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Monopole matter from magnetoelastic coupling in
the Ising pyrochlore
D. Slobinsky1,2,5, L. Pili 1,3,5, G. Baglietto1,5, S. A. Grigera1,3,4 & R. A. Borzi 1,3✉

Ising models on a pyrochlore oxide lattice have become associated with spin ice materials

and magnetic monopoles. Ever more often, effects connecting magnetic and elastic degrees

of freedom are reported on these and other related frustrated materials. Here we extend a

spin-ice Hamiltonian to include coupling between spins and the O−2 ions mediating super-

exchange; we call it the magnetoelastic spin ice model (MeSI). There has been a long search

for a model in which monopoles would spontaneously become the building blocks of new

ground-states: the MeSI Hamiltonian is such a model. In spite of its simplicity and classical

approach, it describes the double-layered monopole crystal observed in Tb2Ti2O7. Addi-

tionally, the dipolar electric moment of single monopoles emerges as a probe for magnetism.

As an example we show that some Coulomb phases could, in principle, be detected through

pinch points associated with O−2-ion displacements.
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It is remarkable that the Ising model, one of the simplest
interacting systems in condensed matter physics, can lead to
phenomena in geometrically frustrated magnetism that have

kept researchers interested for the past decades. The strategic
choice of the spin lattice structure (such that pairwise interactions
compete rather than collaborate) is at the core of the new
emergent physics: massively degenerate ground states with
critical-like spin correlations, exotic excitations, artificial elec-
trostatics, and very peculiar dynamics1–7, among other effects.

The pyrochlore structure (Fig. 1a) is a prominent instance of
these "frustrated" lattices, with spin ice canonical materials
Dy2Ti2O7 and Ho2Ti2O7 as some of its most notable
examples5–10. Their effective residual magnetic entropy is similar
to that of water ice, and the source of their collective name. The
configurations of Ising spins in the lowest energy states of these
materials11–13 can be described by a lattice gauge field that fluc-
tuates like an electric field in vacuum4,14–17. The combination of
this “Coulomb Phase” with non-negligible dipolar interactions
leads in turn to the emergence of local magnetic excitations: the
“monopoles”. They sit in the centres of the tetrahedra that make
the pyrochlore lattice, and interact through Coulomb forces like
electrical charges12,18. As illustrated in Fig. 1a there are different
types of these magnetic charge-like quasiparticles (eight “single”
monopoles, two “double” ones). Monopoles are responsible for

the very peculiar dynamics of spin ices at low temperatures19–22.
Also, under different conditions, they can act as building blocks
for different “monopole phases”8,12,23–25 that have been studied
theoretically or experimentally. In general, dense “monopole
matter” was forced to appear by resourcing to somewhat artificial
conditions23,26–29, freezing spin fluctuations12,24, imposing out of
equilibrium situations30, or breaking some symmetry of the
system28,31–35. It can be proved to be impossible to obtain the
most general monopole liquid solely from pairwise interactions29,
leaving unanswered a fundamental question that we pursuit to
respond here: how can monopole matter be thermodynamically
stable in real materials without explicitly breaking any symmetry?

Central to this question and to this work is the interplay
between magnetic and elastic degrees of freedom. Since it is the
precise geometry of the lattice the one that balances out the
pairwise spin interactions, geometrically frustrated systems can be
quite susceptible to spontaneous deformation36–42. Regarding
Ising pyrochlores that remain disordered at the lowest tempera-
tures, this coupling is responsible for structural fluctuations43,
giant magnetostriction44,45, and composite magnetoelastic exci-
tations in Tb2Ti2O7

46. It seems to be much smaller in the cano-
nical spin ices47,48, but may explain subtle effects shaping the zero
magnetic field (h= 0), and h∣∣[111] phase diagrams of Dy2Ti2O7

and Ho2Ti2O7
49, dynamics50, and the observed magnetic

avalanches21,51,52. Khomskii53 was the first to notice that spin
configurations related to single monopoles in spin ice are
necessarily accompanied by local distortions that result in an
electric dipole. These dipoles can interact with an external electric
field53 or among themselves54, changing the energy balance.

Inverting Khomskii’s line of reasoning, we demonstrate in this
work that magnetoelasticity can be the keystone for monopole
stabilisation in pyrochlore oxides. We begin by introducing the
Magnetoelastic Spin Ice (MeSI) model, by modifying the nearest
neighbours spin ice Hamiltonian in a simple way to include a
coupling to the lattice of O−2-ions sitting near the centre of
tetrahedra (see Fig. 1). In the strong coupling regime, lattice
distortions turn the eight types of single monopoles into stable,
atomic-like constituents of novel ground states. We then show
how the MeSI Hamiltonian stabilises a Monopole Liquid; this
massively degenerate perfect paramagnet is the basis from which
the other cases of study will follow through small perturbations.
Including attraction between monopoles of equal charge will lead
to a phase comparable to the “jellyfish” or “spin slush”30,55, with
half-moons in the neutron structure factor. Correspondingly,
Coulomb-like attraction gives rise to a Zincblende Monopole
Crystal with magnetic moment fragmentation26,28. In our model,
distortions are not just dummy variables but dynamic degrees of
freedom. We can contrast their behaviour with that of real
materials, employ them as probes to investigate the underlying
magnetism, or—in a multiferroic fashion—to control the material
properties using electric fields. In this way, we will see that in the
Zincblende Monopole Crystal the deformed O lattice fluctuates
with the fragmented magnetic moments. Also, in spite of its
simplicity, and building on the previous works of Jaubert and
Moessner54 and Sazonov and collaborators25, our model allows to
understand in a new manner the formation of a double-layered
monopole crystal in Tb2Ti2O7 with field applied along [110], and
to contrast the O−2-distortions with those suggested previously25.
The model’s output is compatible with the power-law spin cor-
relations observed in Tb2Ti2O7 at zero field56, and gives some
clues on the half-moons measured in neutron diffraction patterns
at finite energy46,57.

