability and interpretation of involved phenomena, providing useful tools and insights
for a better understanding of the relationships between composition and structure of raw
materials, processing conditions, and properties of final products. Besides macroscale
modelling framework, which is commonly applied in food engineering, microscale and
multiscale approaches have been utilized, as well as meshfree methods and well-suited
concepts and theories from other fields, e.g., soft condensed matter and polymer science.
These “novel” perspectives and methods will surely improve physics-based models in the
food engineering field.

On the other hand, there are still some bottlenecks to be addressed in order to further
expand the development and application of physics-based models. One major bottleneck
involves the availability of appropriate thermophysical and mechanical properties, con-
sidering the actual composition and structure of food materials, and realistic processing
conditions. In this regard, the influence of state transitions and anisotropy effects need to
be incorporated. It has been extensively reported the key role of water as plasticizer and as
agent for deformation, as well as the importance of structural arrangement of materials to
transport phenomena. Another aspect to improve is the validation of simulation results,
which in many cases is performed by using average or overall values, partially due to
experimental limitations for the acquisition of detailed and adequate data. A full and
direct validation of models will consolidate their predictive potential. The third issue
concerns the need for the development of modelling frameworks and customized modules
in simulation software, with focus on food engineering applications. This will certainly
help to expand the application of physics-based models, including education and training
aspects of (nonlinear) solid mechanics, considering that implementation of these models is
not straightforward.

Towards the development of a food engineering-oriented physics-based modelling
framework, different products/processes can be grouped or classified according to the main
mechanism or driving force causing large deformation and volume change: (i) Moisture-
driven deformation in drying, hydration, and cooking; (ii) pressure-driven deformation in
baking, extrusion, and puffing; and (iii) mechanical-driven deformation in oral processing.
In addition, other driving forces can be relevant and thus need to be considered and
coupled accordingly, e.g., temperature can affect deformation by modifying the state and,
thus, the mechanical properties of the material. Besides, this classification can be useful
to identify and solve common problems in various products/processes, and to increase
feedback between different research areas.

Finally, it is worth mentioning the need for bridging the gap between process mod-
elling efforts (prediction of temperature, moisture content, deformation, etc.) and product-
focused works (impact of processing on quality and sensory aspects). That is, the gap
between “prediction of ” and “impact of ” works. An example of this gap is the lack of more
articles dealing with the prediction of food texture from physics-based models. Certainly,
mechanical modelling can provide useful tools for this aim. More efforts are required in
this direction, towards the development of mechanistic digital twins and optimal design of
food products/processes.
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