Although we concentrate on the strong coupling limit, we
expect the MeSI model to be a convenient tool to study other
systems, in particular spin ices. Incorporating the lattice degrees
of freedom may open the way to the survey or design of electrical

Fig. 1 Structure, magnetic monopoles and O−2 distortions. a In the oxide
pyrochlore structure the Ising spins (coloured arrows) occupy the shared
vertices of tetrahedra, pointing either towards or away from their centre.
Like in an electrostatic field, they can be associated with a flux density. Each
spin configuration can be related to a magnetic charge at the centre of the
tetrahedron, through the net flux into it. For instance, the three-in/one-out
configuration in the "up" tetrahedron embedded in a cube has a positive
single monopole (small green sphere), while the one-in/three-out in a
"down’’ tetrahedron (coloured blue) has a negative single monopole (small
red sphere). Neutral tetrahedra (with no spheres) are characterised by two-
in/two-out configurations. The exponentially degenerate ground state of
Spin Ice is built from these magnetically neutral blocks. Double charges,
with all spins pointing in or all-out, are also possible: a negative double
charge is represented here by a big red sphere. Unfrustrated crystals of
double charges alternating in sign are known ground states of various
materials. Single monopoles are the low energy excitations of both spin ice
and of these crystals. However, we have found that a coupling between
elastic and magnetic degrees of freedom can stabilise a ground state of
single monopoles that preserves all the symmetries of the lattice they sit in
(i.e., a "liquid" of monopoles). b The oxygen ion (small cyan sphere) that
mediates superexchange between nearest neighbours spins (generally
associated to magnetic rare earth ions, R, purple spheres) minimises the
elastic energy at the centre of the tetrahedron. Its displacement δr toward
the + z− link decreases the exchange constant value between spins 1 and 3
(connected by a green line); the exchange constant in the opposite link
(−z− link, red line) is increased by this distortion, and the other four (black
lines) J values remain unchanged to first order. δr thus favours certain spin
configurations, while a given configuration conditions the distortions of the
oxygen lattice.
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properties of Ising pyrochlores, or teach us how to probe other
properties through them (as it has been done in some pioneering
works in spin-ice58–61).

Results
A model for magnetoelasticity in Ising pyrochlores. We will
study a pyrochlore oxide lattice with Ising spins of the type R2M2O7.
Spins will generally be associated with rare earth ions (R), while M is
typically a transition metal (Ti, Sn, Zr)62–64 but could also be Ge or
Si65. The spins sit in the corners i= 1. . . 4 of up-tetrahedra (coloured
purple in Fig. 1a). They point along the 〈111〉 directions, either
towards (with pseudospin variable Si= 1) or against (Si=− 1) the
centre of the tetrahedron they belong to. In order to better describe
the variety of states of matter we are going to study, it will be useful
to employ the language of magnetic excitations or “monopoles”. We
will use these two terms to refer to the topological charge even in the
absence of long-range dipolar interactions12. One can group the
different spin configurations of a single tetrahedron into sets, using
the net entrant spin flux as a label that defines the magnetic charge12

of that tetrahedron. The same definition is valid for up or down
tetrahedra. A crucial observation is that fixing the magnetic charge
in a tetrahedron does not necessarily define the spins variables in a
unique way. There are six different “neutral” or “spin ice” config-
urations, with two spins pointing in and two pointing out (empty
tetrahedra in Fig. 1a). There are four positive (negative) single
monopoles of charge Q (−Q), with three spins pointing in and one
out (three out and one in); these monopoles are represented as small
green (red) spheres in Fig. 1a. Finally, for double monopoles each
charge identifies a single configuration: 2Q (−2Q) when all the spins
point in (out) of the tetrahedron; a negative double monopole is
represented by a big red sphere in Fig. 1a).

Each tetrahedron in the pyrochlore lattice can be embedded in
a cube. The six links between nearest neighbour spins lie
diagonally along the six faces of the cube and can be labelled
using the perpendicular Cartesian axes (e.g., + z and −z for the
links between spins S1–S3 and S2–S4, shown in green and red
respectively in Fig. 1b). Following other studies54,62–64 we assume
that the superexchange between R-ions takes place through the
oxygen ion O−2, sitting at the centre of the tetrahedra (see
Fig. 1b). In order to simplify our model for magnetoelastic
coupling we will only consider the independent displacement of
these non-magnetic ions, keeping all the rest at fixed positions.
The restoring force for the oxygen points towards the centre of
the tetrahedron and is taken to be isotropic and proportional to
the oxygen’s relative displacement δr (see Fig. 1). With these
considerations, and taking into account only nearest neighbour
magnetic interactions, our model Hamiltonian can be written as

ð1Þ

Here δu≡ δr/rnn, with rnn the nearest neighbour distance, K is
the elastic constant for the oxygen ions. The sum runs over all (up
and down) tetrahedra. Jij(δu) is the displacement-dependent
nearest neighbours superexchange energy associated to each pair.
It can also be labelled using the link name J±m(δu), with m= x, y,
z (for example, J+z≡ J13 for the up tetrahedron in Fig. 1b); for
more details on the notation see Supplementary Note 1.

For small deviations δu, the superexchange constants can be
expanded around the undistorted value42, J0, which corresponds
to the configuration where the O occupies the central position
and is thus identical for all directions. We will assume that the
main effect of the O displacement over the exchange constants
comes through the change in the bond angle of the R-O-R53,54.
The net result of the angular distortion on J is to make it
more antiferromagnetic or ferromagnetic according to the

Goodenough-Kanamori-Anderson rules. As shown in Supple-
mentary Note 1, to first order J±m(δu) is only affected by the m-
component of δu: J ± ηmðδuÞ ¼ J0 �ð± Þη~αδum, where η takes the
value+ 1 (− 1) for up (down) tetrahedra. The constant ~α �
∂J ±m

∂δum

�� ��
δu¼0

is the coupling constant of the global system that
correlates the lattice and magnetic degrees of freedom.

Within this approximation it is possible to recast the
Hamiltonian (see Supplementary Note 1) into a compact vectorial
form, where the dependence on the O−2 lattice distortion is
explicit. We call this extension of the simplest spin ice model the
Magnetoelastic Spin Ice model (MeSI); for zero magnetic field it is
given by:

ð2Þ

Here we have defined Jml � 3~α2=K and δ~u � ~αδu, both
measured in Kelvin; the sum runs along the diamond lattice,
J0= (J0, J0, J0) and the vectors ½S;~S�± have components

½S;~S�x± � S1S2 ± S3S4

½S;~S�y± � S1S4 ± S2S3

½S;~S�z± � S1S3 ± S2S4:

ð3Þ

The first term of Eq. (2) is the elastic energy, and it is easy to
see that the last one is the usual nearest-neighbour Hamiltonian
with isotropic exchange constants. If different types of nearest
neighbour bonds were to be considered (as we will do when
considering the effect of magnetostriction in Section “Double-
layered crystal of single monopoles”) the latter would be replaced
by a sum involving the exchange constant matrix Jij0 :

P
i≠jJ

ij
0SiSj.

The middle term in the MeSI model is central to this work, as it
contains the (linearised) magnetoelastic coupling. While the
coupling constant is somewhat hidden inside δ~u ¼ ~αδu, we will
soon show that the new energy scale Jml (proportional to the
square of the coupling constant ~α) is a convenient measure of the
relative stability of single monopoles, the atomic-like building
blocks of the new exotic phases we will study in the following
sections. Also, and equally important, it indicates how strongly
magnetism will be reflected in structural properties and
measurements.

Stabilisation of a dense fluid of single monopoles: the mono-
pole liquid. Models of interacting entities, even simple ones, are
seldomly exactly solvable. It is then a surprise that the three-
dimensional MeSI model turns out to be analytically solvable for
J0= 0. Completing squares in δ~u, the Hamiltonian can be
decomposed into an “elastic” and a “magnetic” term. The first one
is

ð4Þ

where the components δOm ¼ δ~um � Jml
3 ½S;~S�m� can be interpreted

as the relative displacement of the oxygen with respect to its
equilibrium position along the different axes. Due to the
magnetoelastic coupling this position depends now on the
specific spin configuration in each tetrahedron. This term is
quadratic and can be easily integrated out. If we include a Zeeman
term, proportional to the magnetic field h (measured in Kelvin),
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the effective magnetic term under a magnetic field then becomes

ð5Þ

The last two terms are the nearest neighbour spin-ice
Hamiltonian under an applied magnetic field (with uniform
exchange constant J0) . For a strong magnetoelastic coupling, the
first term (with a four-spin product) stabilises a Monopole Liquid
at low temperatures29. It is easy to check that the range of stability
is given by J0 < Jml for positive J0 (which otherwise corresponds to
a spin ice phase), and Jml >−3J0 for negative J0 (usually leading to
a double monopole crystal).

The Monopole Liquid for J0= 0 has been shown to be a
perfect paramagnet, with no spin correlations at any
temperature29. Its ground state holds a massive residual entropy,
and is equally populated by the 8 possible monopole configura-
tions. The four-spin model (i.e., Heff for h= 0 and J0= 0) was
solved exactly by Barry and Wu ten years before the discovery of
Spin Ice66. In recent years it had been suggested the possibility
that lattice distortions could stabilise dense monopole
phases25,28,29; the MeSI model crystallises this idea in a clean
and straightforward fashion, with the added benefit of an
analytical solution.

Figure 2 shows results of our Monte Carlo simulations
(symbols) for the full MeSI Hamiltonian for J0= 0 (Eq. (2)).
They are compared with the exact results obtained by Barry and
Wu66, displayed as full lines. Note that, unlike the case of ref. 29,
the model here involves both the spins and the (coupled) elastic
degrees of freedom. We define the density of monopoles, ρ, as the
average number of single monopoles per tetrahedron (without
counting double charges). Fig. 2 shows that ρ(T) saturates at ρ=
1 monopole per tetrahedron for T/Jml < < 1, as expected for a
dense phase of single charges; on the other hand, the inverse
magnetic susceptibility χ−1 is that of a paramagnet, with no
evidence of an increase in magnetic correlations with decreasing
T (Fig. 2a). In both cases there is very good agreement between
the simulations of the full model and the analytical results for the
effective model66. On the other hand, the specific heat per unit
spin CV and mean square deviation δu2 (Fig. 2b) make apparent
that we are in fact dealing with a composite magneto-elastic
system. The solution of Barry and Wu for CV/kB needs an
additional constant term of 3/4 to take into account the elastic
energy of the N/2 oxygen ions, as expected from the equiparti-
tion theorem. Although according to this same theorem one
would naively expect a straight line for δu2 vs T, there is a kink
for δu2 in Fig. 2b for T below the maximum in CV. It is a sign of
coupling between the degrees of freedom: as we mentioned, the
oxygen equilibrium position depends on the local spin config-
urations (Eq. (4)).

The interplay between the nearest-neighbour spin ice term
proportional to J0 and the four-spin term favouring a monopole
liquid has been explored in ref. 29, where the four spin term in Eq.
(5) was proposed as a model Hamiltonian. In addition to the
Zeeman term included in Eq. (5) (studied in the next sections) it
is interesting to consider interactions between monopoles (as
those that would arise by including magnetic dipolar interactions
between spins12). A simple way to introduce nearest neighbour
repulsive or even attractive forces between like-monopoles
consists in including second and third nearest neighbours spin
interactions with a carefully chosen ratio30,67. In order to preserve
generality, we will express the interaction directly in terms of the

monopolar charge on a tetrahedron,

ð6Þ

where = 0, ±1, ±2. Here the sum runs over nearest neighbour
tetrahedra, and γ measures the strength of like-charge repulsion
(γ > 0) or attraction (γ < 0).

We have referred to the liquid phase with a single monopole
per tetrahedron (ρ= 1) and no spin correlations as “the”
Monopole Liquid, ML. However, other monopole liquids can be
obtained by applying an external magnetic field35, changing the
monopole composition, or the spin or charge correlations29.
Some of these phases show particular patterns in the structure

Fig. 2 Monopole liquid. Monte Carlo simulations for the Magnetoelastic
Spin Ice (MeSI) model defined by Eq. (2), with coupled elastic and magnetic
degrees of freedom (symbols). This model supports a liquid of single
magnetic monopoles as a ground state. In order to see this, the exchange
constant in the absence of distortions was set to J0= 0, the magnetic field
to h= 0, and the energy scale associated with the stability of magnetic
monopoles to Jml ¼ 3~α2=K ¼ 1K. The cubic lattice we simulated had N=
8192 spins and N/2 moving O−2 ions. By integrating out the lattice degrees
of freedom, this compound system can be transformed into an effective
magnetic model (Eq. (5)) studied previously29. The analytical results from
Barry and Wu66 for the effective model are also plotted (full lines). a Left
axis: density of monopoles ρ as a function of temperature. ρ saturates at
1 single monopole per tetrahedron for T << Jml, while the system retains all
the symmetries it had at high temperature. Right axis: inverse of the
magnetic susceptibility χ vs. temperature. As noted in ref. 29, the spin part
behaves as a perfect paramagnet; there are no spin correlations at any
temperature, with a perfect Curie-law for the inverse susceptibility χ−1.
b Specific heat per unit spin CV (left) and the mean quadratic deviation δu2

(right axis) vs temperature. Both curves make evident that we are dealing
with a coupled composite system, with magnetic excitations and lattice
distortions. Due to the elastic contribution Hel from the oxygen ions, we
needed to add a constant term 3/4 to the analytical solution to match the
simulations. Also, δu2(T) is not just a straight line: the O−2 equilibrium
position depends on the spin configuration in δO.
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factor that have led to different monikers. “Half-moons” or “split
rings” have been observed in the structure factor at the "jellyfish
point"30 or the “spin slush” phase55, with single monopole density
ρ ≈ 0.35 and attraction between like-monopoles. We have
calculated the neutron structure factor ISpin(k) for the ML in
the presence of nearest neighbour attraction between like charges
as per Eq. (6) with γ < 0, ρ= 1, T << ∣γ∣ < Jml (see Supplementary
Note 3 for details). The diffuse pattern we obtain can be
understood as the result of merging the different half-moons
observed in refs. 30 and55, with their features widening due to a
higher density. While half-moons are usually detected at finite
energy57,68, the ML with like-attraction is a new instance
(together with refs. 30,55,69,70) of a ground state with this feature.
Interestingly, the need for an attraction between like monopoles
will arise again when studying Tb2Ti2O7 (Section “Double-
layered crystal of single monopoles”), a compound which also
shows half-moons in its neutron structure factor46,57.

Spin ice has shown a wealth of interesting physics, such as exotic
magnetic excitations12,18, topological phase transitions7,16,69–72,
peculiar dynamics3,19–22,73, power law correlations leading to pinch
points4,14,16,17,74,75 or the possibility to tune new ordered or
disordered phases using magnetic fields7,8,13,49,76–82. In the same
way, the opportunity to stabilise a completely different phase with
massive residual entropy in an Ising pyrochlore opens the door to
new and non-trivial forms of dense monopole matter. Part of these
phases have been theoretically speculated on12,23,26,28–30,32,33,35,54

or inferred through experiments25,31,49. In what follows, we analyse
how to obtain from the MeSI model some of these states, which,
even within the realm of classical systems, do not exhaust all the
possibilities opened by the inclusion of magnetoelastic coupling.

The fragmented Coulomb spin liquid (FCSL): correlated
magnetic and dipolar electric fluctuations. There exist previous
experimental realisations and theoretical proposals for the single
Monopole Crystal with the Zincblende structure (ZnMC, for
short), stabilised at low temperatures by means of extrinsic
fields33–35,76,83, internal fields26,28,31,84, or dynamical
constraints23. Within this context, it was first established that
spins in a crystal of single monopoles at zero field could still
fluctuate23. Brooks-Bartlett and collaborators noted that these
partially ordered spins fragmented into two independent parts26.
A static divergence-full part was related to the monople crystal,
and the remaining (divergence-less) fragment, with neutron
pinch points26,28, characteristic of a Coulomb phase4. A number
of FCSL have been recently achieved experimentally in a pyro-
chlore lattice31,84. There, the Ir sublattice orders anti-
ferromagnetically, acting as an effective field (with staggered
values on up and down tetrahedra) over the spins in the other
pyrochlore sublattice (Ho and Dy, respectively).

Returning to our work, the inclusion of an effective monopole
attraction between + and − charges (γ > 0 in Eq. (6)), implicit,
for example, on dipolar spin interactions, will transform the fluid
of single monopoles studied in Section “Stabilisation of a dense
fluid of single monopoles: the Monopole Liquid” into a ZnMC
when the temperature is lowered. As studied before26, this phase
would show magnetic moment fragmentation, with pinch points
in the diffuse structure factor. However, in contrast with previous
cases, there should now be spontaneous symmetry breaking
between the two sites of the diamond lattice. The staggered charge
density ρS (defined as the modulus of the total magnetic charge
due to single monopoles in up tetrahedra per sublattice site per
unit charge) is the order parameter of the transition, which has a
complex phase diagram23,85.

Figure 3 shows Monte Carlo simulations for the MeSI model
with J0= 0 and opposite sign attraction (γ/Jml= 0.2) in Eq. (6).

We observe a high density of monopoles in the whole
temperature range, saturating at ρ= 1 at low T. The peak in
the specific heat reflects the formation of a crystal (panel a)).
Contrary to previous studies31,32, the abrupt increase in ρS,
together with the peak in its fluctuations shows that this time the
symmetry between up and down tetrahedra is spontaneously
broken at the transition (Fig. 3 panel b). By varying the value of
J0 > 0 the whole phase diagram ρ vs. T for magnetic charges in a
lattice 23, analogous to the one obtained for electric charges in a
lattice86, can now be understood as emerging from a classical
Hamiltonian with physical foundations. Including a negative J0, a
double monopole crystal can also be stabilised24,87. Defining the

Fig. 3 Zincblende monopole crystal (J0= 0 and γ/Jml= 0.2). An
attraction between monopoles of different signs can make the Monopole
Liquid crystallise in the Zincblende structure, with spontaneous symmetry
breaking. The ordered charges in the crystal contrast with the partial
disorder of the spins that produce this crystal structure23, in what is known
as the magnetic moment fragmentation26. a Specific heat (CV, right axis)
and density of single monopoles (ρ, left axis) across the temperature at
which the crystallisation transition occurs. b The order parameter for
crystal formation (the staggered monopole density ρS, left axis) and its
fluctuations χS (right) measured in the same temperature range. We have
subtracted the contribution of the pure vibrational degrees of freedom from
CV. The peak in χS reflects the spontaneous symmetry breaking. The inset
to panel b) shows a magnetoelastic configuration of minimum energy for a
positive single monopole in an up tetrahedron. The total magnetic moment
(thin yellow arrow) points along the minority spin (blue arrow); it is one
among a total of 8 different directions: 4 associated with positive and 4
with negative single monopoles, or 1 per spin configuration. The short black
arrow corresponds to δr, the O−2 displacement of minimum energy for this
magnetic configuration. There are only 4 different displacements δr, since
they do not invert under time reversal, and they are always directed
towards the face of the tetrahedron with 3 antiferromagnetic links (with the
three spins on the corners sharing the same sign), coloured green here. The
fluctuation of the fragmented magnetic moment implies that δr is also
fluctuating.
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total density of monopoles ρT to include double monopoles (0 ≤
ρT ≤ 2), a complex phase diagram would then be obtained
comprising three different ground states: the vacuum of
monopoles with ρT= 0, the crystal of single monopoles for ρT
= 1 (both exponentially degenerate and with an associated gauge
field, if no other interactions are added), and the zero-entropy
crystal of double monopoles for ρT= 2.

Even if we take it as a possible route to the relatively
unexplored physics of “condensed monopole matter” we would
not be making justice to the MeSI model if we do not consider in
more detail the new, structural degrees of freedom. As we will see
below, this allows us to make apparent some of the consequences
of fragmentation from a different perspective. As sketched in the
inset to Fig. 3b, when monopoles are stabilised at low
temperatures the oxygen ions tend to be displaced along the
〈111〉 directions, towards one of the four triangular faces of the
tetrahedron. This is the face that contains the three
antiferromagnetic-like links (out-out, or in-in), painted green in
Figs. 3b and 4b. It is easy to check that the O−2 displacements δui
of a positive single monopole points antiparallel (parallel) to the
total magnetic moment μi of an up (down) tetrahedron. On
reversing time the magnetic charge and dipole moment invert
their direction, but the displacement δui, and hence the electric
dipole moment, remain fixed. For a given monopole charge, then,
electric and magnetic moments flip in unison.

We can then argue that since the divergence-less part of the
magnetic moment fluctuates like a gauge field, with neutron
scattering pinch points in its structure factor26,31, the same should
be true for the dipolar electric moment sitting in each tetrahedron.

If this were true, aside from the usual Bragg peaks associated with
the pyrochlore crystal, pinch points related to correlated oxygen
fluctuations around the centre of the tetrahedron could in
principle be detected as diffuse scattering using simply an electron
beam, or x-ray diffraction. The chances to observe the effect
depends critically on the magnitude of the O−2 displacement. We
will discuss this in Section “Discussion”, where we also summarise
the structure factor results for this and two other phases.

The fact that electronic dipolar magnetic moments could give
birth to magnetic charges, and that these magnetic entities have
associated electric dipolar moments has been mentioned as a
further remarkable example of symmetry between electric and
magnetic charges53. Another layer of complexity is thus added by
noting that the correlated fluctuations of these dipolar electric
and magnetic moments lead to twin gauge fields, that could be
measured by probes coupling either to electric charge or to
magnetic moments.

Double-layered crystal of single monopoles. Among the com-
plex physics of Tb2Ti2O7 there is a clear experimental fact: upon
applying an external field h parallel to the [110] crystallographic
direction, an order of alternate double layers of positive and
negative monopoles is induced perpendicular to [001]25,88 (see
Fig. 4a). To justify this charge order, Jaubert and Moessner54

explored a classical model. The mechanism involved the long-
range interactions between the electric dipoles associated with
single magnetic monopoles53, and, in a much lesser degree,
magnetic dipolar interactions. They found a transition from the
antiferromagnetic “all-in/all-out” phase into the bi-layer when
applying a [110] magnetic field.

The MeSI model constitutes an alternative to this intrinsic
mechanism, the first ever proposed that could stabilise a
monopole phase54. While it obviously cannot take into account
all the complexity observed in Tb2Ti2O7

56,64,89–92, it is an
improvement over the previous proposal, since now both
magnetic and elastic degrees of freedom are considered on an
equal footing. Furthermore, the model provides a unified
explanation for the ground state observed at zero field (a
Coulomb phase56,93), the double layered monopole crystal
measured at moderate fields25 (correcting the previously
proposed O−2 lattice distortions), and suggests a connection
with the presence of “half-moons” in neutrons diffuse scattering
at finite energy46,57.

The application of a strong magnetic field along [110] does not
fully order the Ising pyrochlore lattice. Spins on α-chains—
running along [110], represented by purple arrows in Fig. 4a—
are completely polarised at low temperature. This results in
effectively decoupled spins in β-chains (yellow arrows in the
figure), with magnetic moments perpendicular to h. Only four
possible spin configurations are then possible in each tetrahedron.
Two of these are spin ice-like, with no average O displacement77;
the other two are a positive and a negative single monopole,
leading to the antiferromagnetic β− chains of spins, and βQ−
chains of alternating charge shown in Fig. 4a33,34. Unlike the
figure (chosen to show a double monopole layer ordering) these
β− chains are not coupled by the spin structure and –unless an
explicit energetic coupling is included– would lead to an
incoherent arrangement of βQ− chains.

Before tackling the issue of charge coherence, the non-trivial
question we should answer concerns magnetic charge stability.
Why would a sufficiently strong field h∣∣[110] change the ground
state of Tb2Ti2O7 from a subset of the 2-in 2-out manifold to that
of a dense phase of single monopoles25? Since the component of
the magnetic moments along h is the same for the two chosen
single monopoles and for the neutral sites, the response cannot

Fig. 4 Double-layered crystal of single monopoles. a Spins (drawn as
arrows) and the resulting single monopole configuration (green and red
spheres, indicating positive and negative charge). This magnetic structure
has been measured under a moderate magnetic field h∣∣[110] in Tb2Ti2O7

25.
The spin lattice can be divided in: i-α− spins (painted purple) polarised by
h; ii-β− spins (yellow) perpendicular to h and building up antiferromagnetic
β− chains (in-in/out-out). Monopoles linked by β-spins alternate in sign,
forming βQ− chains of charge. α− spins decouple consecutive βQ− chains
but, as proposed here, an effective nearest-neighbours attraction between
like monopoles (Eq. (6) with γ < 0) can favour order such that the charge in
two tetrahedra linked by an α− spin is the same. The main question our
model is able to answer concerns the nature of the force that stabilises the
single monopoles occupying each tetrahedron when the field increases
from zero. b Structural configuration for the O−2-ion near the centre of
each tetrahedra. Through the magnetoelastic coupling, monopoles are
stabilised by the displacement of the central oxygen (small cyan spheres)
along 〈111〉 directions. These distortions (which should be compared with
those proposed on Fig. 6 in ref. 25 decrease the exchange energy along the
three bonds of the triangular face (painted green) approached by the O−2

ions, favouring "three-in", or "three-out" configurations in these triangles
(see a)). The spins form "one-in/one-out" configurations on the other
bonds (painted red), where the exchange constant increases. The exchange
constants along ±z (painted in slightly darker colours) are further modified
by magnetostriction, which triggers the O−2 displacement.
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rely on the Zeeman energy alone. It is interesting to note firstly
that if we impose the alternate oxygen displacements along z-axis
proposed by Sazonov et al. (Fig. 6 in ref. 25), the MeSI model
naturally leads to a dense phase of non-coherent βQ− chains of
magnetic monopoles. The only requisite is a displacement that is
big enough to overcome the energy associated to the usual nearest
neighbours term, proportional to J0. Alternatively we will now
investigate the effect of h on the lattice structure, and on the spin
lattice mediated by the magnetoelastic coupling ~α.

We are not the first to notice the possible importance of the
giant magnetostriction observed for h∣∣[110]45 for stabilising the
double-layered monopole phase in Tb2Ti2O7

54. Here we will
include its effect implicitly in the MeSI model through the
exchange matrix Jij0 in Eq. (2). Adding a Zeeman term for h∣∣[110]
the extended MeSI model can be written as:

ð7Þ

Rare-earth ions usually have a very strong spin-orbit coupling;
through it, the torque acting on spins can affect the orbital angular
momentum, and then the lattice. Based on symmetry94 the effect
of the field along [110] on the exchange constants is modelled
through J130 ¼ Jþηz

0 ¼ J0 � δðhÞ and J240 ¼ J�ηz
0 ¼ J0 þ δðhÞ; for

simplicity, we keep the other exchange constants J ij0 unchanged
(see Fig. 1b)). In order to detect the formation of a dense phase of
monopoles in our Monte Carlo simulations we measure ρ and two
more specific quantities: iÞ the average of the staggered O
displacement along the z− axis, hδuzstaggi, that is sensitive to the
O-displacement proposed by Sazonov and collaborators, com-
puted as the average of δuz on up tetrahedra minus that on down
tetrahedra (see Fig. 4a)); and iiÞ the order parameter, OP, for the
double-layer crystal of single monopoles, calculated as the
staggered charge on [100] planes made of up-tetrahedra. If we
call Qup

j the total charge in the j− th [100] plane of up tetrahedra,
the OP is computed as:

OP ¼
X2L

j¼1

ð�1ÞjQup
j

�����

�����; ð8Þ

where L is the linear size of the system and we are counting two
planes of up tetrahedra per unit cell.

Figure 5 shows the results obtained for the complete MeSI
model of Eq. (7) as a function of temperature (filled symbols). We
used a fixed field h/Jml= 13.4, with δ(h)/Jml=−0.5. In order to
guarantee a spin ice phase at zero field we set J0/Jml= 1.1 > 1. The
condition to destabilise the spin ice state in favour of a monopole
phase at zero temperature is δ(h) < Jml− J0. With J0/Jml= 1.1, we
make sure that a two-in–two-out state is favoured for h= 0 (δ(0)
= 0), compatible with the observed Coulomb phase in Tb2Ti2O7.
On the other hand, the value δ(h)/Jml=−0.5 ensures a single
monopole phase at a finite field. The density of single monopoles
saturates smoothly at ρ= 1 below T/Jml= 0.2. Since the intensity
of the magnetic field was chosen in order that the α− spins
would be saturated (and thus the magnetisation) for T/Jml < 1.4
this increase in ρ involves only the (antiferromagnetic) arrange-
ments of β− spins. We can see that the staggered average of the
O displacement along z− axis, hδuzstaggi, follows closely this
behaviour, showing that the O-displacement along z− axis seem
to coincide with that predicted in ref. 25. The negative value we
needed to use for δ(h) is quite encouraging: it means that Jij= J
+ηz in the link parallel to the field increases with field, while the

one perpendicular (J−ηz, painted green in Fig. 4b) decreases. The
crystal contracts along the [110] field and expands in the
direction perpendicular to it, in full accordance with the observed
distortions under magnetic field45,95.

Fig. 5 The Magnetoelastic Spin Ice (MeSI) model in a symmetry breaking
field: the double-layered monopole crystal. Monte Carlo simulations as a
function of temperature were performed using the extended MeSI model
(Eq. (7)) for a fixed magnetic field h∣∣[110], with h/Jml= 13.4 and
8192 spins. The extended model indirectly takes into account
magnetostriction effects using inhomogeneous exchange constants Jij0,
modifying J0 according to symmetry: J130 ¼ Jþηz

0 ¼ J0 � δðhÞ and J240 ¼
J�ηz
0 ¼ J0 þ δðhÞ (see Fig. 1b)); the other exchange constants for the
undisplaced O−2 were kept constant at the value J0. In order to guarantee a
spin ice-like phase at zero field, J0/Jml= 1.1, δ(0)/Jml= 0, and δ(h)/Jml=−
0.5. Curves with filled symbols where obtained using Eq. (7), while those
with open symbols are the equivalent after adding an effective charge-
charge interaction (Eq. (6)) with γ/Jml=− 0.08. a Monopole density ρ
(left) and average staggered O displacement along z− axis, hδuzstaggi (right
axis) as a function of temperature. b Order parameter for the crystal (OP)
as a function of temperature. c Specific heat (CV) vs temperature. The
attraction between like charges (Eq. (6)) leads to an spontaneous
symmetry breaking transition into the magnetic and structural phase shown
in Fig. 4. It is reflected in the abrupt changes seen in all the curves near
T/Jml≈ 0.5.
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In spite of the above, we notice that the specific heat CV

(Fig. 5c), full symbols shows only a broad Schottky anomaly on
decreasing temperature, while the order parameter OP varies very
little. This tells us that the spin ice-like ground state has changed
into a dense monopole phase of incoherent βQ− chains,
producing no spontaneous symmetry breaking. It is easy now
to see that an effective interaction like the one in Eq. (6) with
attraction between like charges (γ < 0) is the coupling needed to
obtain the double monopole layer structure, since it favours
charges of equal sign in contiguous βQ− chains to be next to each
other (Fig. 4a). It can be the result of second and third nearest
neighbours exchange interactions67, and may be related to the
“half-moons” in Tb2Ti2O7 neutron scattering experiments46,57.
Alternatively, the additional term can also be thought as an
effective way to include the effect of the electric dipolar
interactions, that have been proved to lead to the double-
layered monopole crystal54. It is important to stress that their role
here is not to stabilise single monopoles54, but (more subtly) to
favour a particular monopole arrangement.

The open symbol curves in Fig. 5 show the marked changes we
measured after adding the monopole interaction term (Eq. (6))
with γ/Jml=−0.08 to the extended MeSI model. We can see that
ρ and hδuzstaggi reach saturation in a much sharper way. The
abrupt jump in OP (reaching the value of 1), and the peak in CV

(with an extra area under it) show that these sharp features are
connected with the spontaneous symmetry breaking by the
double monopole layer structure. In addition to the spin and
monopole configurations, displayed on Fig. 4a), our model
provides the lattice distortions linked to this magnetic structure
(Fig. 4b). As discussed before (Figs. 3b and 4b) and differently
from ref. 25, this displacement is not only vertical: the O ion
tends to approach the triangular surface of each tetrahedron
where the three spins point likewise (darkened in the figure), so
as to reduce the value of the exchange constants along the
corresponding links.

Given the big magnetic moments associated with Tb+3, a brief
consideration is needed regarding dipolar magnetic interactions.
As discussed in ref. 28, their effect will be twofold. Firstly, the
preference of these interactions for two-in/two out states should
be compensated by the huge magnetostriction of Tb2Ti2O7 (i.e.,
the transition into a dense monopole phase would occur at higher
fields/deformations than if no magnetic dipolar forces were
included). Secondly, dipolar interactions would disfavour the
proximity of like magnetic charges, demanding bigger values of
∣γ∣ (i.e., bigger next-nearest neighbours exchange interactions, or
dipolar electric moments).

Discussion
It is interesting to compare the resulting structures for some of
the ground states which combine a maximum density of single
monopoles and extensive residual entropy. We can now put
together three pieces of information: the usual (spin) magnetic
scattering, scattering from the (distorted) O−2-lattice, and
hypothetical scattering from magnetic charges. They were cal-
culated from simulations at very low temperature, so that mag-
netic excitations are negligible and O−2-ions are displaced only
along the unit cell diagonals (see Section “The Fragmented
Coulomb Spin Liquid (FCSL): correlated magnetic and dipolar
electric uctuations”, and Supplementary Notes 2 and 3 for details
on the simulations and the precise definitions used in the
Structure Factor calculations).

Figure 6 shows a comparison of the calculated structure factors
within the [h, l, l] plane of reciprocal space, laid out forming an
array. Three of the monopole phases (including the Polarised
Monopole Liquid –PML– studied in detail in a previous work35)

run along the rows. The “scattering centres” (spins, magnetic
charges, and the O−2 ions displaced from the centre of each
tetrahedron) run along its columns. For the O−2 displacement we
show only the diffuse part, removing the trivial contribution from
the regular diamond lattice formed by the O−2 average position
and k-dependent charge (see Supplementary Note 3). On the
other hand, Bragg scattering peaks due to static spins (polarised
by the field or associated to the curl-free part of the magnetic
moment in the crystal of single monopoles) are indicated sche-
matically by full circles.

Monopole order progresses downwards in this figure array, as
illustrated by the second column: broad maxima for the Mono-
pole Liquid give place to pinch points in the PML and then to
sharp Bragg peaks for the Zincblende Monopole Crystal.
Regarding the Monopole Liquid, in spite of the maxima in the
monopole channel, it shows no spin-spin correlations at all,
which is also true for the O−2 displacements (first row in Fig. 6).
The existence of these peaks in the charge channel may be
counterintuitive given the total spin decorrelation. Monopole-
monopole correlations in the ML are due to construction con-
straints, due to the underlying spins24,29.

As previously mentioned in the text, the Zincblende Monopole
Crystal shows pinch points both in the spin and the O−2 channel;
strong Bragg peaks reflect the monopole correlations in the
crystal. As the ML, the Polarised Monopole Liquid (middle row)
has no spin or monopole long-range order35. Notably, and dif-
ferently from its unpolarised version, the PML has a gauge field
associated that can be related to either spins, magnetic charges or
displaced O−2-ions. In principle, radiation interacting with any of
these three particles could show the pinch points characterising a
Coulomb phase. The ability to detect effects related to the electric
dipole on monopoles depends on its magnitude. While there are
indications of the presence of such electric dipoles in Tb2Ti2O7

and Dy2Ti2O7
61,96, the O displacement δr has not been measured

experimentally. Within our model, we can obtain it through Jml

(Eq. (4)), provided we know the coupling constant ~α and the
elastic constant K. A rough estimation based on the experimental
and numerical results obtained in refs. 48,97–99 gives a small Jml

for Dy2Ti2O7 and Ho2Ti2O7, on the order of 10 mK. In turn, this
leads to δr ≈ 0.1 pm for these canonical spin ices. On the other
hand, Jaubert and Moessner54 estimate a bigger δr for Tb2Ti2O7

(within the picometre range), similar to that observed in multi-
ferroic materials. While this is still considerably small, new
methods based on traditional XRD have been very recently pro-
posed and used to observe distortions within this range in a
strontium titanate oxide100. The chances of a direct observation
of the magnetoelastic phenomena we propose can increase if the
efforts are first concentrated on compounds with a big coupling
between magnetic and lattice degrees of freedom, starting with
monopole crystals. The double monopole layer in Tb2Ti2O7 could
then be an excellent starting point.

In summary, we have introduced an extension to the usual
Hamiltonians used for studing Ising spin systems on pyrochlore
oxides R2M2O7. The Magnetoelastic Spin Ice (MeSI) model
includes the spin coupling to the lattice of central O−2-ions in up
and down tetrahedra, through the dependence of the super-
exchange constant J(δu) on the oxygen displacement (δu). We
show that, in the strong coupling limit, lattice distortions turn
single monopoles (the excitations of the spin ice materials) into
actual building blocks of novel ground states with maximum
density of magnetic charges. Crucially, δu works as a dynamic,
internal field; there is thus no explicit symmetry breaking, and all
eight single monopoles are a priori equally probable in each
tetrahedron.

This avenue to new ground states and novel physics is widened
by an additional factor: the O−2 distortion implies an electric
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dipolar moment. This means that the distortions δu are not just
“hidden” degrees of freedom that allow for the occurrence of new
phases, but can be thought as probes to investigate the underlying
magnetism, or, in a multiferroic fashion, to control the material.

We have presented some examples of the above. The first one is
a Monopole Liquid ground state, stabilised for the first time with a
Hamiltonian with physical bases. Including an attraction between
magnetic monopoles of the same charge leads to “half-moons”,
features in the spin structure factor of this liquid; this makes a
direct link to the “spin slush” phases30,55. Remarkably, notwith-
standing its simplicity, the MeSI model provides a unified fra-
mework that explains the zero field ground state measured in
Tb2Ti2O7

56 and the double-layered monopole crystal at moderate
fields25. This includes an improved version for the previously
proposed distortion of the O−2-lattice25. The classical treatment of
distortions at low temperatures presented here, albeit unrealistic,
can be understood as a simple way to probe the magnetoelastic
instabilities of this system. At zero field, the MeSI model recreates
the phase diagram for single monopole spontaneous crystallisation

studied in23,26 without resourcing to artificial constraints, and can
be suitably extended to include double monopoles24. The spon-
taneous crystallisation of a dense liquid of single monopoles into
the Zincblende structure gave rise to the Fragmented Coulomb
Spin Liquid26,28,31. As stressed before, there is a close parallelism
between some electric and magnetic phenomena in frustrated
Ising pyrochlores53. Access to the elastic degrees of freedom
provides another layer of complexity, by showing that the O−2

displacement δu in the FCSL phase is, like spins, related to a gauge
field. Perhaps more singular is the case of the Polarised Monopole
Liquid35 (i.e., the monopole liquid with an applied magnetic field
along [100]). This disordered state is a Coulomb phase from the
point of view of three different degrees of freedom: spins, magnetic
monopoles and elastic distortions. As with the FCSL, pinch points
could be detected using diffuse neutron scattering or simply by
means of x-ray or electron diffraction.

Although we have concentrated our discussion mainly on the
magnetic degrees of freedom and on the strong coupling limit, the
MeSI model opens perspectives of research in other grounds. For

Fig. 6 Structure factors for the different disordered phases. The Magnetoelastic Spin Ice model (MeSI) considers on an equal footing the elastic and
magnetic degrees of freedom. The structure factor shows this in a very illustrative way. In this array, the nature of the scattering centre (spins, single
monopoles, or the oxygen ions near the centres of the tetrahedra) varies along the horizontal axis (see Supplementary Note 3 for details on the structure
factor calculation). The names of three of the studied phases are indicated on the left, with increasing charge order (while not necessarily spin order)
progressing downwards. For scattering from O−2 ions we have omitted the Bragg peaks corresponding to their position in the regular pyrochlore lattice; on
the other hand, Bragg peaks from the fragmented divergence-full component of the magnetic moment in the Zincblende Monopole Crystal (ZnMC), or by
the spins aligned by the applied magnetic field along [100] in the Polarised Monopole Liquid (PML), are indicated schematically by full circles. Notably,
three different types of gauge field can be observed, associated with spins, magnetic charges, and oxygen displacements. While the Monopole liquid does
not show pinch points in any case, the PML is most remarkable, reflecting the existence of a Coulomb phase in the three channels. In principle, the
Fragmented Coulomb Spin Liquid26,31,84 should reflect the existence of a Coulomb phase not only through the magnetic moments, but also through lattice
distortions.
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instance, the weak coupling regime can be used to describe in a
combined way (spins and lattice distortions) some of the physics
of spin ice materials53,58,59,61: their true ground state48,49,101–105,
the effect of uniaxial pressure48,106, and the new phases that
emerge under an applied field49,72,81,82,107.

Data availability
The data that support the findings of this study are available from the corresponding
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